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[bookmark: tart01]Bevezetés

Huszonnégy évszázaddal ezelőtt egy görög figyelte a tenger partjáról, hogyan tűnnek el a távolban a hajók. Arisztotelész sok időt tölthetett el itt, miközben nyugodtan szemlélte a sok hajót, míg végül egy különös gondolat vette hatalmába. Úgy tűnt, minden hajónak előbb a teste tűnik el, majd az árboca, legvégül a vitorlái. Csodálkozott azon, hogy hogyan lehetséges ez. Sima földfelületen a hajóknak egyenletesen kisebbedniük kell, hogy végül jellegtelen pontként eltűnjenek. Arisztotelész egy zseniális pillanatában azonnal látta, hogy az árbocok és a vitorlák későbbi eltűnése annak a jele, hogy a Föld felszíne görbe. Bolygónk nagyléptékű szerkezetének megállapításakor Arisztotelész a geometria ablakán nézett át.
Ma ugyanúgy tárjuk fel a teret, ahogyan egy évezred távolában a Föld esetében is eljártunk. Néhány ember eljutott már a Holdra. Ember nélküli űrhajók kalandoztak már el a Naprendszer külső tartományaiba. Elképzelhető, hogy már ebben az évezredben eljutunk a legközelebbi csillaghoz – ami ötvenéves utazást jelentene az egy szép napon elérhető egytizednyi fénysebességgel. De még ha az Alfa Centauri távolságának többszöröseivel is mérjük, az Univerzum külső zónái még így is jó néhány milliárd mérőrúd hosszára vannak tőlünk. Teljesen valószínűtlen, hogy valaha is láthatnánk, amint egy űrhajó megközelíti a tér látóhatárát, ahogyan Arisztotelész láthatta a Föld esetében. Mégis sokat foglalkoztunk az Univerzum természetével és szerkezetével, ahogyan Arisztotelész is tette, megfigyeléssel, a logika alkalmazásával, és persze azzal, hogy irtózatosan sokáig bámultunk a térbe. Az évszázadok során a zsenialitás és a geometria segített minket abban, hogy túllássunk a látóhatárunkon. Mit bizonyíthatunk a térről? Honnan tudhatjuk meg, hogy hol vagyunk? Lehet-e görbült a tér? Hány dimenzió van? Hogyan magyarázza a geometria a természetes rendet és a kozmosz egységét? Ezek a kérdések húzódnak meg a világtörténelem öt geometriai forradalma mögött.
Egy kis sémával kezdődött, amit Pitagorasz vázolt fel: a matematika absztrakt rendszerének alkalmazása a fizikai univerzum modellezésére. Azután jött a tér koncepciója, függetlenül attól a tereptől, amin járunk, vagy a víztől, amiben úszunk. Ez volt az absztrakció és a bizonyítás születésének pillanata. Hamarosan kiderült, hogy a görögök látszólag minden tudományos kérdésre képesek geometriai választ adni, legyen szó az emelők elméletéről vagy az égitestek pályáiról. A görög civilizáció azonban leomlott és a rómaiak meghódították a nyugati világot. Kr. u. 415-ben, néhány nappal húsvét előtt a tudatlan tömeg egy nőt rángatott ki a hintajából és megölte őt. Az áldozat, aki a geometriának, Pitagorasznak és a racionális gondolkodásnak szentelte életét, az Alexandriai Könyvtár utolsó nagy tudósa volt, mielőtt a civilizáció ezer évre a sötét középkor árnyékába hullott volna.
A civilizáció hamarosan újra feltámadt, így a geometria is, de ez már egy egészen más geometria volt. Egy igen civilizált embertől származott, aki szeretett szerencsejátékokkal foglalkozni és késő délutánig aludni, a görögöket pedig kritizálni, mert azt hitte, hogy bizonyítási módszerük túlságosan megerőltető. Hogy a szellemi fáradságot csökkenthesse, René Descartes összeházasította a geometriát a számokkal. Elgondolásával, a helyet és az alakot soha eddig nem látott módon, a koordinátákkal tudta kezelni, és a számokat pedig geometriailag szemléltetni. Ez tette lehetővé a differenciálszámítás és a modern technológiák kialakulását. Hála Descartes-nak, az olyan geometriai fogalmak, mint koordináták és gráfok, szinusz és koszinusz, vektorok és tenzorok, szögek és görbületek a fizika minden szövegkörnyezetében megjelennek a szilárd testek elektronikájától a téridő nagyléptékű szerkezetéig, a tranzisztorok és számítógépek, lézerek elektronikájától az űrutazásig. De Descartes munkája lehetővé tette egy még absztraktabb – és forradalmi – gondolat, a görbült tér megszületését is. Vajon minden háromszög szögeinek összege 180 fok, vagy ez csak akkor igaz, ha a háromszög egy sík papírlapra rajzolható? Ez nem egészen olyan mint az origami! A görbült terek matematikája nemcsak a geometriát forradalmasította, hanem a matematika egészét is. Továbbá lehetővé tette Einstein relativitáselméletének kialakulását. Einstein geometriai elmélete a térről és az extra dimenzióról, az időről, a téridő kapcsolatáról az anyaggal és energiával egy olyan paradigmaváltást jelentett, amihez foghatót Newton óta nem látott a fizika. Ez valóban radikális változásnak tűnt. Ám mindez semmiség a legutolsó forradalomhoz képest.
1984 júniusában egy tudós bejelentette, hogy véghezvitte az áttörést abban az elméletben, amely meg tud magyarázni mindent, a szubatomi részecskék létezésétől és kölcsönhatásaitól, egészen a nagyléptékű tér-idő struktúrákig és a fekete lyukak természetéig. Ez az ember azt hitte, hogy az egység és rend megértésének kulcsa a geometriában rejlik – egy új és meglehetősen bizarr természetű geometriában. Ezt az embert egy fehér ruhás ápolócsoport vitte le a színpadról.
Mint kiderült, a jelenetet csak megrendezték, de az érzés és a zseni valóságos volt. John Schwarz már másfél évtizede dolgozott az elméleten, amit húrelméletnek neveznek, s amire a legtöbb fizikus nagyjából ugyanúgy reagált, mint járókelők arra a fura arckifejezésű idegenre, aki az utcán kéreget. Ma viszont a legtöbb fizikus hiszi, hogy a húrelmélet helyes, és a tér geometriája felelős azokért a fizikai törvényekért, amik a térben létezőkre hatnak.
A geometria forradalmi kibontakozásáról szóló manifesztumot egy titokzatos ember írta, akinek a neve Eukleidész. Ha ön nem sok mindenre emlékezik az euklideszi geometriából, az bizonyára azért van, mert átaludta ezeket a matematikaórákat. Ha a geometriára úgy tekintünk, ahogyan általában előadják, az a legjobb módja annak, hogy egy fiatal elme megkövesedjék. Ám az euklideszi geometria valójában egy érdekes tárgy Eukleidész munkája gyönyörűséges jelentősége vetekszik a Bibliáéval, gondolatai olyan radikálisak, mint Marxé és Engelsé. Mert Eukleidész Elemek című munkájával ablakot nyitott számunkra, amin keresztül feltárult az Univerzum természete. S mivel geometriája túlélte a következő négy forradalmat, a tudósok és matematikusok megrengették a teológusok hitét és lerombolták a filozófusok dédelgetett világképeit, minket pedig arra késztettek, hogy újra megvizsgáljuk, újra elképzeljük helyünket a világmindenségben. Ezekről a forradalmakról, a bennük szereplő prófétákról és a mögöttes történetekről szól ez a könyv.

[bookmark: tart02]I. EUKLEIDÉSZ TÖRTÉNETE


Mit lehet mondani a térről?
Miként fogott hozzá a geometria az Univerzum leírásához és hogyan nyitott utat a modern civilizációnak?
[bookmark: tart03]
1. Az első forradalom

Eukleidész valószínűleg egyetlen jelentős törvényt sem fedezett fel a geometriában. Mégis ő a valaha ismert geométerek legnagyobbika, és ennek meg is van a jó oka: évezredeken keresztül az ő ablaka volt az, amelyen az emberek átnéztek, amikor a geometriát szemlélték. Itt és most Eukleidész a hirdetőoszlop, a tér fogalma kialakulásának, az absztrakció megszületésének és a bizonyítás eszméjének hirdetője.
A tér fogalma, elég természetesen, a hely, a mi helyünk, a Föld fogalmával kezdődött. Azzal vette kezdetét, amit az egyiptomiak és a babilóniaiak a „föld mérésének” neveztek. Ugyanezen emberi tevékenység görögül a geometria szóval fejezhető ki, jóllehet a két tudományág tárgya egyáltalán nem hasonló. A görögök elsőként ismerték fel, hogy a természet a matematika alkalmazásával megérthető, és hogy a geometriát nemcsak egyszerűen a leírásra, hanem a feltárásra is lehet alkalmazni. A geometriát a kő, a homok egyszerű leírásából kifejlesztve a görögök elvonatkoztatták a pont, az egyenes és a sík fogalmát. Elszakadva az anyag kínálta ablaktól, feltártak egy olyan struktúrát, amelynek szépségét az addigi civilizáció még nem látta. A matematika felfedezésének ezen a csúcspontján áll Eukleidész. Eukleidész története egy forradalom története. Ez az axióma, a tétel, a bizonyítás, és bizony az ész története is.
[bookmark: tart04]
2. Az adózás geometriája
[bookmark: _ednref1]A görög teljesítmény az ókori babiloni és egyiptomi civilizációban gyökerezett. Yeats írt a babiloniak nemtörődömségéről1, arról a jellemvonásról, ami a matematikában visszatartotta őket a nagyság elérésétől. A görögök előtti emberiség sok okos formulát, számolási trükköket vagy műszaki megoldásokat sajátított el, de gyakran politikai vezetőinkhez hasonlóan cselekedeteik elképesztően kis hatásfokú megértésével jutottak meglepő eredményekhez. Ám ezzel nem törődtek. Egyszerűen csak építettek, sötétben dolgoztak, tapogatva, megérezve útjukat, itt egy szobrot állítva, ott néhány követ a láb alá téve valósították meg céljukat anélkül, hogy a megértéshez eljutottak volna.
[bookmark: _ednref2]E tekintetben nem ők voltak az elsők. Az emberi lények már számoltak, számolgattak, adót fizettek, becsapták egymást bizony már jóval azelőtt is, hogy feljegyzések tanúskodnának erről. Ilyen állítólagos számoló szerszám lehetett az a mintegy Kr. e. 30 000-re datálható számlálóbotocska, amit a művészek intuitív matematikai érzékkel díszítettek. Más leletek fondorlatos módon eltérnek ettől. Az Edward-tó partján, a mai Kongói Demokratikus Köztársaságban találták a régészek azt a kb. 8000 éves kis csontot, amelynek egyik végébe egy darabka kvarc van erősítve. Alkotója, tán egy művész vagy matematikus – ezt már sohasem tudhatjuk meg – három oszlopban rovátkákat vésett a csont oldalára. A tudósok azt hiszik, hogy ez a csont, amit Ishango-csontnak hívnak, valószínűleg a valaha is fellelt legkorábbi, numerikus adatok mérésére szolgáló eszköz2.
[bookmark: _ednref3][bookmark: _ednref4]A számokon végezhető műveletek gondolata csak lassan tört elő, mert az aritmetika megkívánja az absztrakció bizonyos fokát3. Az antropológusok azt állítják, hogy sok törzsnél megtörténik az, hogy ha két vadász két nyíllal lelő két gazellát, majd miközben a tetemeket a táborba húzzák két sérvet kapnak, akkor a „kettő” fogalmának kifejezésére minden esetben más szót használnak. Ezekben a civilizációkban az ember tényleg nem tud almákat és narancsokat összeadni. Úgy látszik, több évezrednek kell még eltelnie, hogy az emberek felfedezzék, ezek mind ugyanannak a fogalomnak, az absztrakt „2” számnak példái4.
[bookmark: _ednref5][bookmark: _ednref6]Az első nagyobb lépést ebben az irányban Kr. e. a hatodik évezredben tették5, amikor a Nílus völgyében az emberek kezdtek elfordulni a nomád élettől és a völgy földművelésére összpontosítottak. Észak-Afrika sivatagjai a Föld legszárazabb és legterméketlenebb területei. Csak az egyenlítői esőzésektől és az abesszin felvidékeken felolvadt hótól megduzzadt „isteni” Nílus folyó tudja elhozni és fenntartani az életet a sivatagban. Az ókori időkben, minden évben június közepén a száraz, elhagyatott és poros Nílus-völgy megérezte a folyó előretörését, áradását, mely feltöltötte a folyó ágyát és termékeny hordalékot rakott le a vidéken6.
[bookmark: _ednref7]Hosszú idővel azelőtt, hogy a görög Hérodotosz Egyiptomot mint „a Nílus ajándékát” írta le, III. Ramszesz ránk hagyott egy beszámolót arról, hogyan imádják az egyiptomiak ezt az istent, a Nílust, amit Hapi névvel illettek, feláldozva neki mézet, bort, aranyat, türkizt – vagyis mindent, amit az egyiptomiak értékesnek tartottak. Kopt nyelven maga az „Egyiptom” elnevezés is „fekete földet” jelent7.

* * *

[bookmark: _ednref8]A völgy elárasztása minden évben négy hónapig tartott. Októberre a folyó apadni kezdett és visszahúzódott, míg a föld ismét száraz lett a következő nyárig. A nyolc száraz hónapot két évszakra osztották, a perit a földművelésé, a shemu az aratásé volt. Az egyiptomiak elkezdtek telepeket alakítani a dombokon, az árvíz idején töltésutak kötötték össze a kis szigeteket. Öntözési rendszereket és magtárakat alakítottak. A mezőgazdaság az egyiptomi kalendárium és az élet alapjává vált. A kenyér és a sör lett a főterményük. Kr. e. 3500 tájára az egyiptomiak már kisebb ipar (pl. kézművesség, fémfeldolgozás) csínját-bínját is kitanulták. Körülbelül ez idő tájt született meg az írás8.
[bookmark: _ednref9][bookmark: _ednref10]Az egyiptomiaknak mindig volt dolguk a halállal, de most a gazdaság és a letelepedés mellett megjelentek az adók is. Az adók jelentették az első követelményt a geometria kifejlesztésére9, mert bár a fáraó volt minden föld és tulajdon birtokosa, a valóságban a templomoknak, sőt egyes magánszemélyeknek is voltak birtokai. A kormány aszerint rótta ki az adókat, hogy az adott évben milyen magas volt az árvíz és mekkora a földtulajdon területe. Azokat, akik megtagadták az adófizetést, a rend őrei a helyszínen bírták jobb belátásra. A kölcsön is lehetséges volt, de kamatját az „egyszerű fejben tartani” elv alapján évi 100%-ra tartották10. Minthogy sok forgott kockán, az egyiptomiak meglehetősen megbízható – bár elég nyakatekert – eljárással számították ki a négyzet, a téglalap vagy a trapéz területét. Hogy a kör területét megkapják, egy olyan négyzettel helyettesítették, amelynek oldalai a kör átmérőjének 8/9 részével voltak egyenlők. Ez azzal egyenértékű, hogy a π értékére 256/81-et, vagyis 3,16-ot használtak, ami ugyan felső becslés, de a helyes értéktől csak 0,6%-kal tér el. A történelem nem jegyezte fel, hogy az adófizetők háborogtak volna ezen a túlzáson.
Az egyiptomiak a matematikai tudásukat mély benyomást keltő célokra használták. Képzeljünk el egy szélsöpörte elhagyott sivatagot, a dátum Kr. e. 2580. Az építész kiterített egy nagy papiruszt a fáraó szobrának tervével. A feladata egyszerű volt: négyzet alakú alap, háromszög alakú felületek, de jaj, 150 méter magasnak kell lennie, olyan kőtömbökből építve, amelyek 2 tonnánál is súlyosabbak. Feladata az építkezés ellenőrzése volt. De sajnos nincs lézer, sem egyéb ellenőrző mérőeszköz, csak fa és kötél.
[bookmark: _ednref11]Minden háztulajdonos tudja, hogy egy épület, vagy akárcsak egy belső terasz alapjainak a kijelölése nehéz feladat, ha csak az ács szögmérője, vagy egy kis mérőszalag áll a rendelkezésre. A piramis építésénél elég egy fok eltérés a helyes iránytól, és máris sok ezer tonna kő és sok ezer emberévnyi munka megy veszendőbe, de a magasság is több tíz méterrel eltér a tervezettől. Ráadásul az építmény oldalsó felülete sem lesz szabályos, háromszög alakú, mert az oldalélek nem egyetlen csúcsban találkoznak, hanem egy négyágú, alaktalan bunkóban. A fáraók – kiknek harcosai a legyilkolt ellenségek falloszát levágták11, hogy ezzel könnyebb legyen az elesetteket megszámolni – nem olyanfajta mindenható istenek voltak, akiket az ilyen csonka piramisokkal lehetett volna ábrázolni. Az egyiptomi alkalmazott geometria jól fejlett szakterületté vált.
A felmérés elvégzésére az egyiptomiak egy harpedonoptának nevezett személyt alkalmaztak, ami szó szerint kötélfeszítőt jelent. A harpedonoptának három szolgája volt, akik a kötelet kezelték. A kötélen meghatározott távolságokban csomók voltak. Megfeszítve a jó csomóknál adott hosszúságú háromszögeket lehetett kialakítani – és így adott nagyságú szögeket is. Például: ha a kötelet 30, 40 és 50 méteres darabokat alkotva feszítjük ki, háromszöget alkotunk, amelynek a 30 és 40 egység hosszú oldalai között derékszög van. (A görög hypotenuse szó eredetileg „kifeszített” jelentésű.) A módszer zseniális volt – és sokkal bonyolultabb, mint amilyennek látszik. Ma azt mondanánk, hogy a kötélhúzó nem vonalakat, hanem geodetikus görbéket húz a Föld felszínén. Mint látni fogjuk, ez pontosan az a módszer, jóllehet rendkívül lekicsinyített (szaknyelven: infinitezimális) méretben, amit ma a tér lokális tulajdonságainak elemzésére használunk a matematika differenciálgeometriának nevezett ágában. Márpedig a Pitagorasz-tétel az, aminek érvényessége a sima tér próbája.
[bookmark: _ednref12][bookmark: _ednref13]Amíg az egyiptomiak a Nílus mentén telepedtek le, egy másik civilizáció is kialakult a Perzsa-öböl és Palesztina közti régióban12. Ez Mezopotámiában kezdődött, a Tigris és az Eufrátesz folyók között, Kr. e. a negyedik évezredben. Valamikor Kr. e. 2000 és 1700 között a Perzsa-öböltől északra élő nem szemita eredetű népek leigázták déli szomszédaikat. Győzedelmes vezérük, Hammurápi az egyesített királyságot a nagy város után Babilóniának nevezte el. Az egyiptomiakhoz képest a babilóniaiak sokkal kifinomultabb matematikával rendelkeztek13.
[bookmark: _ednref14]Idegenek, akik 4000 fényév távolságból szuperteleszkópon nézik a Földet, megfigyelhetik a babilóniai és egyiptomi életet és szokásokat. Számunkra, akik a Földön élünk, egy kissé nehezebb a darabkákat összeilleszteni. Az egyiptomi matematikát főleg két forrásból ismerjük, az egyik a Rhind Papirusz, amit A. H. Rhindről neveztek el, aki a British Museumnak adományozta; a másik a Moszkvai Papirusz, amely a moszkvai Szépművészeti Múzeumban található. Legjobb ismereteink a babilóniaiakról Ninive romjaiból származnak, ahol 1500 agyagtáblát találtak. Sajnos, egyiken sem szerepelt valamilyen matematikai szöveg. Szerencsére, néhány száz agyagtáblát kiástak Asszíria környékén is, többnyire Nippur és Kisz romjaiból14. Ha a romok között kutatva olyasmit teszünk, mint amikor egy könyvesbolt polcain keresgélünk, akkor ezek azok a boltok, amelyeknek matematikai részlege is van. A romok ugyanis tartalmaztak referenciatáblákat, tankönyveket és egyéb tételeket, amelyek sokat elárulnak a babilóniaiak matematikai gondolkodásáról.
[bookmark: _ednref15]Tudjuk például, hogy a mérnök babilóniai megfelelője nem engedte volna az embereket csak úgy hozzáfogni egy munkához. Mondjuk egy csatorna ásásánál már előre tudta volna, hogy annak keresztmetszete trapéz jellegű, kiszámította volna, mekkora térfogatból kell a homokot kiásni, figyelembe vette volna, hogy egy ember egy nap alatt mennyit tud kiásni, és végül előállt volna azzal, hogy hány ember-nap kell a feladat elvégzéséhez. A babilóniai pénzkölcsönzők még a kamatos kamatot is kiszámították volna15.
[bookmark: _ednref16]A babilóniaiak nem írtak fel egyenleteket. Minden számításuk szöveges feladatként volt megadva. Például az egyik tábla ezt a lenyűgöző szónoklatot tartalmazza: „Négy a hossza, öt az átlója, akkor mi a szélessége? A mérete nem ismert. Négyszer négy az tizenhat. Ötször öt az huszonöt. Ha kivonsz tizenhatot huszonötből, marad kilenc. Hányszor hányat kell vennem, hogy kilencet kapjak? Háromszor három az kilenc. Három a szélesség”16. Ma egyszerűen azt írnánk, hogy x2 = 52 - 42.
[bookmark: _ednref17]A probléma szónoki előadásának a hátránya – a kompaktság hiánya – nem annyira nyilvánvaló, de a próza nem gyúrható úgy ahogyan egy egyenlet, és például az algebra szabályai sem alkalmazhatóak oly könnyen. Évezredek teltek még el, mire ezt a hátrányos körülményt orvosolták: a plusz jel összeadást jelentő használata a legkorábban egy 1481-ből származó német kéziratban tűnik fel17.
A fenti idézet azt mutatja, hogy a babilóniaiak láthatóan ismerték a Pitagorasz-tételt, vagyis hogy egy derékszögű háromszögben az átfogó négyzete a két befogó négyzetének összege. Mint a kötélfeszítő eljárása is mutatja, az egyiptomiak, úgy látszik, szintén ismerték ezt a kapcsolatot. A babilóniai íródeákok agyagtábláikat lenyűgöző számhármasokkal töltötték meg, melyek ezt az összefüggést mutatják. Feljegyeztek alacsony számhármasokat, mint pl. 3, 4, 5, vagy 5, 12, 13, de vannak olyan nagyok is, mint 3456, 3367, 4825. Az esélye annak, hogy véletlenül választunk ki olyan számhármasokat, amelyek jók, rendkívül kicsi. Így például az első tucatnyi szám, az 1, 2, …, 12 közül százával választhatunk ki különböző számhármasokat, ezek közül azonban csak a 3, 4, 5 tesz eleget a tételnek. Hacsak a babilóniaiak nem alkalmaztak seregnyi kalkulátort, akik egész karrierjük alatt ilyen számításokat végeztek, arra a következtetésre jutunk, hogy legalábbis eleget tudhattak az elemi számelméletből, hogy ezeket a számhármasokat előállítsák.
Az egyiptomiak teljesítménye és a babilóniaiak bölcsessége ellenére hozzájárulásuk a matematikához csak arra korlátozódott, hogy a konkrét matematikai tények és elemi szabályok gyűjteményét adják át a későbbi görögöknek. Inkább a klasszikus terepbiológusokhoz hasonlítottak, akik türelmesen katalogizálták a fajokat, nem pedig a modern genetikusokhoz, akik arra törekszenek, hogy megérthessék, hogyan fejlődik és működik az élő szervezet. Jóllehet, mindkét civilizáció ismerte a Pitagorasz-tételt, egyik sem elemezte az általános törvényt, amit ma a2 + b2 = c2 alakban írunk fel (ahol c a derékszögű háromszög átfogója, a és b a két befogója). Úgy látszik, soha nem kérdezték, miért létezhet egy ilyen reláció, vagy hogy hogyan alkalmazhatják ezt további tudás megszerzésére. Egzakt-e a reláció, vagy csak közelítő érvényességű? A gyakorlatban ez senkit nem érdekelt. Mielőtt az ókori görögök meg nem jelentek, senki sem törődött ezzel.
Vegyük a következő problémát, ami a legnagyobb fejfájást okozta az ókori görögöknek, de egyáltalán nem zavarta az egyiptomiakat, sem a babilóniaiakat. Bámulatosan egyszerű. Adott egy négyzet, minden oldala egységnyi hosszúságú, mekkora az átló hossza? A babilóniaiak kiszámították ezt (decimális törtekre átszámítva): 1,4142129. A felelet helyes három sexigezimális helyi értékig (a babilóniaiak ugyanis 60-as alapú számrendszert használtak). A püthagoreus görögök szerint ezt a számot nem lehet felírni egész számmal vagy törttel, ezt a szituációt ma úgy mondjuk, hogy ez a szám végtelen tizedes tört, amelyben nincsenek szakaszok: 1,414213562… A görögök számára ez nagy traumát jelentett, vallási jelentőségű krízist, amiért legalább egy tudósnak meg kellett halnia. Meghalni azért, mert elárulta a 2 négyzetgyökének értékét? Miért? A válasz a görögök nagyságának a lelkében van.

[bookmark: tart05]3. A hét bölcs között

[bookmark: _ednref18]Annak felfedezése, hogy a matematika több mint a homok térfogatának, vagy az adók nagyságának meghatározására szolgáló számolási eljárás1, egy valamivel több, mint 2500 évvel ezelőtt élt filozófussá vált kereskedő érdemének tekinthető. Thalész készítette elő a terepet a püthagoreusok nagy felfedezéseinek és Eukleidész Elemek című munkájának is. Olyan korban élt, amikor a világ minden táján egyszerre szólaltak meg a vekkerek, hogy az emberi szellemet ébresszék. Indiában Sziddhártha Gautama Buddha – aki kb. Kr. e. 560-ban született – kezdte a buddhizmus terjesztését. Kínában Lao-ce és fiatalabb kortársa, Kung-fu-ce (Konfuciusz) – aki Kr. e. 551-ben született – olyan intellektuális haladást ért el, amelynek hatalmas következményei lettek. Görögországban is ekkor kezdődött az aranykor.
Kis-Ázsia nyugati partjához közel, a Meander folyó – nevéből származik a meander kifejezés – egy ingoványos, sík területre érkezik a mai Törökország területén. Az ingovány közepén, úgy 2500 évvel ezelőtt a legnagyobb jólétben egy görög város állt. Akkoriban Milétosz még vízparti város volt, egy öbölben terült el, amit mára a folyó hordaléka feltöltött. Iónia tartomány központját, Milétoszt a víz és a hegyek zárták körül, csak egyetlen használható út vezetett a szárazföld belsejébe. Az Égei-tenger kereskedelmi központjának legalább négy kikötője volt. Innen indultak a hajók a déli szigetek vagy félszigetek felé, Ciprusba, Föníciába és Egyiptomba, vagy éppen nyugatra, az európai Görögország felé.
A Kr. e. VII. században itt kezdődött el az emberi gondolkodás forradalma, küzdelem a babona és a felületes gondolkodás ellen. Körülbelül egy évezredig fejlődött és a modern gondolkodás alapjait hagyta ránk.
Tudásunk az akkori úttörő gondolkodókról elég bizonytalan. Gyakran csak a későbbi tudósok, mint Arisztotelész és Platón elfogult vagy olykor éppen ellentmondó beszámolóiból adódik. A legtöbb ilyen legendás alaknak gyakran van görög neve, de ők nem fogadták el a görögök hitét. Gyakran kivégezték vagy száműzték, vagy éppen öngyilkosságra kényszerítették őket – legalábbis a róluk szóló ránk maradt történetek szerint.
[bookmark: _ednref19]Az egymásnak is ellentmondó beszámolók abban általában egyetértenek, hogy Milétoszban úgy Kr. e. 640 körül egy derék apa és anya egy kisfiúnak adott életet, akit aztán Thalésznek neveztek. Milétoszi Thalészt az a megtiszteltetés érte, hogy igen gyakran a világ legelső természettudósának vagy matematikusának tartják. Hogy ezt a korai dátumot ezekhez a foglalkozásokhoz csatoljuk, nem fenyegetheti a legősibb foglalkozás, a szexüzlet elsőbbségét, mert női kielégülés céljaira készített kitömött bőrtárgyak kereskedelme is egyike volt ama dolgoknak, amiről Milétosz híres volt2. Persze nem tudjuk, hogy Thalész ilyesmikkel, vagy éppen sózott hallal, gyapjúval vagy más termékekkel kereskedett-e, amelyekről Milétosz híres volt, azt viszont igen, hogy gazdag kereskedő volt, aki arra használta a pénzét, amire tetszett, s visszavonulva a tudománynak és az utazásnak élt.
[bookmark: _ednref20]Az ókori Görögország több apró, politikailag független egységből, városállamból állt. Egyesek demokratikusak voltak, másokat egy szűk arisztokrata réteg vagy egy tirannus kormányzott. A görögök napi életét főleg Athén példája alapján ismerjük, de a polgárok élete sok tekintetben hasonló lehetett a hellének körében és bizonyára keveset változott a Thalészt követő néhány évszázad során, kivételt képez az éhínség vagy a háborúk kora. Úgy látszik, a görögök szerették a társadalmi életet, a borbélyüzletet, a templomokat, a piacteret. Szókratész kedvence a cipészműhely volt. Diogenész Laertiusz egy Szimon nevű foltozóvargáról írt, aki elsőként vezette be a szókratészi dialógusokat, mint társalgási formát. A Kr. e. V. évszázadból való üzlet romjaiból a régészek kiemeltek egy borospohár-töredéket, amelyen Szimon nevet lehetett olvasni3.
Az ókori görögök a nagy lakomákat is kedvelték. Athénban a vacsorát a szimpózium követte, ami szó szerint „együtt ivást” jelent. A tivornya résztvevői vízzel hígított bort vedeltek, miközben filozófiáról vitatkoztak, énekeltek, vicceket és találós kérdéseket meséltek. Akik nem tudták megoldani a fejtörőket, vagy más hibákat követtek el, azokat különböző büntetésekre ítélték, például meztelenül körbe kellett táncolniuk a szobát. Talán van, akit a görögök társasági mulatozása az egyetemi kollégiumokban zajló életre emlékeztet, mindenesetre közös vonás, hogy a középpontban a tudás állt. A görögök nagyra értékelték a kíváncsiságot.
Úgy látszik, Thalész tudásszomja kielégíthetetlen, ami az aranykorban sok más görögre is jellemző volt. Utazásai során Babilonban tanulmányozta a csillagászatot. Matematikáját és saját hírnevét azzal alapozta meg, hogy tudását hazavitte Görögországba. Thalész egyik legendás teljesítménye a Kr. e. 585-beli napfogyatkozás előrejelzése volt. Hérodotosz írásából tudjuk, hogy ez éppen egy csata közben következett be. A harcnak vége szakadt és a háborúzó felek tartós békét kötöttek.
[bookmark: _ednref21]Thalész sok időt töltött Egyiptomban is. Az egyiptomiak jártasak voltak a piramisok építésében, a magasság meghatározása azonban nagy hiányosságuk volt. Thalész elméleti magyarázatot keresett azokra a tényekre, amelyeket az egyiptomiak tapasztalati úton fedeztek fel. Képes volt levezetni e geometriai eljárásokat, egyiket a másikból, vagy át tudta emelni egyik probléma megoldását a másik problémára, mert ki tudta szűrni az absztrakt elvet a konkrét gyakorlati problémából. Az egyiptomiakat egyenesen elképesztette, amikor megmutatta nekik, hogyan tudják megmérni a piramisok magasságát a hasonló háromszögek tulajdonságai alapján4. A későbbiekben Thalész hasonló eljárással mérte meg, milyen messze van egy hajó a tengeren. Az ókori Egyiptomban később ünnepelt személyiség lett.
[bookmark: _ednref22]Görögországban a hét bölcs egyikének tartották, kortársai a világ hét legokosabb embere közé sorolták. Tettei elsősorban azért keltettek mély benyomást, mert akkoriban az átlagember matematikai érzéke meglehetősen primitív volt. Például Epikurosz, a nagy görög gondolkodó még évszázadokkal később is fenntartotta, hogy a Nap nem egy hatalmas tűzgolyó, hanem „csak éppen olyan nagy, amekkorának látjuk”5.
[bookmark: _ednref23]Thalész tette meg az első lépéseket a geometria rendszerezésében. Elsőként bizonyított be tételeket, amelyeket Eukleidész évszázadokkal később az Elemek című művében gyűjtött össze. Felismerve, hogy szabályokra van szükség, amelyek meghatározzák, hogy mi következik miből, Thalész felfedezte a logikai érvelés első rendszerét. Elsőként alkalmazta a térbeli alakzatok egybevágóságát, hogy egy sík két alakja akkor tekinthető egyenlőnek, ha eltolással vagy forgatással egymással fedésbe hozhatók. Az egyenlőség fogalmának kiterjesztése a számokról a térbeli alakzatokra óriási lépés volt a tér matematizációjában. Ez messze nem oly nyilvánvaló, mint amilyennek látszik azoknak, akik ezt iskoláskoruk elején tanulták. Valójában, ahogyan majd később látni fogjuk, ez az állítás maga után vonja a tér homogén voltának feltevését, azt, hogy egy alakzat nem gyűrődik össze, nem változtatja meg nagyságát mozgásakor, ami nem igaz minden térben, így például a mi fizikai terünkben. Thalész megtartotta a matematika egyiptomi nevét, a „földmérés” nevet, de mivel görög volt, a görög szót használta, ez a geometria6.
Thalész azt állította, hogy megfigyelés és okoskodás útján mindent megmagyarázhatunk, ami a természetben történik. Történetesen arra a forradalmi következtetésre jutott, hogy a természet szabályos törvényeket követ. A villámcsapások nem a haragos Zeusz hangos morgásai. Kell lennie jobb magyarázatnak, amit a megfigyelés és az okoskodás által dolgozunk ki. És a matematikában a világról hozott következtetéseket szabályokkal kell ellenőrizni, nem pedig kitalálásokkal és megfigyelésekkel.
[bookmark: _ednref24][bookmark: _ednref25]Thalész a fizikai tér fogalmát is vizsgálta. Felismerte, hogy a világon minden anyag – a nagy változatosság ellenére – lényegében ugyanarra az alapvető anyagra vezethető vissza. Annak ellenére, hogy erre nem volt semmiféle bizonyíték, ez az intuíciós ugrás igen meglepő. A következő magától értetődő kérdés akkor az, hogy mi is ez az alapvető anyag. Milétoszban, egy kikötőkkel tarkított városban az intuíció Thalészt a víz kiválasztásához vezette7,8. S elég ironikus ugyan, de Thalész tanítványa és barátja, a szintén milétoszi Anaximandrosz hasonló intuíciós ugrással jutott el az evolúció gondolatához: szerinte a hal volt az az alacsonyabb rendű állat, amiből az emberek kifejlődtek.
Thalész már saját szenilitásától félő törékeny öregemberként találkozott a szamoszi Püthagorasszal, Eukleidész legfontosabb előfutárával. Szamosz egy város volt az azonos nevű szigeten, nem messze Milétosztól, az Égei-tengerben. A sziget látogatója ma is megtalálhatja még annak a színháznak a ledöntött bazaltoszlopait, ahonnan a város régi kikötőjére lehet lelátni. Püthagorasz idejében még virágzott a város. Amikor Püthagorasz tizennyolc évesen elvesztette édesapját, nagybátyja némi ezüstöt és egy ajánlólevelet adott neki, majd elküldte, hogy látogassa meg a filozófus Phereküdészt, a szomszédos Leszbosz szigeten – ahonnan a mai leszbikus jelző származik.
A legenda szerint Phereküdész a föníciaiak titkos könyveit tanulmányozta és ő vezette be a lélek halhatatlanságát és a reinkarnáció hitét a görögöknél. Ezeket Püthagorasz vallásos filozófiája sarokköveinek fogadta el. Püthagorasz és Phereküdész élethosszig jó barátok lettek, bár Püthagorasz nem maradt sokáig Leszboszon. Amikor húszéves lehetett, Püthagorasz elutazott Milétoszba, ahol találkozott Thalésszel.
[bookmark: _ednref26]A történelmi kép9 egy fiatal fiút ábrázol, hosszú, összeragadt hajjal, nem a hagyományos görög tunikába öltözve, hanem papucsban, egy ókori hippiként látogatta meg az öreg bölcset. Thalész akkoriban már tudatában lehetett annak, hogy korábbi fényes ragyogása jelentősen elhalványult. Talán a fiúban saját fiatalságának felvillanását látva szabadkozott megfogyatkozott szellemi képességei miatt.
Keveset tudunk arról, hogy mit mondhatott Thalész Püthagorasznak, de azt bizonyosan tudjuk, hogy nagy hatással volt az ifjú zsenire. Évekkel Thalész halála után Püthagorasz gyakran ült otthonában és dicsőítő énekeket zengett az elhunyt látomásairól. A találkozásról szóló összes beszámoló azonban egy dologban egyetért: Thalész nem azt tanácsolta Püthagorasznak, hogy „menj nyugatra fiatal barátom” – mint azt Horace Greeleynek javasolták Buster Keaton Elmegyek a vadnyugatra című burleszkjében – hanem Egyiptomot ajánlotta.
[bookmark: tart06]
4. A Titkos Társaság

[bookmark: _ednref27]Püthagorasz hallgatott Thalész tanácsára1 és Egyiptomba ment, de nem sok örömét lelte az ottani matematikában. A geometriai objektumok fizikai mennyiségek voltak. Vonalnak a harpedonopta által kifeszített kötelet vagy egy mező szélét tekintették. A derékszög egy földdarab határán szerepelt vagy egy kőkocka homlokzatán. A tér pedig homok, föld vagy levegő volt. A görögök – és nem az egyiptomiak – érdeme, hogy a matematikába bevitték a regényességet és a metaforát: a tér egy matematikai absztrakció, ami ugyanolyan fontos, az absztrakció pedig sok különböző körülményre alkalmazható. Néha a vonal csak vonal. De ugyanaz a vonal lehet egy piramis éle, egy mező határa vagy a legyek pályájának egy darabja. Az egyikre vonatkozó ismeret átvihető a másikra.
A legenda szerint egy napon Püthagorasz éppen egy kovácsmester műhelye előtt ment el, amikor az üllőre csapódó különböző kalapácsok hangjai ütötték meg a fülét. Ez gondolkodóba ejtette. Húrokkal végzett kísérletek után felfedezte a harmonikus haladványt és az összefüggést a rezgő húr és az általa megszólaltatott hang magassága között. Egy kétszer olyan hosszú húr például fele olyan magasságú hangot ad. Egyszerű megfigyelés, de mély és forradalmi meglátás, gyakran úgy tekintik, mint a tapasztalatilag felfedezett természeti törvény első történelmi példáját.
[bookmark: _ednref28]Egymillió évvel ezelőtt valaki nyögésére másvalaki örökkévaló, de mára már elveszett szavakkal válaszolt, amiknek az lehetett a veleje, hogy „tudom, mire gondolsz”2. Ekkor született a nyelv. A természettudományban Püthagorasz harmonikusainak törvénye hasonló mérföldkövet képvisel: az első példa arra, hogy a fizikai világ matematikai fogalmakkal kifejezhető. Abban az időben – erre okvetlenül fel kell hívnunk a figyelmet – az egyszerű numerikus jelenségek matematikája ismeretlen volt. Például a püthagoreusok számára kinyilatkoztatás volt, hogy egy négyszög területe a két oldal hosszának szorzata.
Püthagorasz számára sok matematikai fejtörést okozott azoknak a számmintázatoknak a sokasága, amit ő és követői felfedeztek. A püthagoreusok az egészeket kavicsoknak vagy pontoknak képzelték, amiket valamilyen geometriai alakzatban raktak ki. Úgy találták, hogy egyes számokat ki lehet alakítani, ha a köveket egyenlő távolságban egymás mellé helyezik, két oszlopban kettőt-kettőt, három oszlopban hármat-hármat és így tovább, mindig úgy, hogy az elrendezés négyzetet alkosson. A püthagoreusok minden olyan számot, amelyet így el lehetett rendezni, négyzetszámnak neveztek – ezért is nevezzük ezeket ma négyzetnek, pl. 4, 9, 16 stb. Úgy találták, hogy más számokat háromszög alakban lehet elhelyezni, ilyen pl. az 1, 3, 6 stb. esete.
A négyzet és háromszög alakú számok tulajdonságai felkeltették Püthagorasz érdeklődését. Például: az első két páratlan szám összege, az 1 + 3, egyenlő a második négyzetszámmal: a 4-gyel. A harmadik négyzetszám, a 9, egyenlő az első három páratlan szám összegével: 1 + 3 + 5. (Ez igaz az első négyzetszámra is: 1 = 1.) Míg a négyzetszámok minden esetben egyenlők az előttük lévő egymás után következő, páratlan számok összegével, Püthagorasz észrevette, hogy hasonló módon a háromszögszámok egyenlők az előttük álló, egymás után következő számok (párosak és páratlanok) összegével. És hogy a négyzetszámok és háromszögszámok között kapcsolat van: ha egy háromszögszámhoz hozzáadjuk az előzőt vagy a következőt, négyzetszámot kapunk.
A Pitagorasz-tétel maga is mágikusnak tűnt. Képzeljük el az ókori tudósokat, amint az általános (nem éppen derékszögű) háromszögeket tanulmányozzák, megmérik a szögeiket, oldalaikat, forgatják őket és összehasonlítják. Ha egy ehhez hasonló vizsgálat ma folyna, az egyetemeken külön tanszéket szentelnének erre. Egy büszke anyuka mondhatná: „A fiam a Berkeley matematikus szakán van. A háromszögek professzora”. Képzeljük el, hogy az egyik
napon a fiú egy különleges szabályosságot észlel: minden derékszögű
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háromszögben az átfogó négyzete egyenlő a befogók négyzetösszegével. Ez igaznak bizonyul nagy derékszögű háromszögekre, kicsikre, kövérekre, soványakra, de a nem derékszögűekre nem érvényes. Ez egy olyan felfedezés, ami minden bizonnyal felkerülne a New York Times címlapjára: „Meglepő szabályosság a derékszögű háromszögek esetén” – majd kisebb betűkkel bizonyára ez következne: „Az alkalmazásra még hosszú évekig várni kell”.
De miért is kellene a derékszögű háromszögek mindegyikének ilyen egyszerű szabályszerűséget követnie? A Pitagorasz-tételt egy bizonyos fajta geometriai szorzással lehet bizonyítani, amit Püthagorasz is gyakran alkalmazott. Nem tudjuk, hogy ez volt-e az az eljárás, amivel bizonyította, de így a bizonyítás igencsak mélyreható, mert tisztán geometriai. Manapság már egyszerűbb bizonyítások is vannak, amelyek az algebrára, sőt még a trigonometriára is hivatkoznak, de ezek egyike sem fejlődött ki Püthagorasz napjaiban. A geometriai bizonyítás viszont egyáltalán nem nehéz – egyszerűen csak a pontok összekötésének kissé matematikus módra megtekert verziója.
Hogy a Pitagorasz-tételt geometriai úton bizonyíthassuk, az egyetlen számolási tény, amire szükségünk van az, hogy a négyzet területe legyen egyenlő az egyik oldalának négyzetével. Ez csak egy modern újrafogalmazása Püthagorasz kavicsanalógiájának. Adott egy tetszőleges derékszögű háromszög, a cél, hogy három négyzetet alakítsunk belőle: az egyik négyzet az átfogó hosszával egyenlő oldalú négyzet, a másik kettő olyan négyzet, amelyiknek oldalai rendre a háromszög másik két oldalával egyeznek meg. E három négyzet mindegyikének a területe tehát a háromszög egy-egy oldalának a négyzetével egyenlő. Ha ki tudjuk mutatni, hogy az átfogóra emelt négyzet területe egyenlő a másik két négyzet területének összegével, akkor ezzel bebizonyítottuk Püthagorasz tételét.
Hogy a dolgokat egyszerűbbé tegyük, legyen a háromszög oldalainak neve. Az átfogó, a „hypotenuse”, már kapott nevet, bár ez egy kicsit hosszú, de azért megtartjuk, legfeljebb nagy kezdőbetűvel írjuk, hogy megkülönböztessük: Hypotenuse – a többi hypotenusétől megkülönböztetve. Nevezzük a másik két oldalt a háromszögből Nicolainak és Alexeinek. Véletlenül ezek a nevek a szerző fiaié. Amikor ezeket írom, Alexei a magasabb, Nicolai az alacsonyabb, így hát használjuk elnevezési konvenciónak a háromszög oldalainak megjelölésében (persze, a bizonyítás ugyanúgy menne, ha történetesen a háromszög két oldala egyenlő hosszú lenne). Kezdjük a szerkesztést azzal a négyzettel, amelynek oldalai Alexei és Nicolai hosszának összege. Majd tegyünk pontokat a négyzet oldalaira, felosztva az oldalakat egy metszetre Alexei hosszával, egy metszetre Nicolai hosszával, majd kössük össze a pontokat. Különböző mód van ezek megtételére. Ezek közül két bennünket érdeklő lehetőség található a 32. oldalon látható ábrán. Az egyiken a Hypotenuse oldalú négyzet meg négy maradék háromszög van. A másikon két négyzet – amelynek oldalai Alexei és Nicolai hosszával egyeznek meg, és még maradék 2 négyszög, amit az átlóinál el lehet felezni, s ezáltal azt a négy háromszöget kapjuk, amit az előbbi eljárásban találtunk.
Ami még hátravan, az már csak számolás. A két feldarabolt négyzet területe azonos, tehát, ha belőlük a maradék háromszögeket elhagyjuk, akkor az egyikben a megmaradó terület ugyanakkora, mint a másikban. De az egyikben a terület a Hypotenuse hosszának négyzete, a másikban a terület az Alexei és a Nicolai hosszával rajzolt négyzetek területének összege. S ezzel a tételt bebizonyítottuk.
[bookmark: _ednref29]Püthagorasz egyik tanítványa a tudomány ilyen új diadalaitól lenyűgözve írta: „ha nem a számokról és azok természetéről lenne szó, semmi létező nem lenne világos senkinek”3. A püthagoreusok filozófiájuk alapvető jellegére gondolva, feltalálták a matematika szakkifejezést, ami a görög nyelven a mathema – „tudomány” szó származéka. A szó eredete visszatükrözi a két dolog közti kapcsolatot, noha manapság éles megkülönböztetés van a matematika és a természettudomány között, és ez nem volt világos – mint majd látni fogjuk – egészen a XIX. századig.
Ugyancsak jókora a különbség az okos beszéd és a fecsegés között, amit Püthagorasz nem mindig vett figyelembe. Püthagoraszt a numerikus relációktól való irtózása olykor misztikus numerológiai hitbe kergette. Ő volt az első, aki a számokat „páratlan” és „páros” osztályokba sorolta, de megtett még egy különös lépést is azáltal, hogy megszemélyesítette őket: a páratlanokat maszkulinoknak (hímneműeknek), a párosakat feminineknek (nőneműeknek) nevezte. Egyes számokat pedig különböző fogalmakkal hozott kapcsolatba: így pl. az 1 a célszerűség, 2 a vélemény, 4 az igazság. Minthogy rendszerében a 4 négyzetként szerepelt, s a négyzetet pedig az igazsággal hozta kapcsolatba, ez az eredete a „square deal” (helyes, rendben lévő dolog) angol kifejezésnek. Annak érdekében, hogy Püthagorasz ügyeit rendben lévő dolognak ítélhessük, figyelembe kell 
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venni, hogy könnyebb a briliáns beszédet a fecsegéstől, egy pár évezred perspektívájából megkülönböztetni.
Püthagorasz karizmatikus alak és zseni volt, de igen jól tudott helyezkedni is. Egyiptomban nemcsak az ottaniak geometriáját tanulta meg, hanem történetesen egyiptomi pap is lett, vagy valami ezzel egyenértékű, megismerte szent rítusaikat. Ezáltal lehetővé vált, hogy bejusson a misztériumaikba, még a templomaik titkos termeibe is. Egyiptomban maradt legalább tizenhárom évig. Amikor pedig eltávozott, azt nem önszántából tette – a perzsák inváziójakor esett fogságba. Így került Babilonba, ahol történetesen visszanyerte szabadságát és a babiloni matematikában is alapos jártasságot szerzett. Végül Szamoszba tért vissza, ötvenéves korában. Ekkorra Püthagorasz már megalkotta a tér és a matematika filozófiáját, amit prédikálva kívánt továbbadni. Ehhez csupán néhány követőre volt szüksége.
[bookmark: _ednref30]Ismeretei a hieroglifák terén sok görögöt arra késztettek, hogy különleges hatalom birtokosának tekintsék őt. Sőt ő maga terjesztette azokat a mendemondákat, amelyek a normális polgártársaktól megkülönböztették. A bizarrabb történetek közül az egyik arról szólt, hogy amikor megtámadta őt egy mérges kígyó, akkor ő harapta a kígyót halálra4. Egy másik történet szerint egy betörő, amikor behatolt Püthagorasz otthonába, ott olyan különös dolgokat látott, hogy üres kézzel távozott, és később sem volt hajlandó elárulni, hogy mit látott. Püthagorasznak combján egy aranyszínű anyajegy volt – amit az istenség megnyilvánulásaként mutogatott. A szamosziak valahogy nem voltak túlzottan fogékonyak prédikációira, így Püthagorasz hamarosan elhagyta őket és egy kevésbé kifinomult ízlésű környezetet keresett magának Krotonban, egy görögök által gyarmatosított itáliai városban. Itt alapította meg követőinek „társaságát”.
[bookmark: _ednref31][bookmark: _ednref32]Az életrajz és a legenda, ami Püthagorasz körül szövődött, sok tekintetben párhuzamos vonásokat mutat egy későbbi karizmatikus vezető, Jézus Krisztus történetével. Nehéz elhinni, hogy a Püthagoraszról szóló történeteknek nem volt hatásuk a Krisztusról szóló későbbi történetek némelyikének kialakulására. Például Püthagoraszt sokan az Isten, ebben az esetben Apolló fiának tekintették5. Anyját Parthenisnek hívták, ami szüzet jelent. Mielőtt Egyiptomba utazott volna, Püthagorasz a Karmel-hegyen remeteéletet élt, mint Krisztus, egyedül böjtölt a hegyekben. Egy zsidó szekta, az esszénusoké, átvette ezt a mítoszt, és állítólag később kapcsolatba kerültek Keresztelő Szent Jánossal. Van mítosz arról is, hogy Püthagorasz holtából életre kelt, bár a történet szerint Püthagorasz ezt úgy oldotta meg, hogy egy föld alatti teremben bújt el időközben. Krisztus sok csodás mutatványát és tettét előbb Püthagorasznak tulajdonították: pl. azt mondták róla, hogy megvolt benne az a képesség6, hogy egyszerre két különböző helyen is megjelenjék; hogy képes volt lenyugtatni a tengert és megregulázni a szeleket; hogy egyszer üdvözölte őt egy égi hang; hogy azt hitték róla, képes a vízen járni.
[bookmark: _ednref33][bookmark: _ednref34]Püthagorasz filozófiájának vannak Krisztuséhoz hasonló elemei. Például azt prédikálta, hogy szeretnünk kell ellenségeinket. Ám filozófiájában közelebb állt Sziddhártha Gautama Buddhához (kb. Kr. e. 560-480). Mindketten hittek a reinkarnációban: lehet, hogy egy állatban folytatjuk az életet, ezért úgy tartották, egy állatban is lakhat az a valami, ami valaha egy emberi lélek volt7. Ezért mindketten nagyra értékelték az életet, az élet minden formáját, ellenezve az állatok feláldozásának eljárását és szigorú vegetáriánus gyakorlatot prédikáltak. Egy történet szerint Püthagorasz egyszer leállított egy kutyáját verő embert8, s azt mondta, hogy a kutyában egy reinkarnálódott öreg barátját ismerte fel.
[bookmark: _ednref35]Püthagorasz úgy érezte, hogy a szerzés, a birtoklás az isteni igazságok követésének útjában áll. Annak az időszaknak a görögjei gyakran viseltek gyapjúból készült ruhát és gyakorta használtak színes kiegészítőket. A tehetős emberek esetenként a vállukra egy köpenyszerű anyagot vetettek, amit egy aranytű vagy melltű fogott össze, hivalkodva jelezve gazdagságukat. Püthagorasz elvetette a luxust és megtiltotta követőinek, hogy az egyszerű fehér vászonból készült ruhákon kívül bármi másban járjanak. Ezek a tanítványok nem kerestek pénzt, csak Kroton népességének adományaira számíthattak, esetleg egy-egy gazdag követő adta nekik vagyonát és élt együtt velük közös életet. Nehéz meghatározni ennek a szervezetnek az igazi természetét, mert viselkedéseiket és szokásaikat illetően annak az időszaknak és annak a területnek az emberei nagyon különbözőek voltak. Így például Püthagorasz hívei kétféleképpen is megkülönböztették magukat a közönséges emberektől: nem vizeltek nyilvánosság előtt és nem szeretkeztek a többiek szeme láttára9.
A titkosság fontos szerepet játszott a püthagoreusok társaságában, ez talán Püthagorasz egyiptomi papságának idejéből, a titkos gyakorlat tapasztalatainak eredménye. Vagy talán az motiválta, hogy elkerüljék a bajt és bonyodalmat, ha ellenkezést kiváltó forradalmi eszmék merülnének fel. Püthagorasz egyik felfedezése olyan titokká vált, hogy a legenda szerint a püthagoreusok halálbüntetés terhe mellett megtiltották, hogy azt közülük valaki is nyilvánosságra hozza.
[bookmark: _ednref36]Idézzük csak fel az egységnégyzet átlója meghatározásának problémáját10! A babilóniaiak ezt hat tizedes jegyre kiszámították, de ez a püthagoreusoknak nem volt elég jó. A pontos értéket akarták tudni. Hogyan állíthatja az ember, hogy a térről, ami a négyzet belsejében van, mindent tud, ha ezt nem tudja? A baj az volt, hogy bár egyre jobb és jobb közelítéseket tudtak előállítani, de az általuk előállított számok egyike sem töltötte be az egzakt válasz szerepét. De a püthagoreusokat nem lehetett ilyen könnyen elcsüggeszteni. Volt képzelőerejük arra, hogy megkérdezzék, létezik ez a szám egyáltalán? Arra a döntésre jutottak, hogy nem létezik, de ahhoz is megvolt a zsenialitásuk, hogy ezt az állítást be is bizonyítsák.
Ma azt tudjuk, hogy az egységnégyzet átlójának hossza négyzetgyök kettő, s ez egy irracionális szám. Ez azt jelenti, hogy nem lehet felírni decimális (tizedes) tört formájában véges számú számjegyekkel, vagy ezzel egyenértékű módon: nem lehet előállítani egész számokkal vagy törtekkel – tehát azokkal a számfajtákkal, amiket a püthagoreusok ismertek. Az a bizonyításuk, hogy ez a szám nem létezik, tulajdonképpen annak a bizonyítása, hogy nem lehet ezt a számot ilyen formában felírni.
Világos, hogy Püthagorasz számára ez problémát jelentett. Az a tény, hogy a négyzet átlójának a hosszát nem lehet semmilyen számmal kifejezni, nem volt jó egy látnoknak, aki arról prédikál, hogy a szám az minden. Talán meg kellene változtatnia filozófiáját: a szám minden, kivéve bizonyos geometriai mennyiségeket, amiket tényleg misztériumnak tartunk?
[bookmark: _ednref37]Püthagorasz előre lendíthette volna pár évszázaddal a valós számok rendszerének a felfedezését, ha azt az egyszerű dolgot csinálja, hogy ad az átlónak egy nevet, mondjuk d-nek, de még jobb, ha [image: pict03]-nek nevezi, és egészen új számfajtának tekinti. Ha ezt tette volna, megelőzte volna Descartes koordinátaforradalmát, mert a numerikus előállítás hiányában ennek az új számtípusnak a leírása pl. a számegyenes felfedezését követelte. Ehelyett Pitagorasz visszalépett attól az ígéretes gyakorlattól, hogy a geometriai alakzatokat számoknak feleltesse meg, és azt nyilatkozta, hogy bizonyos hosszakat nem lehet számokkal kifejezni. A püthagoreusok az ilyen hosszúságokat alogonnak nevezték, ami eredetileg „nem arány” jelentésű, ezt ma „irracionális”-nak fordítjuk. Az alogon szó azonban kettős jelentésű volt akkortájt jelentette azt is, „amiről nem lehet beszélni”. Püthagorasz ezt a dilemmát azzal a tannal oldotta fel, amit nehéz volt védeni, egész tudományát a titkosság légkörével vette körül, megtiltotta követőinek, hogy ezt a zavarba ejtő paradoxont feltárják11. A legenda szerint egyik követője, Hippaszosz, feltárta a paradoxont. Manapság sok mindenért meggyilkolnak embereket – szerelemből, politikából, pénzből, vallásból kifolyólag, de nem azért, mert valaki árulkodik a négyzetgyök kettő természetéről. A püthagoreusok számára azonban a matematika vallás volt, így aztán amikor Hippaszosz megszegte a titkossági fogadalmat, meggyilkolták.
[bookmark: _ednref38]Az irracionális számokkal szemben tanúsított ellenállás még évezredekig eltartott. A késői XIX. században, amikor Georg Cantor, a tehetséges német matematikus úttörő munkájával új, szilárdabb alapokra akarta helyezni az irracionális számokat, akkor egy rosszakaró, bizonyos Leopold Kronecker, aki „ellene volt” az irracionális számoknak, erőszakosan ellenkezett Cantorral, szabotálta karrierjének minden mozzanatát. Cantor, aki nem volt képes ezt elviselni, összeomlott és utolsó napjait elmegyógyintézetben töltötte12.
Püthagorasz is bajba került élete végén. Úgy Kr. e. 510 táján egyes püthagoreusok egy Szibarisz nevű város környékén jártak, nyilván követőket kerestek. Küldetésükről fennmaradtak hírek, azonban arról nem, hogy meggyilkolták volna őket. Később egy szibarita csoport menekült Krotonba a hazájukban nemrégiben hatalomra jutott Telüsz nevű tirannus elől. Telüsz követelte visszatérésüket. Püthagorasz ekkor megszegte egyik sarkalatos szabályát: a politikától tartózkodni kell. Rábeszélte a krotoniakat, hogy ne deportálják a száműzötteket. A háború kitört, amit Kroton nyert meg, de Püthtagorasz sok kárt szenvedett. Most már politikai ellenségei is voltak. Kr. e. 500 körül megtámadták csoportját. Püthagorasz elmenekült. Nem világos előttünk, hogy mi történt vele ezután. A legtöbb forrás szerint öngyilkos lett. Más források szerint nyugodt körülmények között élt és kb. 100 éves korában halt meg.
[bookmark: _ednref39]A püthagoreus társadalom még folytatta életét a támadás után, mindaddig, amíg egy következő támadás, kb. Kr. e. 460 táján néhány követő kivételével mindet elpusztította. A tanítás valamilyen formában fennmaradt kb. Kr. e. 300-ig. A rómaiak élesztették újra a Kr. e. I. évszázadban, és ekkor a Római Birodalom kibontakozásában domináló erővé vált. A tan az akkori korszak sok vallásának befolyásoló tényezőjévé vált, így pl. az alexandriai judaizmusnak, az ősi egyiptomi vallásnak, és amint már láttuk, a kereszténységnek is. A püthagoreus matematika Platón iskolájával összekapcsolódva új lendületet kapott. Ám Püthagorasz szellemi leszármazottjait megint eltaposta Justinianus kelet-római császár a Kr. u. IV. században. A rómaiak gyűlölték a hosszú hajat és szakállt13, amit Püthagorasz görög filozófus leszármazottjai viseltek, nem viselték el, hogy éltek a drogokkal, pl. az ópiummal, hogy a nem keresztény hiedelemvilágot ne is említsük. Justinianus bezáratta az akadémiát és megtiltotta, hogy filozófiát tanítsanak. A püthagoreizmus még fel-fellobbant egy néhány évszázadig, majd eltűnt a sötét középkorban, kb. Kr. u. 600 táján.
[bookmark: tart07]
5. Eukleidész manifesztuma

[bookmark: _ednref40]Körülbelül Kr. e. 300-ban, a Földközi-tenger déli partján, a Nílus torkolatától kissé nyugatra élt egy ember, akinek gondolkodása átjárta a filozófiát, és a matematika természetét egészen a XIX. századig meghatározta. Munkásságának hatása vetekedett a Bibliáéval, és az akkori időszak legnagyobb részében a felsőoktatás lényeges része volt. Sőt ez mind a mai napig így van. Munkájának megtalálása kulcsot jelentett az európai civilizáció középkori megújhodása számára. Spinoza versengett vele1, Abraham Lincoln tanulmányozta, Kant pedig megvédte.
[bookmark: _ednref41][bookmark: _ednref42]Ennek az embernek Eukleidész volt a neve. Életéről igazából semmit sem tudunk. Hogy evett olívabogyót? Hogy látogatta-e a színházat? Magas volt, vagy alacsony? A történelem ilyen kérdésekre nem válaszol. Mindaz, amit tudunk róla2 annyi, hogy Alexandriában iskolát alapított, kiváló tanítványai voltak, megvetette a materializmust, kellemes fickónak látszott és legalább két könyvet írt. A könyvek egyike elveszett, de tudjuk róla, hogy a kúpszeletekről szólt, a kúp és a sík metszeteiből előálló görbéket tanulmányozta és ezzel megalapozta Apollóniosz későbbi, nagy jelentőségű művét3, ami lényeges szerepet játszott a navigáció és a csillagászat fejlődésében.
[bookmark: _ednref43]Másik híres műve, az Elemek minden idők egyik legszélesebb körben olvasott könyve. Az Elemek története4 túltesz A máltai sólyomén is. Először is, az Elemek nem is igazán könyv, hanem tizenhárom pergamentekercs sorozata. Az eredetiből egy sem maradt meg, a későbbi kiadások sorozatának köszönhetően maradt ránk, a középkorban pedig majdnem teljesen eltűnt. Az első négy tekercs Eukleidész munkái közül nem képezi az Elemek eredetijét, egy Hippokratész nevű tudós (aki nem tévesztendő össze az ugyanilyen nevű orvossal) kb. Kr. e. 400 táján írt egy művet Elemek címen, amiről azt hisszük, hogy az elveszett eredeti legnagyobb részét tartalmazza. Az Elemek tartalmából semmi sem hiteles igazán. Eukleidész nem támasztott igényeket a felsorolt tételek eredetiségére vonatkozóan. Saját szerepét abban látta, hogy rendszerezze a geometria görög értelmezését. Építésze volt csupán ennek az első áttekintésnek, ami a tiszta gondolkodás segítségével dolgozta föl a kétdimenziós tér természetét anélkül, hogy a fizikai világra hivatkozott volna.
Eukleidész Elemek című munkájának legfontosabb tényezője az újat alkotó logikai módszer: előbb pontos definíciókkal meghatározni a kifejezéseket és ezáltal minden szó és jel közérthetőségét biztosítani. Majd a fogalmakat kifejezni azáltal, hogy axiómákat, azaz posztulátumokat állítunk fel (az axiómák és posztulátumok egymással felcserélhető kifejezések) úgy, hogy nem rögzített feltevést vagy értelmezést ne lehessen használni. Végül a rendszerből csak a logika elfogadott szabályai szerint, az axiómákra vagy a korábban bebizonyított tételekre alkalmazva levezetni a logikai következtetéseket.
[bookmark: _ednref44]Szőrszálhasogatás? Miért is törekszünk annyira, hogy minden apró állítást bizonyítsunk? A matematika egy olyan vertikális építmény, amely ellentétben más magas épületekkel már akkor is összeomlik, ha egyetlen téglája hibás. Csak egyetlen ártatlan tévedést engedjünk be a rendszerbe, és már semmit sem tudunk bebizonyítani. Valójában a logika alaptétele5 azt mondja ki, hogy ha csak egyetlen hamis tételt beengedünk a logikai rendszerbe, az már elég ahhoz, hogy bebizonyítsuk, 1 egyenlő 2-vel. A legenda szerint egy szkeptikus megpróbálta sarokba szorítani Bertrand Russellt, a logika szakértőjét, megkísérelve, hogy ezt az elsöprő tételt megtámadja (jóllehet Russell az ellenkezőjéről beszélt). „Rendben van” – szólt a kétkedő – „ha én megengedem, hogy egy egyenlő kettővel, akkor bizonyítsa be, hogy Ön a pápa”! Mint mondják, Russell egy egészen rövid pillanatig gondolkodott, majd így válaszolt: „A pápa és én, mi ketten vagyunk, ezért a pápa és én egy vagyunk”.
Az, hogy minden állítást bebizonyítsunk, éppen azt jelenti, hogy bár az intuíció értékes kalauz, a bizonyítás kapuján áthaladva azonban ezt is ellenőrizni kell. Az olyan mondat, hogy „intuitíve nyilvánvaló”, a bizonyítás lépéseként nem megfelelő indoklás. Valamennyien nagyon könnyen tévedhetünk ezzel. Képzeljük el, hogy egy orsóról fonalat gurítunk végig a Föld egyenlítőjén, mind a 40 000 km hosszban. Most képzeljük el ugyanezt egy méterrel az Egyenlítő fölött! Ehhez mennyivel több fonal kell, 500 m, 5000 m? Vegyünk egy egyszerűbb példát! Képzeljük el, hogy két további orsóról tekerünk le fonalat, de most egyet a Nap felszínén, egyet meg 1 méterrel fölötte. Vajon melyik esetben kell többet letekerni, amikor egy méterrel kijjebb mozgunk, a Föld vagy a Nap esetében? Az intuíció a legtöbbünk esetében azt mondja, a Nap esetében. A helyes válasz azonban az, hogy mindkét esetben ugyanannyival több fonal kell: 2 méterrel több!
[bookmark: _ednref45]A Zsákbamacska című televíziós műsorban a játékos három fülke előtt állt, mindegyiket függöny takarta. Az egyik függöny mögött egy nagy értékű tétel állt, pl. egy kocsi, a másik kettő mögött vigaszdíjszerű ócskaságok. Tegyük fel, hogy a játékos a második fülkét választotta. A műsorvezető ekkor felnyittatta az egyik fülkét, mondjuk a harmadikat. Tegyük fel, hogy ez a harmadik valami csekélységet tartalmazott, így a valódi, értékes nyeremény vagy az egyes, vagy a kettes függöny mögött van. Ekkor a játékvezető megkérdezte, nem akarja-e a játékos megváltoztatni a szándékát, ebben az esetben a kettes helyett az egyes függönyt választani. Ön megtenné? Intuitíve úgy látszik, hogy az esélyei ugyanazok: változatlanul 50-50%. Ez lenne a helyzet, ha nem volna több információja; de van! Itt van az ön első választása és a játékvezető tette. Az összes lehetőségek gondos mérlegelése az ön első választásától kezdve, vagy a megfelelő formula – amit Bayes tételének6 hívnak – azt mutatja, hogy esélyei jobbak lesznek, ha megváltoztatja választását. A matematikában sok példa mutatja, hogy az intuíció hibás döntéshez vezet és csak a következetes formális okoskodás deríti ki az igazságot.
A matematikai bizonyítástól elvárt másik tulajdonság az egzaktság. Egy megfigyelő megmérheti az egységnégyzet átlóját, mondjuk 1,4-nek találja, vagy javítgatva műszere pontosságát 1,41, majd 1,414 eredményre jut. Bár kísértésbe eshetünk és jónak fogadhatjuk el ezeket a közelítő értékeket, az ilyen közelítések azonban sohasem tárnák fel azt a forradalmi felismerést, hogy ez a hossz irracionális.
[image: pict04]
Paul Curry trükkje

Apró mennyiségi változásoknak olykor nagy minőségi következményei vannak. Gondoljunk csak az állami lottójátékra. A reménykedő vesztesek gyakran vállvonogatással mondják: „Nem nyerhetsz, ha nem játszol!” Ez bizonyosan igaz is. De ugyanennyire igaz az is, hogy az ön nyerési esélye a százalék parányi kis tört részén belül ugyanakkora, ha játszik a lottón, vagy ha nem játszik. Mi történne, ha a lottójáték igazgatósága kijelentené, hogy elhatározta, az ön 0,00001 százalékos nyerési esélyét zérusra csökkenti. Ez csak egy kis változtatás, azonban nagy következményei lennének a vállalat bevételeiben.
[bookmark: _ednref46]Egy New Yorkban élő amatőr bűvész, Paul Curry által felfedezett trükk jó geometriai példa (l. a szemben lévő oldalt) az effektus megvilágítására7. Vegyünk egy papírnégyzetet, amelyre egy 7 × 7-es négyzetrács van felrajzolva. Vágjuk fel a nagy négyzetet öt darabra és illesszük össze úgy, ahogy az ábra mutatja. Az eredmény egy fura négyzetgyűrű, vagyis ugyanakkora négyzet, mint az előbbi, csakhogy egy kis négyzet hiányzik a közepéből. Mi történhetett a hiányzó területtel? Bizonyítottuk talán azt, hogy az egész négyzet és a lukas négyzet területe ugyanakkora?
A megoldás az, hogy amikor a töredékeket újra összerakjuk, egy egészen picike átfedés lép fel, így az ábrában van egy kis csalás – vagy mondjuk inkább közelítés. Felülről a második sorban lévő négyzetek egy kicsit magasabbak, a nagy négyzet 1/49 résszel magasabb, mint az eredeti, ami már elég a hiányzó négyzet területének fedezéséhez. De ha a hosszakat csak 2 százalékos pontossággal kell, hogy megmérjük, nem fogjuk tudni megállapítani a különbséget a két szerkesztés között, és ez arra a kijelentésre kísérthet minket, hogy az eredeti négyzet és a mágus négyzetgyűrűje ugyanakkora területű.
[bookmark: _ednref47]Vajon ilyen apró eltéréseknek van-e egyáltalán szerepe a tér jelenlegi elméletében? Albert Einstein egyik fontos megfigyelése az általános relativitáselmélet, a görbült tér elméletének kidolgozásában az volt, hogy a Merkúr perihéliuma eltérően viselkedett a newtoni elmélettől8. Newton elmélete szerint a bolygók tökéletes ellipszispályákon haladnak. Azt a pontot, amelyikben a bolygó a Naphoz a legközelebb van, perihéliumpontnak nevezik. Ha Newton elmélete helyes, akkor a bolygónak Nap körüli útja megtételével pontosan ugyanabba a perihéliumpontba kell visszatérnie. 1859-ben Urbain-Jean-Joseph Leverrier Párizsban bejelentette, hogy a Merkúr perihéliumpontja egy parányi értékkel, történetesen évszázadonként 38 szögmásodperccel előre vándorol. Az eltérésnek kell valami kiváltó okának lennie. Leverrier ezt „komoly problémának” tekintette, „ami méltó a csillagászok figyelmére”. 1915-ben Einstein relativitáselmélete már elég kidolgozott állapotban volt ahhoz, hogy ki lehessen számítani belőle a Merkúr pályáját, és ebben megtalálta a parányi eltérés okozóját. Abraham Pais, Einstein egyik életrajzírója szerint „ez volt tudományos életének csúcspontja. Annyira felindult volt, hogy három napig nem tudott dolgozni”. Akármilyen kicsi is, ez az eltérés nem követelt kevesebbet, mint a klasszikus fizika bukását.
[bookmark: _ednref48]Eukleidész célja az volt, hogy rendszere független legyen az intuícióra alapozott, fel nem ismert feltevésektől, kitalálásoktól és pontatlanságoktól. Huszonhárom definíciót9, és öt geometriai posztulátumot fogalmazott meg, továbbá felsorolt még további öt posztulátumot is, amit „általános megjegyzések” névvel látott el. Ezen az alapon 465 tételt bizonyított be, és lényegében a teljes mai geometriai tudásunkat alapozta meg.
Eukleidész definíciói között volt a pont, a vonal (ami a definíciók szerint akár görbe is lehetett), az egyenes vonal, a kör, a derékszög, a felület és a sík. Egyiket-másikat egészen pontosan definiálta. A párhuzamos vonalak – mint írta – „olyan egyenes vonalak, amelyek ugyanabban a síkban fekszenek, mindkét irányban végtelenül meghosszabbíthatóak, és egymást sohasem metszik”.
A kör, mint írta, „olyan síkbeli alak (vagyis görbe), amelynek bármely pontjából a belsejében fekvő – középpontnak nevezett – pontjához húzott egyenesek egymással egyenlő hosszúak”. A derékszögről Eukleidész ezt írta: „Ha egy egyenes vonalra egy másik egyenest állítunk úgy, hogy az adott egyenessel mindkét oldalon azonos szöget alkosson, akkor ezek a szögek derékszögek”.
Eukleidész némely definíciói, nevezetesen a ponté és a vonalé, bizonytalanok és csaknem semmitmondóak: az egyenes vonal „az, aminek pontjai egyformán állnak egymással”. Ez a definíció bizonyára az építészetből került át, ahol egy vonal egyenességét úgy ellenőrizték, hogy az egyik szemet becsukva néztek az egyenes hossza mentén. Hogy ezt megértsük, már rendelkezni kell a vonal képével. A pont „olyan valami, aminek nincs része”, ez a definíció szintén elég értelmetlen.
[bookmark: _ednref49]Eukleidész általános fogalmai sokkal elegánsabbak. Logikailag levezethető nem geometriai állítások10, amit láthatóan a józan észnek tulajdonított, szemben a posztulátumokkal, amik a geometria specifikumai. Ezt a megkülönböztetést korábban Arisztotelész is megtette. Azáltal, hogy ezeket az intuitív feltevéseket nyíltan felsorolta, lényegében a posztulátumokhoz sorolta őket, bár nyilvánvalóan érezte, hogy szükséges a tisztán geometriai állításoktól való megkülönböztetésük. Gondolatai mélységének testamentuma, hogy ilyen megállapítások megtételét egyáltalán szükségesnek tartotta:

1.)	Egy és ugyanazzal egyenlők, egymással is egyenlők.
2.)	Ha egyenlőket adunk egyenlőkhöz, akkor az összegek is egyenlők lesznek.
3.)	Ha egyenlőket vonunk ki egyenlőkből, a maradékok is egyenlők lesznek.
4.)	Az egymással egybevágók egyenlők egymással.
5.)	Az egész nagyobb a résznél.

Ezek után a bevezető megjegyzések után az euklideszi geometria megalapozásának geometriai tartalma az alábbi öt posztulátumban jut kifejezésre. Az első négy egyszerű és bizonyos kegyelettel jelenthető ki. Modern kifejezésekkel így hangzanak:

1.)	Két ponton át egyenes húzható.
2.)	Minden egyenesdarab korlátlanul meghosszabbítható mindkét irányban.
3.)	Bármely középpontból bármely sugárral kör írható.
4.)	Minden derékszög egyenlő.

Az 1.) és a 2.) posztulátumok egybeesnek tapasztalatainkkal. Úgy érezzük, tudjuk, hogyan kell egyenesdarabot meghúzni pontról pontra, sohasem ütközünk abba az akadályba, hogy a térnek vége volna és ez megakadályozna minket az egyenesdarab kiterjesztésében. A harmadik posztulátum egy kicsit finomabb, mármint az a része, amelyikből az következik, hogy az egyenesdarab hossza nem változik helyről helyre, amikor megrajzoljuk a kört. A negyedik posztulátum egyszerűnek és nyilvánvalónak hangzik. Hogy a felmerülő finomságokat megértsük, visszaidézzük a derékszög definícióját: ez az a szög, amikor egy egyenes úgy metsz egy másik egyenest, hogy a keletkező szögek mindkét oldalon egyenlőek. Ezt már sokszor láttuk: az egyik egyenes merőleges a másikra és a szögek, amiket 
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Eukleidész párhuzamossági posztulátuma

így alkot, mindkét oldalon a metszéspontban egyaránt 90°-nak mérhetőek. A definíció viszont önmagában nem állítja ezt, még azt sem köti ki, hogy a szögek mértéke mindig ugyanaz. Elképzelhetünk egy olyan világot, amelyben a szögek 90°-osak, ha a vonalak egy adott pontban metszik egymást, de ha máshol lenne a metszéspont, a szögek mások lennének. Az a posztulátum, ami szerint minden derékszög ugyanakkora, azt garantálja, hogy ez nem történhet meg. Bizonyos értelemben ez azt jelenti, hogy az egyenes egész hosszában ugyanúgy néz ki, vagyis ez egyféle feltétele az egyenességnek.
Eukleidész ötödik posztulátuma, amit a párhuzamosok posztulátumának is neveznek, nem hangzik olyan magától értetődőnek, intuitívnek, mint a többiek. Ez nem a krónikákban összefoglalt hatalmas tudásanyag része, hanem Eukleidész saját felfedezése. Úgy tűnik, nem is szerette ezt a posztulátumot, mert amikor csak lehetett, elkerülte a használatát. A későbbi matematikusok sem igazán szerették, úgy érezték, nem elég egyszerű, hogy posztulátum legyen, és inkább tételként bizonyíthatónak kellene lennie. Ez Eukleidész megfogalmazásához közeli alakban így hangzik:

5.)	Ha egy adott egyenesdarab úgy metsz két másik egyenest, hogy a belső szögek összege ugyanazon oldalon kisebb, mint két derékszög, akkor a két egyenes találkozni fog (a metszésnek azon az oldalán).

A 45. oldalon ábrázolt párhuzamossági posztulátum segítségével eldönthető, vajon a közös síkban fekvő két egyenes összetartó, párhuzamos vagy széttartó. Az ábrára tekintve ez könnyen belátható.
A párhuzamossági posztulátumnak sok különböző, ám egymással egyenértékű megfogalmazása van. Az egyik, amelyik különösen világosan beszél a térről, így hangzik:
Ha adott egy egyenes és egy külső pont (ami nem az egyenesen fekszik), csak egyetlen olyan másik egyenes létezik (ugyanabban a síkban), amely áthalad az adott ponton és párhuzamos az adott egyenessel.
A párhuzamossági axiómát két különböző módon lehet megsérteni: vagy nincs olyan valami, mint a párhuzamos egyenes, vagy több mint egy párhuzamos egyenes húzható egy egyeneshez a rajta kívül fekvő ponton át.

* * *

Húzzunk egy darab papíron egy vonalat és tegyünk egy pontot valahol, az egyenesen kívül. Lehetséges az, hogy a ponton keresztül egyáltalán nem tudunk párhuzamost húzni az egyenessel? Vagy egynél többet is lehet húzni? A párhuzamossági posztulátum a mi világunkat írja le? Lehetséges olyan geometria, amelyben ez az axióma sérül, mégis matematikailag konzisztens? Ez a két utóbbi kérdés történetesen az intellektuális gondolkodás forradalmához vezetett. Az első az Univerzumról alkotott képünket változtatta meg, az utóbbi a természet megértésében és a matematika jelentésében okozott változást. Ennek ellenére 2000 évig alig volt az emberi tudásnak olyan területe, amelyben általánosabban elfogadott tény szerepelt volna Eukleidész posztulátumánál: hogy egy és csak egy párhuzamos létezik.
[bookmark: tart08]
6. Egy szép nő, egy könyvtár – és a civilizáció vége

[bookmark: _ednref50]Eukleidész volt az első nagy matematikus az Alexandriában működő tudósok hosszú és sajnálatos módon megszakadt sorában. Kr. e. 352-ben, II. Fülöp uralkodásának idején, a Görögország területének északi részén élő macedón nép elkezdte a hódítást és a hellén területek egyesítését1. Kr. e. 338-ban az athéni vezetők egy döntő vereség után elfogadták Fülöp feltételeit és békét kötöttek vele, ami tulajdonképpen a görög városállamok függetlenségének végét jelentette. Mindössze két évvel később II. Fülöppel egy bérgyilkos végzett. Egyik saját testőre szúrta le, amikor egy állami szertartáson vett részt, amelyen saját szobrát állították ki, mint egy új Olümposzi istenét. Húszéves fia vette át az irányítást, aki Nagy Sándor néven vonult be a történelembe.
[bookmark: _ednref51]Sándor, talán liberális nevelése következtében, nagy súlyt fektetett a tudományokra, amelyben a geometria fontos szerepet játszott. Tiszteletben tartotta az idegen kultúrákat, ha nem is a függetlenségüket. Hamarosan meghódította egész Görögországot, aztán Egyiptomot, és a Közel-Keletet egészen Indiáig. Bátorította a kultúrák keveredését és a vegyes házasságot, maga is perzsa nőt vett feleségül. Nem elégedett meg a példamutatással, elrendelte, hogy a vezető macedón polgárok szintén perzsa nőket vegyenek feleségül2.
Kr. e. 332-ben a kozmopolita Nagy Sándor a birodalma középpontjában kezdte el építeni Alexandria fényűző városát. Ebben a tekintetben, mint az ókori idők Walt Disneyje, egy látomásszerűen megtervezett metropolis gondolatával állt elő. Ennek a városnak kultúrközpontnak, kereskedelmi és kormányzati központnak kellett lennie. Még a széles bulvárok terveiben is matematikai elgondolások vezették: építésze rácsszerű mintázatot készített, ami különös előképe volt a még tizennyolc évszázadon át felfedezetlen koordináta-geometriának.
Kilenc évvel azután, hogy a munkálatok megkezdődtek, Nagy Sándor egy ismeretlen betegségben meghalt, azelőtt, hogy a főváros építkezései befejeződtek volna. Birodalma széthullott, de Alexandria végül teljesen felépült. Geometriája szerencsés volt, mert később ez a város lett a görög matematika, természettudomány és filozófia központja azt követően, hogy a hajdani macedón hadvezér, Ptolemaiosz átvette Nagy Sándor birodalmának egyiptomi részét. Ptolemaiosz fia, akit fantáziadúsan II. Ptolemaiosznak neveztek, átvette később a hatalmat és Alexandriában egy hatalmas könyvtárat és múzeumot építtetett. A múzeum kifejezést azért alkották, mert az épület a hét múzsának szentelt központ volt, melyben tulajdonképpen egy hatalmas kutatóintézet működött, az első államilag kezelt ilyen intézmény a világon.
[bookmark: _ednref52]Ptolemaiosz utódai könyveket halmoztak fel, és ebben egy elég érdekes eljárást követtek. II. Ptolemaiosz „elrendelte”, hogy az Ótestamentumot fordítsák le görögre, ezért hetven zsidó tudóst a Pharosz szigetén lévő börtön celláiba záratott. III. Ptolemaiosz pedig írt a világ uralkodóinak3, hogy adják neki kölcsön könyveiket, aztán ezeket megtartotta. Végül is ez az agresszív beszerzési módszer pompásan működött, az Alexandriai Könyvtár csakhamar mintegy 200-500 ezer papirusztekercs kincstára lett, attól függően, hogy kinek a történetét hisszük el. Az emberiség akkori tudáskincsének legnagyobb része megtalálható volt a könyvtárban.
A múzeum és a könyvtár Alexandriát a világ páratlan intellektuális központjává tette, ahol Nagy Sándor korábbi birodalmának legnagyobb tudósai tanulmányozhatták pl. a geometriát és a teret. Ha a U. S. News & World Report az akadémiai intézetek áttekintését kiterjesztené az egész történelemre, akkor Cambridge (Newton), Göttingen (Gauss) és a princetoni Institute for Advanced Study (Einstein) bizony Alexandria mögé szorulna az első helyért folytatott küzdelemben. Lényegében minden görög matematikus és természettudományos gondolkodó, aki Eukleidészt követte, ebben a hihetetlenül nagy könyvtárban dolgozott.
[bookmark: _ednref53]Kr. e. 212-ben Cyrenei Eratoszthenész4 volt az alexandriai könyvtár főkönyvtárosa. Bizonyára alig tett meg néhány száz kilométert egész életében, mégis neki sikerült a történelem során legelőször megmérnie a Föld kerületét. Számításai szenzációt jelentettek polgártársai körében, mert bebizonyította nekik, hogy bolygónknak csak milyen kis részét ismeri civilizációnk. Kereskedők, felfedezők és látnokok csodálkozhattak reménytelenül vágyakozva ilyen kérdéseken: „Van-e intelligens élet az óceán másik oldalán?” Eratoszthenész tettéhez hasonló az lehetett, amikor először megtudtuk, az Univerzum bizony nem ér véget a Naprendszerünk külső zónáinál.
[bookmark: _ednref54]Eratoszthenész anélkül fejtette meg bolygónk e tulajdonságát, hogy nagyon messze kellett volna mennie. Mint Einsteinnek, neki is a geometria alkalmazásával sikerült ez a megállapítás. Eratoszthenész megfigyelte, hogy délben, Szüéné (mai nevén Asszuán) városában, a nyári napforduló alkalmával a földbe állított bot nem vet árnyékot5. Eratoszthenész számára ez azt jelentette, hogy a földre merőlegesen állított bot ekkor párhuzamosan áll a Nap sugaraival. Ha a Földet egy körrel ábrázoljuk, a középpontból a kerületén egy a Szüénének megfelelő pontig húzott egyenes, és folytatása a Nap felé párhuzamos lesz a Nap sugaraival. Most mozduljunk el a Föld felszínén a kör mentén Szüénéből Alexandria felé. Húzzunk most is egy vonalat. Ez a vonal már nem lesz párhuzamos a Nap sugaraival. Metszi azokat egy bizonyos szöget alkotva velük, s ez az, ami miatt a bot árnyékát látjuk.
A bot árnyéka Alexandriában és az Elemek tétele a két párhuzamos egyenest metsző egyenesről, elegendő volt Eratoszthenésznek arra, hogy kiszámítsa a Föld kerületének Szüéné és Alexandria közé eső darabját. Úgy találta, ez a Föld kerületének egyötvened része.
Eratoszthenész egy névtelen munkatársat bérelt fel – ma úgy mondanánk: egy tudományos fokozatot szerzett asszisztenst –, hogy sétáljon el egyik városból a másikba és mérje meg a távolságukat. Ez meg is történt, a beszámoló 500 stadionról szólt. Ezt 50-nel megszorozva, Eratoszthenész meghatározta a Föld főkörének kerületét: 250 000 stadion, vagyis 39 690 km ami 4%-os hibájával meglepően pontos eredmény, bizonyára elég lett volna ahhoz, hogy megkapja a Nobel-díjat, a névtelen sétálónak pedig meghosszabbíthatták volna az állását a könyvtárban.
Eratoszthenész nem az egyetlen alexandriai volt ebben az időszakban, aki jelentősen hozzájárult a kozmosz megértéséhez. Szamoszi Arisztarkhosz, aki Alexandriában dolgozott, csillagász volt, és egy zseniális, de kissé bonyolult trigonometriai módszert alkalmazott, hogy az ég egyszerű modelljét felhasználva ésszerű közelítésben kiszámítsa a Hold méretét és a Földtől való távolságát. A görögök ismét új perspektívát állítottak fel az Univerzumban elfoglalt helyünk meghatározására.
[bookmark: _ednref55]Egy másik nagy személyiség, akit Alexandria vonzott, Arkhimédész volt. Szicília szigetén, Szürakusza városában született, és azért utazott Alexandriába, hogy az ottani királyi matematikai iskolában tanuljon. Nem tudjuk, hogy ki volt az a zseni, aki először alakított ki kőből vagy fából kereket és ezzel meglepte társait. Azt viszont tudjuk, hogy Arkhimédész fedezte fel az emelő törvényét6. Ugyancsak ő fedezte fel az úszás törvényszerűségeit, és még sok más alkotással járult hozzá a fizika és a technika fejlődéséhez. A matematikát olyan magaslatra vitte, amit nem tudtak túlszárnyalni egészen a szimbolikus algebra és az analitikus geometria úgy ezernyolcszáz évvel később történt kialakulásáig.
[bookmark: _ednref56]Arkhimédész egyik matematikai teljesítménye a differenciálszámítás egy verziójának a kidolgozása, ami nem esik túl messze Newton és Leibnitz munkásságától. Ez, ha figyelembe vesszük, hogy a Descartes-féle geometria még nem létezett, talán még mélyebb benyomást keltő tett volt. Úgy hitte, hogy felfedezései közül a koronát érdemlő az, amelyikben megadja, hogy egy hengerbe írható gömb (vagyis egy olyan gömb, amelynek sugara egyenlő a henger sugarával és magassága felével) térfogata a henger térfogatának kétharmad része. Arkhimédész oly büszke volt erre a felfedezésére7, hogy azt kívánta, ez legyen a síremlékére rajzolt ábra.
Amikor a rómaiak megtámadták Szürakuszát, az akkor 75 éves Arkhimédészt egy római katona meggyilkolta. Éppen egy homokba rajzolt geometriai ábrát tanulmányozott. Sírkövét úgy vésték ki, ahogy kívánta. Több mint száz évvel később Cicero, a híres római szónok, meglátogatta Szürakuszát, ahol Arkhimédész sírját az egyik kapu közelében találta. Elhagyatottan, csak tüskebokor és tövis fedte. Bár Cicero akkor rendbe hozatta, sajnos ma már sehol sem lehet megtalálni.
[bookmark: _ednref57][bookmark: _ednref58]Alexandriában a csillagászat is csúcsra jutott fel8, főleg Klaudiosz, Ptolemaiosz és Hipparkhosz révén. (Ez a Ptolemaiosz nincs kapcsolatban a hasonló nevű királyokkal.) A Kr. e. II. században Hipparkhosz az eget 35 éven keresztül figyelte, majd megfigyeléseit a babilóniai adatokkal összekombinálva, a Naprendszerről egy olyan geometriai modellt tudott kidolgozni, amelyben az öt ismert bolygó, a Nap, a Hold mind körpályán mozognak a Föld körül. Olyan sikeres volt a Nap és a Hold Földről látható mozgásának leírásában, hogy néhány óra alatt ki tudta számítani előre a holdfogyatkozások időpontját. Ptolemaiosz az Almageszt című munkájában tovább finomította és kiterjesztette megfigyeléseit9. Ez teljesítette be Platón programját, ami racionális magyarázatot ígért az égitestek mozgására, és egészen Kopernikuszig uralkodott a csillagászati gondolkodás felett.
Ptolemaiosz írt egy Geographia című könyvet is, amelyben a földi világot festette le. A kartográfiában fontos szerephez jut a matematika, mert a térképek sík lapok, ám a Föld csaknem szabályos gömb, és a gömböt nem lehet a síkra úgy vetíteni, hogy mind a területek, mind a szögek pontosan képeződjenek le. A Geographia lett a komoly térképkészítés alapműve.
A Kr. u. II. század végére a matematika, a fizika, a kartográfia és a műszaki tudomány területei mind nagy lépéseket tettek előre. Tudtuk, hogy az anyag az atomoknak nevezett, oszthatatlan darabkákból áll. Felfedezték a logikát és a bizonyítást, a geometriát és a trigonometriát, és a differenciálszámítás előképét. A csillagászatban és a tér tudományában még tudták, hogy a világ nagyon öreg és hogy egy gömbön élünk. Még azt is meg tudták mondani, mekkora ez a gömb. Kezdték megérteni helyünket az Univerzumban. Előkészültek arra, hogy ezen az úton haladjanak tovább. Talán már 969-ben a Holdra szállhattunk volna – 1969 helyett. Olyan mértékben jutottunk volna előre a tér és az élet megismerésében, ami ma teljesen elképzelhetetlen a számunkra. Ehelyett olyan események történtek, amelyek a görögök által megkezdett előrehaladást egy évezreddel késleltették.
Lehetséges, hogy a középkor intellektuális visszaesésének okairól többet írtak, mint ahány szó az Alexandriai Könyvtárban előfordult. Egyszerű válasz azonban nincsen. A Ptolemaiosz-dinasztia a Krisztus születése előtti két évszázadban letűnt. XII. Ptolemaiosz Kr. e. 51-ben történt halála előtt trónját fiára és lányára hagyta. Kr. e. 49-ben a fiú puccsot hajtott végre nővére ellen és magához ragadta a hatalmat. A nővér nem volt az a típus, aki csak úgy belenyugszik az ilyen bánásmódba, és az éppen látogatóban lévő római imperátorhoz szökött, hogy oltalmát kérje (abban az időben, noha alakilag független volt Rómától, a ptolemaioszi birodalom gyakorlatilag Róma uralma alá tartozott). Így kezdődött Kleopátra és Julius Caesar története. Kleopátra azt állította, hogy Caesar gyermekét hozta a világra. Egyiptom számára Caesar erős szövetséges volt, de ezt a szövetséget Caesar maga tette tönkre. Miután huszonhárom római szenátor fordult az imperátor ellen, Kr. e. 44. március idusán leszúrták. Ezt követően Caesar unokaöccse, Octavianus Alexandriát és Egyiptomot Róma hatalma alá vonta.
[bookmark: _ednref59]Amint Róma meghódította Görögországot, a rómaiak átvették a görög örökséget. A görög hagyományok örökösei a világ nagy részét meghódították, és ezzel egy időben sok technikai és műszaki problémával is szembekerültek. Az imperátorok mégsem támogatták a matematikát, mint Nagy Sándor vagy az egyiptomi Ptolemaioszok tették, civilizációjuk nem hozott létre olyan matematikus szellemeket, mint Püthagorasz, Eukleidész vagy Arkhimédész. Uralmuk feljegyzett 1100 évében – ami Kr. e. 750-től kezdődött – a történelem nem említ egyetlen római matematikust sem. A görögök számára a távolságmérés matematikai kihívás volt, amely az egybevágó és a hasonló háromszögekkel, a parallaxissal és a geometriával volt kapcsolatban. Az egyik római tankönyvben10 egy szöveges feladat azt kérte az olvasótól, hogy találjon módot a folyó szélességének meghatározására, amikor az ellenség elfoglalja a másik partot. „Az ellenség” – kérdéses hasznosságú matematikai fogalom, de a rómaiak gondolkodásában centrális helyet foglalt el.
Az absztrakt matematikában a rómaiak tudatlanságukra még büszkék is voltak. Mint Cicero mondta: „A görögök a geométert a legnagyobb megbecsüléssel övezték, ennek megfelelően semmi nem mutatott nagyobb előrehaladást, mint a matematika. Mi viszont a mérésben és a számolásban állapítottuk meg ennek a művészetnek a határait. A rómaiak a harcost tartották a legnagyobb tisztességben, ennek megfelelően semmi más nem mutatott csillogóbb haladást náluk, mint a fosztogatás és a rablás. A matematika művészetét azért tartottuk fontosnak, mert hasznos a világ meghódításában”.
[bookmark: _ednref60]Ez nem jelenti azt, hogy a rómaiak nem lettek volna művelt emberek. Mert azok voltak. Még meg is írták saját latin műszaki könyveiket is, de ezek korcs művek voltak, amit a görögöktől szerzett ismereteikből alakítottak ki. Így például Eukleidész legfőbb latin fordítója egy római szenátor, az egyik régi neves család leszármazottja, Anicius Manlius Severinus Boethius volt11, a római idők egyik Reader’s Digest-szerűségének kiadója. Boethius lerövidítette Eukleidész munkáját, és ezáltal megteremtette azt a témafeldolgozást, ami a tanulóknak egy többválasztású teszt megoldásához éppen elegendő. Ma ezt a fordítást „Eukleidész az ostobák számára” címmel hozhatnánk forgalomba. Esetleg tévéhirdetések nyomán lehetne eladni: „hívja az 1-800 – NEMKELLBIZONYÍTÁS számot”. Boethius idejében azonban ez mértékadó munka volt.
Boethius csak definíciókat és tételeket közölt, és minden jel szerint feljogosítva érezte magát arra, hogy az egzakt eredmények helyett közelítéseket használjon. És ezzel még jót mondunk. Mert más esetekben egyenesen rosszul járt el. A görög eszmék félreértelmezéséért Boethiust nem nyúzták meg, nem feszítették keresztre, nem égették meg máglyán, vagy nem vetették alá más, a középkorban szokásos közkedvelt büntetésnek, amiket a szellem képviselőinek tartogattak. Bukását az okozta, hogy belekeveredett a politikába. 524-ben lefejezték, mert a Kelet-Római Birodalommal „felségsértő” kapcsolatai voltak. Ragaszkodnia kellett volna a matematika további elkorcsosításához.
[bookmark: _ednref61]Egy másik könyv, amely az időszak visszaeső jellegére jellemző, egy sokat utazó alexandriai üzletember műve. Mint írta: „A Föld lapos. Az alakzat lakott része négyszög alakú, melynek hossza kétszerese a szélességének… Északon található egy kúp alakú hegy, ami körül a Nap és a Hold kering”. A könyv, a Topographia Christiana (Keresztény helyrajz)12 nem az okoskodáson vagy a tapasztalaton alapult, hanem a Szentíráson. Jó könyv, amit a jóízű, ólomzáras római borok kortyolgatása közben olvasgathatunk, de a Topographia egészen a XII. századig a bestsellerlistán maradt, hosszú idővel azután is, hogy a Római Birodalom összeomlott.
[bookmark: _ednref62][bookmark: _ednref63]Az Alexandriai Könyvtárban dolgozó utolsó nagy tudós, és egyben az első nagy tudósnő Hüpatia volt13. Alexandriában született, kb. Kr. u. 370-ben, egy híres matematikus és filozófus, Theon lányaként. Már fiatalon apja legközelebbi munkatársa lett, majd hamarosan túl is szárnyalta őt. Egy korábbi tanítványa, Damascius, aki később harsány hangú kritikus lett, azt írta, hogy Hüpatia „természetéből kifolyólag finomabb és tehetségesebb volt apjánál”. Sorsát és annak mélyebb értelmét sokat tárgyalták a következő évszázadokban, többek között olyan szerzők is, mint Voltaire vagy Edward Gibbon A Római Birodalom hanyatlása és bukása című munkájában14.
Az ötödik évszázad fordulóján Alexandria a kereszténység egyik szilárd pillére volt. Ez hatalmas küzdelmet okozott az egyház és az állam képviselői között. E korszakban Alexandria keresztények és nem keresztények, mint pl. a görög újplatonisták és a zsidók közötti szociális zavargások és konfliktusok színtere volt. Alexandriában 391-ben a keresztény tömeg megtámadta és felgyújtotta a könyvtár nagy részét.
[bookmark: _ednref64]Alexandria keresztény érseke 412. október 15-én meghalt15. Az unokaöccse, Cyril követte, akit gyakran hatalomvágyó és általában népszerűtlen emberként emlegetnek. A világi hatalom abban az időben Orestes kezében volt, aki 412 és 415 között Alexandria prefektusa és Egyiptom kormányzója volt.
Hüpatia intellektuális örökségét Platónra és Püthagoraszra vezette vissza, nem pedig a keresztény egyházra. Egyesek azt mondják, hogy inkább Athént választotta tanulmányai színhelyéül, ahol elnyerte a babérkoszorút, amit csak Athén legjobb növendékei kaphattak, és visszatértekor viselte is a babérkoszorút, amikor nyilvánosan meg kellett jelennie. Azt mondják, jelentős kommentárokat írt két híres görög műhöz, Diophantosz Arithmetica és Apollóniosz Kúpszeletek című műveihez, amely műveket még ma is olvassák.
[bookmark: _ednref65]Azt mondják, bámulatos szépség és karizmatikus előadó volt. Hüpatia nagy nyilvánosság előtt tartott előadásokat Platóntól és Arisztotelészről. Damascius szerint16 az egész város „számított rá és imádta”. Mindennap felszállt kocsijára és elhajtott az akadémiára, egy szépen feldíszített előadóterembe, amelyet illatos olajokat égető libegő lámpákkal világították meg, s amelyet görög művészek kézzel festett körfolyosója díszített. Hüpatia fehér ruhájában és a mindig viselt babérkoszorújával a fején nézett szembe a nagy tömeggel és ékesszóló görög nyelven bilincselte le hallgatóságát. Előadásai Rómából, Athénből és a birodalom többi nagy városából is vonzottak tanulni vágyókat. Az ő előadásait hallgatta a római prefektus, Orestes is.
Orestes Hüpatia barátja és bizalmasa lett. Gyakran találkoztak, nemcsak az előadások témáiról beszélgettek, hanem városi és politikai kérdésekről is. Mindez Hüpatiát határozottan a prefektus oldalára állította az Orestes és Cyril közti harcban. Cyril számára Hüpatia nagy félelem forrása volt, tekintettel arra, hogy Hüpatia tanítványai magas tisztségeket tölthettek be mind Alexandriában, mind külföldön. Hüpatiában megvolt a bátorság, hogy folytassa előadásait, jóllehet Cyril és követői azt híresztelték, hogy Hüpatia boszorkány és fekete mágiát űz, a város lakóira pedig sátánista átkokat hoz.
[bookmark: _ednref66]Arról, hogy mi történt ezután, több változat is létezik17, bár a legtöbb hasonló. 415-ben, nagyböjt egyik reggelén, Hüpatia felszállt kocsijára, egyesek szerint szálláshelyén kívül, mások szerint az utcán, hogy hazafelé tartson. Egy távoli monostorból érkezett néhány száz Cyril-hívő keresztény szerzetes rárohant, ütlegelték, majd bevonszolták egy templomba. Itt meztelenre vetkőztették és cserépdarabokkal vagy kiélezett agyagtörmelékkel letépték húsát. Majd leszaggatták végtagjait és elégették. Az egyik beszámoló szerint maradványait szétszórták a városban.
Hüpatia munkáit mind elpusztították. Nem sokkal később ez történt a könyvtárral is. Orestes elment Alexandriából. Lehet, hogy később visszahívták, de a történelmi dokumentumok nem szólnak róla többet. Az impérium későbbi hivatalnokai biztosították Cyrilnek azt a befolyást, amit el akart érni. Végül szentté avatták.
[bookmark: _ednref67]A legújabb történelmi tanulmányok azt tartják18, hogy minden hárommillió emberre esik egy emlékezetre érdemes matematikus. Ma a kutatómunka hozzáférhető az egész világon. A IV. században, amikor a papirusztekercseket egyszerű tollakkal kellett fáradságosan lemásolni, egy elveszett könyv egyből a veszélyeztetett fajok listájára került. Nem tudhatjuk igazán, hogy a babilóniai és a görög matematika milyen nagy értékei vesztek el mindörökre, amikor a könyvtár 200 000 tekercse elégett. Tudjuk, hogy a könyvtárban száznál több Szophoklész-színdarab volt – ezek közül ma csak hét van meg. Hüpatia a görög tudomány és racionalizmus megtestesülése volt. Halálával egyszerűen elérkezett a görög kultúra halála is.
[bookmark: _ednref68]Róma bukásával, Kr. u. 476-ban, Európa nagy kőtemplomokat, színházakat és kastélyokat, modern városi szolgáltatásokat – mint utcai világítást, melegvíz-szolgáltatást és csatornázást – örökölt, de a szellemi alkotásokból vajmi keveset! 800 táján már csak töredékes latin fordítások léteztek Eukleidész Elemek című munkájából19. Ha a fennmaradt szövegeket böngésszük, ezek csak képleteket tartalmaznak, szabadon használnak közelítéseket és nem tesznek kísérletet a levezetésre. Az absztrakció és a bizonyítás görög hagyománya eltűnni látszott. Miközben a briliáns iszlám civilizáció kifejlődött, Európa mély intellektuális bomlás felé csúszott. Innen származik a név, amit ennek az európai kornak adtak: sötét középkor.
Végül azonban a görög tudományos gondolat újjáéledt. Az olyan könyvek, mint a Topographia, kegyvesztettek lettek és Boethius műveit is sokkal hűségesebb fordítások helyettesítették. Ebben a késő középkori periódusban a filozófusok egy csoportja olyan szellemi légkört alakított ki, amely megengedte a XVI. századi matematikusoknak, mint Fermatnak, Leibnitznek és Newtonnak, hogy kibontakozhassanak. A geometria következő forradalmának és a térről alkotott felfogásunknak a középpontjában egy ilyen gondolkodó állt. Az ő neve: René Descartes.

[bookmark: tart09]II. DESCARTES TÖRTÉNETE


Hol vagyunk a térben? Hogyan fedezték fel a matematikusok az ábrák és a koordináták egyszerű elveit, amelyek egy epikus áttöréshez vezettek a filozófiában és a természettudományban?
[bookmark: tart10]
7. Forradalom a hely ismeretében

Honnan tudja, hogy hol van? Annak a felfogása után, hogy maga a tér létezik, talán ez lehetne a következő természetes kérdés. Látszólag a térképek tudománya, a kartográfia ad választ erre. De a kartográfia csak a kezdet. A hely mélyebb ismerete sokkal áthatóbb eszmékhez vezet annál, mint például „hogy Kalamazoo-t megtalálja, keresse F3-nál!”.
A helymeghatározás több mint a hely megnevezése. Képzeljük el, hogy egy idegen lény száll a Földre. Talán egy szikár, kék fejű, oxigénen élő teremtmény, vagy éppen egy hajas, majomszerű lény aki leginkább a nitrogén-oxidot kedveli. Ha kommunikálni akarnánk vele, nem ártana, ha lenne egy szótár nála. De ez elegendő lenne? Ha a jó kommunikáció eszményképe az, hogy „Én Tarzan, te Jane”, akkor meglehet, de az intergalaktikus eszmecsere érdekében szükség lenne arra is, hogy egymás nyelvtanát is megismerjük. A „szótár” megalkotása a matematikában is épp csak a kezdet, hogy valamilyen rendszer szerint megnevezzük a sík, a tér vagy a földgömb pontjait. A helymeghatározás elméletének igazi ereje abban a képességben rejlik, hogy a különböző helyzeteket, vonalakat és alakzatokat egymáshoz tudjuk vonatkoztatni és egyenletek segítségével kezelni tudjuk ezeket – vagyis a geometria és az algebra egyesítésében.
[bookmark: _ednref69]Manapság, ahogyan a helymeghatározás egy régi tankönyve fogalmazott1, „a tanuló aránylag kis erőfeszítéssel elsajátíthatja ezeket a módszereket”. Nehéz elképzelni, mennyivel nagyobb elméleteket tudtak volna a nagy csillagászok/fizikusok megalkotni, ha a koordináta-geometria eszközei már ismertek lettek volna számukra, de ezek nélkül kellett dolgozniuk. Ezzel a tudással Newton és Leibnitz megteremtették a differenciálszámítást és a fizika modern korszakát hívták életre. A geometria és az algebra összekapcsolódása nélkül a modern fizika és a mérnöki tudományok kevés eredménye lett volna lehetséges.
Miként a bizonyítás forradalma esetén, az első jelzőtábla a hely forradalmának útján még a görögök előtti időkben jelent meg a térképek felfedezésével. Bár a görögök különleges lángelméjükkel hozzájárultak fejlődéséhez, civilizációjuk vége a tárgyat befejezetlenül hagyta, a téma gazdátlan maradt. Az úton a következő lépés az ábrázolás felfedezése volt, de ez kivárta, amíg a sötét középkort követően az intellektuális hagyomány újjászületett. Végül is ez a forradalom egy tucatnyi évszázaddal később a görög matematikusok és kartográfusok ügyét folytatta.
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8. A földrajzi szélesség és hosszúság eredete

[bookmark: _ednref70]Nem tudja senki, ki készítette az első térképeket, vagy hogy mikor és miért. De azt tudjuk, hogy a legkorábban készített térképek közül egyesek1 ugyanabból az okból kifolyólag készültek, amiért az egyiptomiak a geometriát felfedezték. Ezek a térképek egyszerű agyagtáblák, Kr. e. 2300-ra datálhatók, s rajtuk nem valamilyen helyrajzi kulcs vagy vallási díszítőelem látható, hanem a tulajdonra kivetett adó. Kr. e. 2000-re már közhasználatban voltak Egyiptomban és Babilóniában olyan ingatlantérképek, amelyeken a tulajdon jellemzői és a tulajdonos is szerepelnek. Az ember elképzel egy felékszerezett mezopotámiai hölgyet, aki az általa cipelt agyagtáblák súlyától kissé görnyedten a tábla egyik pontjára mutat, s ünnepélyesen dalolja ősi nyelvén „a birtokom, a birtokom, a birtokom”.
Ahogy a hét tengert egyre elszántabb lelkek kezdték feltárni, egyre életbevágóbb szükség mutatkozott a térképkészítés iránt. Nem is olyan régen, 1915-ben, amikor Sir Edward Shackleton hajója, az Endurance az antarktiszi tél fogságába esett és széttört, a legnagyobb veszélyt nem a közel 300 km/óra sebességű szelek, és nem is a -70 °C alatti hőmérséklet jelentette, hanem az, hogy meg kellett találni az expedíció visszafelé vezető útját. Az egész történelemben így volt. A tengeri utazók és felfedezők számára a nyílt óceánon a leginkább életbevágó feladat az volt, hogy ne vesszenek el útközben. Képzelje el, hogy úgy lép partra, hogy abszolút nincsen információja arról, hol is lehet. Nincs navigációs műszer vagy rádió adó-vevő, amivel segítséget hívhatna. Hogyan tudná a megmentésére indulókat informálni arról, hogy hol van?
Az a két koordináta, amit arra használunk, hogy a Föld felszínén megadjuk pontos helyünket, a földrajzi szélesség és a hosszúság. Hogy ezeket ábrázoljuk, szükség van három pontra, két vonalra és egy gömbre. Vegye elő most a gömböt és képzelje el, hogy az lebeg a térben. Ez természetesen a Földet képviseli. Ezután helyezze el a három pontot a következőképpen: az egyiket a Föld Északi-sarkára, egyet a középpontjába és a harmadikat valahova a felszínére. Az egyik egyenessel kösse össze az Északi-sarkot a Föld középpontjával. Ez a Föld forgástengelye. A másik egyenes vonalat használja arra, hogy a Föld középpontját összeköti a felületi ponttal. Ez az egyenes egy bizonyos szöget zár be a Föld forgástengelyével. A derékszögből kivonva ezt a szöget megkaphatja az ön földrajzi szélességét.
A földrajzi szélesség eszméje egy ókori meteorológustól, bizonyos Arisztotelésztől származik. Midőn azt tanulmányozta, hogy a földi elhelyezkedés hogyan befolyásolja a klímát, azt javasolta, hogy a Földet öt éghajlati zónára osszuk északról dél felé. Ezeket a zónákat később feltüntették a térképek, és ezeket állandó földrajzi szélességi vonalak választották el. Miként Arisztotelész elmélete sugalmazza, az ön földrajzi szélességét – legalábbis általában – meghatározza a klíma: a Föld a leghidegebb a sarkokon, és melegszik, ahogyan az Egyenlítő felé közelítünk. Természetesen, egy adott napon Stockholmban melegebb lehet, mint Barcelonában, így – hacsak nem akar az egyes helyeken hosszabb időn át méréseket végezni –, ez a módszer nem igazán hasznos. Sokkal előnyösebb, ha a földrajzi szélességet a csillagok vizsgálatával összekötve határozzuk meg. Ez különösen könnyű lesz, ha találunk egy csillagot a Föld tengelyének meghosszabbításában. Van is egy ilyen csillag az északi égbolton, ez az Északi Sarkcsillag, a Polaris, a „póluscsillag”.
[bookmark: _ednref71]A Polaris nem volt mindig a póluscsillag, mert a Föld forgástengelye a precesszió miatt nem áll fixen a csillagokhoz képest2. Iránya egy szűk kúp felületét írja le 26 000 éves periódusidővel. Az ókori Egyiptom egyes piramisaiban az átjárókat az alfa Draconis irányába tervezték, akkor az alfa Draconis volt a póluscsillag. Az ókori görögöknek nehezebb dolga volt, mert az ő idejükben nem volt igazi póluscsillag. A jövőben, úgy kb. 10 000 év múlva a póluscsillagot könnyű lesz megtalálni. Ez a Vega lesz, az északi égbolt legfényesebb csillaga.
Ha ön egyszerre látja a Polarist és a látóhatár északi szélét, akkor egyszerű geometria szerint a két irány közti szög közelítőleg az ön földrajzi szélessége. A viszony azért csak „közelítés”, mert feltesszük, hogy a Polaris egzakt módon a Föld forgástengelyének meghosszabbításán fekszik, és hogy a Föld sugara elhanyagolhatóan kicsiny a Polaris távolságához képest. Mindkét feltevés jó, de nem tökéletesen pontos. 1700-ban Isaac Newton feltalálta a szextáns nevű műszert, ami arra a célra szolgált, hogy a földrajzi szélességet ily módon megfigyelni és megmérni lehessen. A hajótörött utazó ezt azzal a régimódi eljárással is megteheti, ha két botot használ szögmérőnek.
A földrajzi hosszúság meghatározása nehezebb feladat. Képzeljünk el egy másik gömböt, sokkal nagyobbat mint az előző, s legyen a közepén a Föld. Ezen a gömbön képzeljük el a csillagok térképét. Ha a Föld nem forogna, akkor az ön földrajzi hosszúságát ehhez a térképhez viszonyítva lehetne megmérni. A Föld forgása miatt azonban az ön által látott kép ezen a gömbön ugyanaz lesz, amit az öntől kissé nyugatabbra lévő valaki egy pillanattal később lát. Hogy pontosak legyünk, minthogy a Föld 24 óra alatt 360 fokot fordul el, az öntől 15 fokra nyugatra lévő megfigyelő egy óra múlva ugyanazt a helyzetet látja. Az Egyenlítőnél ez durván 1600 km. Ha összehasonlítjuk az azonos földrajzi szélességeken az éjszaka azonos pillanataiban készített pillanatfelvételeket, meg lehet határozni a földrajzi hosszúságkülönbséget. De ehhez egy órára is szükség van!
[bookmark: _ednref72][bookmark: _ednref73]A XVIII. századig készített órák nem voltak képesek ellenállni a sós-nedves levegőnek és azoknak a mozgásoknak, hőmérsékletváltozásoknak, amelyek a tengeren járó hajóknál előfordultak. Ezért nem voltak eléggé pontosak ahhoz, hogy a nagy óceáni távolságokon meg lehessen határozni a földrajzi hosszúságot. A pontossági kívánalom nem volt triviális: egy hat hétig tartó utazás során a napi három másodperces eltérés3 már fél fokot jelentett a földrajzi hosszúságban! A tizenkilencedik században különböző megállapodások szolgáltak a földrajzi hosszúság meghatározására. Végül 1884 októberében4 a világ nagyjából megegyezett arról, hogy melyik legyen az a kitüntetett „kezdő meridián”, ahonnan a földrajzi hosszúságkülönbségeket mérik. Ez az a meridián, a London külvárosában, Greenwichben található Királyi Obszervatóriumon halad át.
Az első nagy világtérképet Thalész tanítványa, a görög Anaximandrosz készítette el Kr. e. 550 körül. Ez a térkép kettéosztotta a világot, Európára és Ázsiára. Ez utóbbi rész tartalmazta Észak-Afrikát is. Kr. e. 330-ra a görögök már egyes érmeiken is ábrázoltak térképet. Az egyiken még a magassági viszonyok is szerepeltek, ezért ezt az érmét „az első ismert domborzati térképnek” is nevezik.
A püthagoreusok, más fontos felfedezéseik mellett, úgy látszik, abban is az elsők voltak, hogy feltételezték a Föld gömb alakját. Ez a felfogás – természetesen – előfeltétele a pontos térképkészítésnek, és szerencsére Platón és Arisztotelész személyében hathatós szószólókra is talált még Eratoszthenész előtt, aki többé-kevésbé be is bizonyította azáltal, hogy egy gömbszerű modell alkalmazásával megmérte a Föld kerületét. Miután Arisztotelész javasolta, hogy a Földet klimatikus zónákra osszák, Hipparkhosz elgondolása az volt, hogy ezek egyenlő intervallumokban következzenek, majd rájuk merőleges észak-déli irányú vonalakat húzzanak. Ptolemaiosz idejére, úgy kb. öt évszázaddal Platón és Arisztotelész után – és Eratoszthenész után négy évszázaddal – a „földrajzi szélesség” és a „földrajzi hosszúság” nevet kapták ezek a vonalak.
Ptolemaiosz a Geographia című művében a sztereografikus projekcióhoz hasonlító módszert használt, hogy a Földet egy sík felületen ábrázolhassa. A hely megadására a földrajzi szélesség és a földrajzi hosszúság fogalmait használta. Ezt minden ismert helyen megtette – szám szerint 8000 ponton! Könyve utasításokat is tartalmaz arról, hogy hogyan készítsünk térképet. A Geographia szabályos referenciamű volt évszázadokon keresztül. A kartográfia, miként a geometria is, már egy modern kor követelményeinek is eleget tett. Csakhogy, miként a geometria esetében is, ez a tárgykör sem fejlődött a római uralom alatt.
A rómaiak készítettek térképeket, de amint a geometria problémáiban is csak az volt a fontos, hogy az ellenséges csapatok hogyan kelnek át a folyón, ezek az erőfeszítések szintén csak tisztán gyakorlati, katonai problémákra irányultak. Amikor a keresztény tömeg megostromolta az Alexandriai Könyvtárat, a Geographia eltűnt a görögök matematikai műveivel együtt. A Római Birodalom bukásakor, az újkor hajnalán a térbeli hely meghatározását illetően a civilizációt éppoly sötétség borította el, mint a térbeli objektumok közötti kapcsolatok és az azokat leíró tételek vonatkozásában. A geometria és a kartográfia csak a hely egy új elméletével születhetett újjá és lehetett egy új forradalom eszköze. De mielőtt ez megtörténhetett, egy nagyobb feladatot kellett teljesíteni: a nyugati civilizáció intellektuális hagyományainak újjá kellett születnie.
[bookmark: tart12]
9. A léha rómaiak öröksége

Az időpont: a VIII. század vége. A görög alkotások és hagyományok elvesztek és feledésbe merültek, az óra és az iránytű még oly messzire voltak a jövőben, mint számunkra az Enterprise űrhajó. Az akkori idők emberei ágyukban vagy éppenséggel a kemény földön fekve, az álmot reszketve vagy izzadva várva ezt mormogták volna maguk elé: „Hacsak nem kezdem újra a tudásért való küzdelmet, az intellektuális bomlásnak és a stagnálásnak ez a korszaka még közel egy évezredig fog folytatódni”. Mégis volt ebben a korszakban egy erős ember, aki felismerte, hogy a továbbtanulásra szükség van, és megtette azokat az első lépéseket, amelyek végül is az intellektuális tradíciók újjászületéséhez vezettek Európában.
[bookmark: _ednref74]Nagy Károly genetikailag különlegesen nagy termetű embernek látszott1. Amikor csontvázát jóval halála után megmérték, kiderült, hogy két méternél is magasabb volt, ami akkoriban óriásnak számított. Apja, akit István pápa első Pipin néven koronázott királlyá 754-ben, parányi ember volt, korábban Kis Pipinnek nevezték. Nagy Károly alakját feltehetőleg anyjától, Bertha királynőtől örökölte. Az ő csontvázát nem mérték meg a halála után, beceneve azonban árulkodó: a grand pied nevet, vagyis a „nagylábú” jelzőt érdemelte ki.
Nagy Károly sok tekintetben erőteljes volt, pl. fizikuma, intellektusa, de legfőképpen hadseregének nagysága tekintetében.
Filozófiai felfogása a saját tulajdonát képező királyságról így foglalható össze: „itt ledöntünk egy falat, ott felépítünk egyet” – ezt alkalmazta Európa térképén. Azáltal növelte meg a Frank Birodalom területét, hogy a szomszéd lombardok, bajorok és szászok határait ledöntötte. Európában domináns erő lett és mindenütt, ahol csak járt, a római katolikus vallást vezette be. Ha mindössze csak ezt tette volna, akkor csupán egyike lenne azon királyoknak, akiknek a világuralom megszerzése volt a hobbija. Ám Nagy Károly a nevelés Nagy Sándorra emlékeztető patrónusa is volt egyben. Felfogta, hogy tanítókra van szüksége, így a legkiválóbb nevelőket hívta udvarába és Aachenbe, ahol megalapította a Schola Palatinát (udvari iskola). Ebben különösen érdekelt volt, egyszer – állítólag – személyesen megkorbácsolt egy fiút, aki hibát vétett latinból. Nem tudjuk, hogy Nagy Károly gyakorolta-e önmaga ostorozását, az viszont köztudott, hogy ő maga írástudatlan volt, bár többször is próbálkozott – sikertelenül –, hogy megtanuljon írni. (A kor szellemében egyébként a korbácsolás talán nem tűnik oly súlyos büntetésnek, mint például a halálbüntetés a pénteki húsevésért.)
[bookmark: _ednref75]Nagy Károly alatt a katolikus egyház, amelynek a feladatai ellátásához az írástudó szerzetesek egész seregére volt szüksége, a tudományos élet hajtóerejévé vált. Egyházi iskolákat szerveztek, amelyek a katedrálisok és monostorok mellett működtek, a tanítókat pedig az egyház általában a dominikánus és ferences szerzetesek rendjéből kerültek ki. Ezek nevelték a papokat, létrehoztak egy írástudó arisztokráciát és visszaállították a klasszikusok tiszteletét. Íródeákok láttak munkához, hogy az archívumokból számos kéziratos példányt lemásoljanak, köztük tankönyveket, enciklopédiákat és antológiákat. Hogy a hatásfokot növeljék, a szerzetesek kidolgoztak egy új kézírási stílust, amit karoling-minuszkulának neveznek – ez mindmáig a latin ábécés írás alapja2. Nagy Károly éppily ügybuzgalommal törődött saját magával is. A korra jellemző, hogy a hosszú élet reményében nem vette magát körül alkimisták seregével és nem gyűjtötte maga köré a doktorok akadémiáját, hanem ehelyett felfedezett valamit, egy teológiai nagyüzemet, ami nem más, mint az egészségére vigyázó klérus iparága. Nagy Károly 300 szerzetese és 100 papja három műszakban, éjjel-nappal imádkozott érte egyetlen monostorban. Mégis meghalt. Ez 814-ben történt.
A Nagy Károly-féle újjászületés keveset számított az eredeti munkák tekintetében. Amikor meghalt, királysága összezsugorodott és utódai nem folytatták a kulturális újjászületés Nagy Károly által elindított folyamatát. Mégis, az írásbeliség nem zuhant ismét vissza a prekaroling (Nagy Károly előtti) szintre. Az általa istápolt kolostori iskolák, mint a független diskurzus alig elszigetelt bástyái, burjánzani kezdtek és lassan Európa egyetemeivé alakultak, kezdve az 1088-ban alakult Bolognai Egyetemmel. Ez volt az a körülmény, ami lehetővé tette, hogy Európa újra intellektuális hatalommá emelkedjék – és különösen Franciaország, a matematika centruma legyen. Az ezredforduló idejére a sötét középkornak vége lett. Amit mi középkornak nevezünk, az további 500 évig tartott.
A kereskedelem, az utazások, s a keresztes háborúk révén az európaiak kapcsolatba kerültek a Mediterráneum és a Közel-Kelet arabjaival és a Kelet-római Birodalomban élő bizánciakkal is. Számukra ez a „kontaktus” (főleg a keresztesekkel) körülbelül olyan kívánatos volt, mint a marslakókkal való kapcsolat a Világok harcában. De miközben az európaiak kirabolták az arab vidékeket és kegyetlenül legyilkolták a muszlim és zsidó hitetleneket, mohón megkívánták bölcsességüket is. Amíg a nyugat visszaszorította a matematikát és a természettudományt, addig az iszlám világ hűséges fordításokban őrizte meg sok régi görög tudós műveit, ideértve Eukleidészt és Ptolemaioszt is. Bár ők maguk csak kevés előrehaladást értek el az absztrakt matematikában, mégis jelentős fejlődésre tettek szert a számítási módszerekben. Az időszámítás és a kalendáriumkészítés vallásos igényeitől hajtva kidolgozták mind a hat szögfüggvényt, tökéletesítették az asztrolábiumot (kézben tartható műszer, amely lehetővé teszi, hogy egy csillag vagy bolygó látóhatár feletti magasságát megmérjék).
Az egyház és a laikus vezetés támogatta, hogy a tudósok kifürkésszék az ellenfelek ismereteit, kikutassák az elveszettnek hitt görög intellektuális hagyomány kincseit az eredeti vagy arab fordítások formájában. A korai XII. században az angol származású bathi Abelard mohamedán tanulónak öltözve utazott Szíriába. Később ő fordította le Eukleidész Elemek című munkáját latinra, amely már a bizonyításokat is tartalmazta. Egy évszázaddal később Leonardo Pisano – akit Fibonacci néven is ismernek – Észak-Afrikából magával hozta a zérus fogalmát és a hindu-arab számrendszer gondolatát, amit mindmáig használunk. Az ókori görög tudomány beözönlése táplálta az új egyetemeket.
[bookmark: _ednref76]A színpadot – a régi görögök mintájára – egy új aranykor számára rendezték be. Bartholomew, egy angol szerzetes ezt írta3: „Pontosan úgy, ahogyan a régi időkben a szabad művészetek és az irodalom anyja, a filozófia és minden tudomány dajkája Athén volt, úgy a mi napjainkban ez Párizs lett…”. Sajnos, gyakorlati problémák jöttek közbe.
Fermat utolsó tételének bizonyítására tett legújabb (sikeres) erőfeszítései során, a matematikus Andrew Wiles a tiszta, nyugodt szemlélődést nyújtó életmódra támaszkodott. Wiles mintegy 350 évvel Fermat után dolgozott. Fermat előtt ugyanennyi idővel volt a középkori matematika fejlődésének csúcspontja. Egy középkori professzor életében nem voltak szórakoztató „sütiszemináriumok”, sem sétálgatással váltogatott mély koncentráció napjai, sem nagy matematikusok, akik iderepülnek látogatóba, előadnak, majd részt vesznek egy kedves tanszéki ebéden a helyi kínai vendéglőben. Mindenki tudja, hogy Európa a középkorban egyáltalán nem volt az éden kertje. Ha egy őrült tudós az időgép kerekét véletlenül megpörgetné, a legjobb, ha imádkozunk, az időgép ne a XIII-XIV. században érjen földet.
[bookmark: _ednref77]A középkori matematikus4 perzselő nyárral és fagyos téllel állt szemben, napnyugta után az épületeket kevéssé fűtötték, gyakorlatilag nem világították. Az utcákon „konyhamalac” vaddisznók rohangáltak szabadon, leölt állatok vére csordogált a hentes és mészáros boltjából, és levágott csirkefejek röpködtek ki a baromfiárus boltjának bejáratából. Csak a nagyvárosokban volt szennyvízelvezető rendszer. Még IX. Lajos francia királlyal is megesett, hogy e lapokon megnevezhetetlen tartalmú folyadékkal öntötték le a magasból.
[bookmark: _ednref78]Az időjárás istenei is a bolondját járták. Európa abban az időben a nedves és hideg periódus olyan nyomorúságos kezdetén volt, amit ma kis jégkorszaknak nevezünk5. Az Alpokban a gleccserek a VIII. század óta először terjeszkedtek lefelé. Skandináviában a jégtáblák lezárták az észak-atlanti hajóutakat. A termények elpusztultak. A mezőgazdaság termelékenysége zuhanásszerűen csökkent. Az éhínség egyre terjedt. Angliában az egyszerű emberek megették a kutyákat, macskákat és sok minden mást is, amit egyetlen kifejezéssel „tisztátalan dolognak” nevezünk. Szenvedett az arisztokrácia is, arra kényszerültek, hogy lovaikat egyék meg. A Rajna-menti éhínségről szóló egyik beszámolója szerint a mainzi, a kölni és a strasbourgi akasztófák mellé őrséget kellett állítani, hogy a falánk polgároktól megvédjék a felakasztottakat, mert különben levágták és megették volna a tetemeket.
[bookmark: _ednref79]1347 októberében egy keleti vidékekről érkező hajó kötött ki Északkelet-Szicíliában. Az európai kontinens számára balszerencsés módon hajósai eleget tudtak a geometriából ahhoz, hogy eltaláljanak a kikötőbe. Csak éppen orvosi ismereteik voltak hiányosak. A fedélzeten majdnem mindenki halott vagy haldokló volt. Az élőket karanténba zárták. A patkányok azonban kijutottak és szétvitték Európa partjaira a fekete halált. 1351-re Európa lakosainak csaknem fele meghalt. Giovanni Villani, firenzei történész6 a következőket írta a kórról: „Ez egy olyan betegség volt, amelyben a szenvedők ágyékán és a hónuk alatt duzzanatok nőttek, az áldozatok vért köptek és három nap alatt meghaltak… Sok vidék és város teljesen kiürült. Ez a pestis eltartott egészen…”. Villani a feljegyzésében helyet hagyott a járvány végének. Ám a vészmadárt is utolérte a végzet. Villani pestisben halt meg 1348-ban.
[bookmark: _ednref80]Az egyetem sem nyújtott menedéket az ilyen nyomorúságos körülményekkel szemben7. A kampusz koncepciója akkor még nem is létezett. Az egyetemnek akkor még épületei sem voltak. A diákok együttműködő háztartásokban éltek. A professzorok bérelt szobákban, termekben, templomokban, sőt bordélyokban tartották előadásaikat. Az osztálytermeket, miként a lakószobákat is, gyéren fűtötték-világították. Egyes egyetemek egy meglehetősen középkori rendszert alkalmaztak: a professzorokat közvetlenül a diákok fizették. Bolognában a diákok bérelték és űzték el a professzorokat: megbüntették őket, ha nem igazolták távollétüket vagy késtek, vagy ha nem válaszoltak nehéz kérdésekre. Ha az előadás nem volt érdekes, túl lassú volt, vagy túl gyors, vagy nem elég hangos, a hallgatóság kicsúfolta az előadót, vagy bedobált dolgokat. Lipcsében az egyetem történetesen szükségesnek látta megtiltani, hogy a professzorokra székeket dobáljanak. Egy 1495-ből származó német egyetemi szabály kifejezetten megtiltotta, hogy bárki, aki az egyetemmel kapcsolatban áll, a „gólyákat” levizelje. Számos városban a diákok fellázadtak és harcot vívtak a város lakóival. Európa-szerte a professzorok végzete volt, hogy olyan viselkedéssel kellett megküzdeni, ami a Mozidili (Animal House) című filmet egy a jó modorra oktató videóvá teszi.
[bookmark: _ednref81][bookmark: _ednref82]A kor tudománya8 tulajdonképpen egy zagyvalék volt, amiben az ókori tudás, a babona és a természetfeletti keveredett össze. A hit az asztrológiában és a csodákban közkeletű volt. Még az olyan nagy tudósok is, mint Aquinói Szent Tamás is minden kérdés nélkül elfogadta, hogy a boszorkányok márpedig léteznek. A Szicíliában uralkodó II. Frigyes 1224-ben alapította meg a Nápolyi Egyetemet. Ez volt az első egyetem, amit laikusok alapítottak és működtettek. Frigyes – félretéve az etika unalmas koncepcióit – azzal kedveskedett tudomány iránti szerelmének9, hogy esetenként embereken is kísérleteket végzett. Történt egyszer, hogy két szerencsés rabot ugyanazzal a hatalmas és pazarló lakomával láttak el. Majd az egyik boldog embert nyugodni küldték, a másikat pedig egy fárasztó vadászatra. Azután mindkettőnek felvágták a hasát, hogy megállapítsák, melyik emésztette meg jobban az ételt. (A „pamlagkrumplik” bizonyára boldogan vágnák rá, hogy biztos az alvó ember volt az.)
[bookmark: _ednref83]Az idő fogalma10 bizonytalan volt. A XIV. századig senki sem tudta biztosan, hogy mennyi az idő. A nappalt tizenkét egyenlő intervallumra osztották a Nap járásának megfelelően, ezek az „órák” az évszakok járása szerint változtatták hosszúságukat. Londonban, a földrajzi szélesség északi 51 1/2 fokának megfelelően a napkeltétől napnyugtáig tartó periódus több mint kétszer olyan hosszú júniusban, mint decemberben, a középkori óra hossza közelítőleg 38 és 82 perc között változott. Az első óra, amely szembeszökően egyenlő hosszúságú időtartamokat mért, csak 1330-ban jelent meg, amikor a milánói Szent Gothard-templomban bemutatták. Párizsban sem volt nyilvános óra 1370-ig, amikor végre a Királyi Palota egyik tornyába építettek egyet. (Ez még ma is létezik, a Boulevard de Palais és a Quai de l’Horloge sarkán.)
Nem létezett semmiféle technológia arra, hogy a rövid időintervallumokat pontosan megmérjék. Például a változás sebességét mennyiségileg csak durván tudták megadni. Olyan alapvető egységeket, mint például a másodpercet a középkori filozófia csak ritkán használt. Ehelyett a folytonosan változó mennyiségeket vagy csak bizonytalanul írták le, mint valamit, aminek van egy „bizonyos” nagysága, vagy pedig csak összehasonlítva valamivel. Így például egy ezüstdarabról azt mondták, hogy egyharmad annyit nyom, mint egy tisztított baromfi, vagy kétszer annyit, mint egy egér. Ennek a rendszernek a nehézkességét csak még súlyosabbá tette az, hogy a számarányokról szóló fő középkori tekintélynek Boethius Arithmetica című könyve számított, és Boethius nem használt törteket az arányok leírására. A középkor tudósai számára a mennyiségeket leíró arányok nem voltak számoknak tekinthetők és nem lehetett velük úgy bánni, mint a számokkal az aritmetikában.
[bookmark: _ednref84]A kartográfia is meglehetősen primitív volt11. A középkori Európában a térképeket nem arra szánták, hogy egzakt geometriai és térbeli viszonyokat ábrázoljanak. Nem geometriai elvek alapján szerkesztették őket és nem tükrözték a méretarányt. Ehelyett általában szimbolikus, történelmi, dekoratív vagy vallási célokat szolgáltak.
Mindez a szellem előrehaladását akadályozta, mégis a legfőbb akadály a következő kényszerűség volt: a középkori tudósokat a katolikus egyház arra késztette, hogy adottnak vegyék a Biblia betű szerinti igazságát. Az egyház azt tanította, hogy minden egér, minden ananász, minden légy egy célt szolgál az Isten rendszerében, és ezt a rendszert a Szentírásból lehet megérteni. Más cél pedig veszélyes.
Az egyháznak jó oka volt a gondolkodás újraéledésétől félni. Ha a Biblia isteni sugallat, akkor felsőbbrendűsége mind a természet, mind a halandók tekintetében a Biblia abszolút elfogadásán múlik. Mégis a természet bibliai leírása gyakran került összeütközésbe a megfigyelés és a matematika alapján magyarázott viszonyokkal. Az egyetemek támogatásával az egyház akaratlanul is elősegítette, hogy a természet és a morál tekintetében bomlani kezdjen saját tekintélye. Az egyház azonban nem állt tétlenül a partvonalon, hogy nézze, amint elsőbbségét aláássák.

* * *

[bookmark: _ednref85]A természetfilozófia fő mozgalmát a késő középkorban a skolasztika képviselte12, melynek az új egyetemek, különösen Oxford és Párizs voltak a központjai. A skolasztikusok szellemi fegyverszüneten munkálkodva sok energiájukat fordították arra, hogy megkíséreljék összebékíteni fizikai elméleteiket a vallással. Filozófiájukban nem az Univerzum természete vált központi kérdéssé, hanem az a „metakérdés”, hogy a Bibliában megadott tudás leszármaztatható-e vagy megmagyarázható-e az ész alkalmazásával.
Az első nagy skolasztikus egy XII. századi párizsi lakos, Peter Abelard volt. Szerinte az igazság eldöntésére a logikai párbeszéd a legjobb módszer. A középkori Franciaországban álláspontja veszélyes vállalkozásnak bizonyult. Abelard-t kiátkozták, könyveit elégették. A leghíresebb skolasztikus Aquinói Szent Tamás volt, szintén kimagasló vitatkozó, de az ő álláspontját az egyház magáénak ismerte el. A tudást az igazi hívő módjára kereste, vagy legalábbis olyan valakiként, aki nem arra vágyott, hogy könyvei tüzelőanyagként végezzék, amely mellett a gyülevész szerzetesek melegszenek egy hideg téli éjszakán. Azzal kezdte, hogy elfogadta igazságnak azt, amit a katolikus hit annak nyilvánít és azt kereste, hogyan lehet azt bizonyítani.
Bár Aquinói Tamást nem ítélte el az egyház, egy kortárs skolasztikus, bizonyos Roger Bacon nyíltan megtámadta őt. Bacon az első természetfilozófusok egyike volt, aki rendkívül nagy súlyt fektetett a kísérlet értékére. Míg Abelard azért jutott bajba, mert a Szentírással szemben az ész szerepét hangsúlyozta, Bacon eretneksége abban állt, hogy a fizikai világ megfigyeléséből származó igazságot hangsúlyozta. 1278-ban börtönbe zárták, ahol tizennégy évig tartó börtönbüntetésre ítélték. Szabadulása után hamarosan meg is halt.
William Occam oxfordi ferences, későbbi párizsi lakos az „Occam borotvája” kifejezésről lett híres, ami még ma is szerepel a fizika tudományában. Ez röviden így hangzik: Az embernek a lehető legkevesebb ad hoc feltevésen alapuló elméletet kell felállítania. A húrelmélet egyik motivációja – példának okáért – az, hogy leszármaztassa az alapvető fizikai állandókat, mint az elektron töltését, a létező elemi részek számát és típusát, és még a tér dimenzióinak a számát is! A korábbi elméletekben az ilyen információk mindig axióma jellegűek voltak – az elmélet felállításakor benne foglaltattak, nem pedig az elméletből levezetett eredmények voltak. A matematikában hasonló esztétikai elvet alkalmaznak: amikor például a geometria elméletét akarják kidolgozni, a szükséges axiómák minimális számának meghatározására törekszenek. Occam belekeveredett a Ferences-rend és XXII. János pápa közötti vitába és kiátkozták. Megmenekült és Lajos császárnál talált oltalmat. Münchenben telepedett le. 1349-ben halt meg, a pestisjárvány csúcspontján.
Abelard, Aquinói Tamás, Bacon és Occam közül csak Aquinói Tamás menekült meg sértetlenül. Abelard-t, a kiátkozás után még kasztrálták is, mert a házasságról más véleménye volt, mint barátnője nagybátyjának, aki történetesen a katolikus egyház kanonokja volt.
[bookmark: _ednref86]A skolasztika nagymértékben hozzájárult a nyugati világ intellektuális újjászületéséhez. Ennek egyik haszonélvezője egy alig ismert francia egyházfi volt Németföldről13, Caentól nem messzire. Matematikai szempontból ő végezte a legígéretesebb munkát. Ezt az embert, aki Lisieux püspöke lett, a modern csillagászati és matematikai szakkönyvek alig emlegetik. Párizsi egyetemén nem tartották nagy tiszteletben. A Notre-Dame székesegyházban a bátyja, Henri által megrendelt emlékgyertyák már régóta nem szórják a fényt. Bár a Földön emlékműve alig van, ha a Holdra nézünk, az egyik kráter neve az ő dicsőségét hirdeti. Ez az ember Oresme volt.
[bookmark: tart13]
10. A grafikonok diszkrét bája

Az Amazonas esőerdőjének mélyén egy szívós, a folyót jól ismerő nő csónakázik lefelé, hogy az adóként beszedett holmikat vérszívó halak és hemzsegő moszkitók között hazaszállítsa kunyhójába, amit néhány elszigetelt lakóján kívül senki sem találna meg. Ez a nő nem egy középkori történet szereplője, hanem kortársunk. De kicsoda? Talán egy orvos? Egy idegen segítő? Nem fogják kitalálni. Krémeket, parfümöket és más kozmetikumokat szállít az Avon Társaság számára.
A New York-i székházban jól öltözött tisztviselők olyan technikát alkalmazva elemzik világméretű harcukat a száraz bőr ellen, amit egy olyan ember talált fel, akire – s ezt egészen biztosan állíthatjuk – soha nem is gondoltak. A nemzetközi szektort kékkel, a hazait pirossal jelölve, el lehet képzelni, hogy ezek az ábrák összehasonlíthatóvá teszik az Avon cég profitjának emelkedését minden szektorban évről évre. Az éves jelentésük elemzi a társaság összes bevételét, a nettó eladásokat, az üzemi egység profitját és vastag mellékletben közöl még adatokat, mindenfajta érdekes grafikon formájában.
[bookmark: _ednref87]Azt a kereskedőt, aki a középkorban az adatokat így közölte volna, bizonyára merev tekintettel, elképedve fogadták volna. Mit jelentenek ezek a színes geometriai ábrák, és miért jelennek meg ugyanazon a dokumentumon mindazok a római számok. A makarónit és a sajtot már régen felfedezték (van egy XIV. századból származó angol szakácskönyv1), a geometriai ábrák és a számok összekombinálása azonban sokáig váratott magára! Ma a grafikus ábrázolás annyira közkedvelt, hogy már nem is gondolunk arra, hogy ez matematikai eljárás: az Avon cég összes üzletkötője, még az is, aki a matematikát legjobban utálja, jól tudja, hogy a profitábrán felfelé futó görbe boldogságot jelent. De hogy felfelé vagy lefelé? – a grafikon felfedezése a hely megismerésében életbevágó fontosságú lépés volt.
A számok és a geometria házassága egy olyan koncepció volt, amit a görögök rosszul fogtak fel, egy olyan buktató, amit a filozófiának kellett átlépnie. Ma minden iskolás tanul a számegyenesről, általánosságban szólva egy olyan egyenesről, amelynek pontjai rendezett összefüggésbe hozhatók a pozitív és negatív egész számokkal, majd a törtekkel és egyéb köztük lévő számfajtákkal. Ezek az „egyéb” számfajták az irracionálisok, olyan számok, amelyeket nem lehet sem egész számokkal, sem törtekkel előállítani, de amelyek – bár Püthagorasz elfelejtette őket megemlíteni – mindenképpen léteznek. A számegyenesnek tartalmaznia kell ezeket is, mert az irracionálisok nélkül a számegyenesnek végtelen sok lyuka volna.
Mint láttuk, Püthagorasz felfedezte, hogy az egységnyi oldalú négyzet átlója, a [image: pict03], irracionális. Ha ezt a diagonálist a számegyenesre fektetjük úgy, hogy az egyik vége a null-pontba essék, a másik végét használhatjuk arra, hogy kijelölje a [image: pict03] irracionális pontnak megfelelő távolság végét. Amikor Püthagorasz megtiltotta az irracionális számok tárgyalását, mert nem illettek bele abba az elgondolásába, hogy minden szám vagy egész, vagy tört, azt is felismerte, hogy a vonal és a számok közti kapcsolatot is tiltania kell. Amikor ezt tette, a problémát a szőnyeg alá söpörte, kitiltotta a gondolkodásból az egyik leggyümölcsözőbb fogalmat. Senki sem tökéletes!
A görög munkák elvesztéséből származó kevés előnyök egyike az, hogy Püthagorasz nézeteinek hatása az irracionálisokról kissé árnyékba került. Az irracionális számok elméletét egészen Georg Cantor és kortársa, Richard Dedekind munkásságáig, a késői XIX. századig nem helyezték szilárd alapokra. A középkortól egészen addig a legtöbb matematikus és természettudós nem vett tudomást arról, hogy az irracionális számok látszólag nem léteznek, és szerencsére – ha ügyetlenül is – mindenképpen használták azokat. Nyilvánvaló, hogy az a körülmény, hogy számításaikkal a helyes válasz birtokába jutottak, túlnőtt azon a kellemetlenségen, hogy olyan számokkal dolgoztak, amik nem is léteznek.
[bookmark: _ednref88]Manapság az „illegális” matematika használata egészen elterjedt, különösen a fizikában. A kvantummechanika elmélete, az 1920-as, 1930-as években kidolgozott formájában például súlyosan támaszkodott egy angol fizikus, Paul Dirac által felfedezett mennyiségre, a delta-függvényre. Az akkori matematika szerint a delta-függvény egyszerűen zérus értékű volt. Dirac szerint a delta-függvény valóban zérus értékű volt minden pontban, kivéve egyetlen pontot, amiben értéke viszont végtelen nagy volt, és amikor a differenciálszámítás során együtt szerepelt bizonyos műveletekkel, olyan eredményt adott, amely véges volt és tipikusan nem zérus. Később egy francia matematikus, bizonyos Laurent Schwartz képes volt kimutatni, hogyan alkalmazhatók a matematika szabályai a delta-függvényekre az újradefiniálás során, és ezzel egy új matematikai diszciplína született2. Az erőterek kvantumelmélete a modern fizikában szintén használhat ilyesfajta illegális elméleteket – legfeljebb még senki sem bizonyította be, hogy, matematikailag szólva, ezek az elméletek törvényesen léteznek.
[bookmark: _ednref89]A középkori filozófusok igen jók voltak abban, hogy mást mondtak és mást írtak le. Sőt az is előfordult, hogy leírtak valamit és leírták annak ellenkezőjét is – bármibe is került, csak hogy a bőrüket mentsék. Így a XIV. század közepe táján Nicole d’Oresmét3, a későbbi „Lisieux püspökét” sem látszott zavarni az irracionális számok okozta ellentmondás, amikor felfedezte a grafikonokat. Oresme nem aggódott amiatt, hogy a grafikonok alapvonalának meghúzásához elegendőek-e az egész számok és a törtek. Csak arra gondolt, hogyan lehet ezeket az új képeket a kvantitatív összefüggések elemzésére használni.
Bizonyos szinten a grafikon a függvény ábrája, képe, amely azt mutatja meg, hogy hogyan változik valami, ha másvalami változik. Az Avon harmadik világban folytatott tevékenységének havi nyereségei, vagy a séta közben elégetett kalóriák mennyisége, vagy a napi csúcshőmérsékletek a földrajzi hely szerint – jó példák az ilyen függvényekre. A grafikonok használatával mindet jobban meg lehet érteni. A legutolsó példában említett grafikonnak külön neve is van, ami egy mélyebb összefüggésre utal. Ez igazából egy térkép, az időjárástérkép.
Minden ilyen térkép a grafikon egy fajtája. Például egy „normális” geopolitikai térkép feltünteti a városok és vidékek neveit – és esetleg még más adatokat is – a földrajzi hely szerint. A görögök és a többiek anélkül használtak ilyen térképeket évezredeken keresztül, hogy felfogták volna, azok egyféle grafikonok. Egyáltalán nem világos, hogy maga Oresme tudatában volt-e ennek, de az bizonyos, hogy egy központi kérdésre mutatott rá: a görbének vagy az adatgyűjteményt ábrázoló grafikonnak, vagyis a függvénynek valamilyen grafikus vagy geometriai jelentősége van.
Ha a felszín magasságát ábrázoljuk a földrajzi hely szerint, akkor egy helyrajzi (topografikus) térképet kapunk, aminek földrajzi kapcsolata teljesen nyilvánvaló. Egy kacsa alakú hegy képe a domborzati térképen egy kacsa alakját ölti. Ha viszont a földrajzi hely szerint ábrázoljuk az időjárást, egy felületet kapunk, nem szó szerint az időjárás képét, hanem egy geometriai alakzatét, aminek a jelentését kezdhetjük tanulmányozni. Azáltal, hogy a függvényeket ily módon a geometriával hozzuk kapcsolatba, megfeleltetést alakítunk ki függvénytípusok és alaktípusok között. A vonalak és felületek tanulmányozása ily módon speciális függvények tanulmányozásához vezet és fordítva. Ezáltal a geometria és a számok egy bizonyos egyesítését hajtjuk végre. És ez az a lépés, ami Oresme grafikonos felfedezésének matematikai jelentőségét megadja.
Ugyancsak az adatok és a geometria összefüggésének köszönhető, hogy a grafikonok a nem matematikusoknak is oly hathatós segítséget tudnak nyújtani az adatok elemzésében. Az emberi elme könnyen felismer bizonyos egyszerű alakokat: egyenes vonalakat, köröket például. Amikor a pontok egy csoportját nézzük, elménk megpróbálja ezeket valamilyen minta szerint rendezni. Így előfordulhat, hogy felismerjük a geometriai alakzatot, ha az adatokat ábrázoljuk, s lehet, hogy ez elkerüli a figyelmünket, ha csak az adatokat nézzük. Az ábrázolás művészetét ebből a szempontból Edward Tifte klasszikus könyve, The Visual Display of Quantitative Information (A kvantitatív információ láthatóvá tétele) elemzi.
Nézzük csak a következő oldalon lévő, meglehetősen unalmas adatoszlopot!

	Idő
	Alexei adatai
	Nicolai adatai
	Anya adatai

	0
	0,2
	4,0
	9,0

	1
	1,6
	5,0
	8,9

	2
	5,0
	6,2
	8,7

	3
	4,4
	7,2
	8,3

	4
	5,8
	8,1
	8,1

	5
	7,2
	8,5
	7,6

	6
	8,8
	8,3
	6,6

	7
	10,5
	7,8
	5,6

	8
	11,8
	6,6
	4,1

	9
	13,3
	5,6
	0,1

	10
	14,8
	4,0
	-



Mindegyik oszlop egy méréssorozatot ír le, ezért mindegyik tartalmaz kísérleti tévedést. Az első adatsort Alexeiének jelöljük, mintha ő készítette volna a méréseket, míg a másik kettőt rendre Nicolai és Anya méréseinek jelöljük. Minden esetben az a kérdés, hogy ha az adatokat az idő függvényében nézzük, adódik-e valamilyen alakzat, és ha igen, milyen?
A nyers adatokból nehéz meghatározni az alakzatot, de azonnal kiviláglik, ha grafikusan ábrázoljuk az adatokat. Alexei grafikonján könnyű észrevenni, hogy ezek az adatok egy egyenesen helyezkednek el, kivéve a 2. időpontnak megfelelő pontot, amikor Alexei vagy tüsszentett, vagy elvonta figyelmét barátja videojátéka. Nicolai ábráján, az adatok és az idő közti összefüggés egy jól ismert görbetípus, a parabola, ami például, egy rugó energiáját ábrázolja a megnyúlás függvényében, vagy egy ágyúgolyó pályájának magasságát a megtett távolság szerint. Matematikai szempontból ezt az alakot egy olyan függvény írja le, ahol a mért adatok az idő négyzetével (vagy a távolsággal) nőnek. Az Anya adataiból készített grafikon egy kör jobb felső oldali negyedét ábrázolja, ami életünk egyik legközönségesebb alakzata, és Alexei grafikonjához hasonlóan ez is Eukleidész egyik alapvető alakzata. Mégis, csak az adatok alapján ez egyáltalán nem nyilvánvaló.
[bookmark: _ednref90]Oresme ennek az új és hatásos geometriai eljárásnak a segítségével megpróbálta a fizika egyik leghíresebb, akkor ismert törvényét, a Merton-szabályt bebizonyítani4. 1325 és 1359 között az
[image: pict06]
Az adatok alakot öltenek

oxfordi Merton College matematikus csoportja javaslatot tett a mozgás kvantitatív leírására. A régi diszkussziókban a távolságot és az időt olyan mennyiségeknek tekintették, amelyeket numerikusan le lehetett írni, de a „gyorsaságot” vagy a „sebességet” nem kvantifikálták – nem tekintették mennyiségnek.
A Merton-iskola által megsejtett centrális tétel, a Merton-szabály tulajdonképpen a teknősbéka és a nyúl közti verseny leírása volt. Képzeljük el, hogy egy teknősbéka rohan, mondjuk, egy kilométer per óra sebességgel egy percig, de egyenletesen gyorsulva az alatt az egy perc alatt, a nyúl ugrándozva gyorsabban halad, mint ellenfele, aki csak egyenletesen megy. A Merton-szabály szerint, ha az egyperces állandó gyorsulás után a nyúl eléri a teknősbéka sebességének kétszeresét, akkor egyazon távolságot tesznek meg. De ha a nyúl végsebessége nagyobb lesz, akkor ő lesz elöl, ha kisebb ennél, akkor lemarad a versenyben.
Akadémikusabban hangzó kifejezéssel, a szabály azt mondja ki, hogy az a távolság, amit egy test a nyugalmi állapottól a célba érésig egyenletesen gyorsulva tesz meg, ugyanakkora, mintha a maximális sebesség felével egyenletesen mozgott volna. Tekintettel arra, hogy milyen kevéssé értették abban az időben a hely, az idő és a sebesség fogalmait és milyen kidolgozatlanok voltak a mérési eljárások, a Merton-szabály egyenesen lenyűgöző felfedezés. A differenciálási szabályok és az algebra ismerete nélkül azonban a Merton College tudósai nem tudták dűlőre vinni spekulációikat.
[bookmark: _ednref91]Oresme a grafikonok módszerét alkalmazva a szabályt geometriailag bizonyította be5. Azzal kezdte, hogy az időt a vízszintes tengelyen, a sebességet a függőleges tengelyen ábrázolta. Ezzel az eljárással az egyenletes mozgást egy vízszintes egyenes ábrázolja, az állandóan gyorsuló mozgást pedig egy olyan egyenes, amelyik valamilyen szögben emelkedik. Oresme észrevette, hogy e görbék alatti terület – ami az egyik esetben négyszög, a másikban háromszög – a megtett utat ábrázolja.
A Merton-szabály szerint egy egyenletesen gyorsuló test által megtett út egy derékszögű háromszög területe, amelynek alapja arányos az utazás idejével és amelynek magassága a maximális sebességet ábrázolja. Az állandó sebességgel mozgó test által megtett út annak a négyszögnek a területe, aminek az alapja ugyanaz, mint a háromszögé, de a magassága csak fele a háromszögének. A bizonyítás tehát most egyszerűen arra redukálódott, hogy össze kell hasonlítani ezt a két területet és megállapítani, hogy egyenlőek. Ha például megkétszerezzük a háromszög területét azáltal, hogy átfogójára tükrözzük, vagy ha megkétszerezzük a négyszöget a felső oldalára tükrözve, ugyanazt a területet fedjük le mindkét alkalommal.
[bookmark: _ednref92]Oresme ezt a grafikus okoskodást alkalmazva felfedezett egy törvényt, amit általában Galileinek tulajdonítanak6. Nevezetesen azt, hogy az egyenletesen gyorsuló test által megtett út az idő négyzetével növekszik. Hogy ezt belássuk, tekintsük ismét az állandó gyorsulást leíró grafikon alatti területet. Ennek a területnek a nagysága arányos az alap és a magasság szorzatával, és mindkettő arányos az idővel.
[bookmark: _ednref93]Oresme ösztönös megérzései ugyanilyen meglepőek a tér természetének megértésében is. Egy másik szenzációs felfedezése7, amellyel kifogott Galilein, Einstein relativitásdoktrínájának egyik összetevője volt. Ez az a tanítás, amely szerint csak a relatív mozgásnak van jelentősége. Jean Buridan, Oresme párizsi tanítómestere úgy érvelt, hogy a Föld nem foroghat, mert ha forogna, akkor a felfelé lőtt nyíl egy másik helyre esne le. Oresme ezt saját példájával vitatta: a tengerész, aki a hajón lehúzza a kezét az árboc mentén, úgy észleli ezt a mozgást, mint egy függőleges irányút. Mégis, számunkra, akik a parton állunk, a hajó mozgása miatt a tengerész keze átlós irányú mozgásnak fog tűnni. Kinek van akkor igaza? Oresme szerint inkább a kérdés van rosszul feltéve: csakis egy másik testhez viszonyítva lehet eldönteni, hogy a test mozog-e vagy sem. Manapság ezt nevezik Galilei-féle relativitási elvnek.
Oresme sok munkáját nem publikálta, nem is vitte végig mindegyiket a logikai konklúzióig. Sok területen eljutott a forradalom küszöbéig, de aztán az egyház kedvéért visszalépett. Így például a viszonylagos mozgás analízise során tovább lépett, és azt vizsgálta, hogy vajon lehetséges-e olyan csillagászati elméletet alkotni, amelyben a Föld forog vagy éppen még kering is a Nap körül – ezeket a gondolatokat később Kopernikusz és Galilei hirdették. Oresme nemcsak, hogy nem tudta meggyőzni kortársait, hanem végül saját maga vetette el ezt a gondolatot. Megtérése nem a racionalitás, hanem a Biblia hatására történt. A Zsoltárok Könyve 93:1 idézésével Oresme ezt írta: „Isten teremtette a világot, ami nem mozoghat”.
[bookmark: _ednref94]Más kérdések tekintetében is kiváló éleslátásról tett tanúbizonyságot, hogy aztán hátat fordítson az igazságnak, amit megpillantott. Így például, ami a démonok létét illeti, forradalmian szkeptikus állásponton volt, azt állítva, hogy létüket nem lehet a természet törvényei alapján bizonyítani. Mégis, mint mindig a jó keresztény, fenntartotta, hogy léteznek, mert ezt hitbéli kérdésnek tekintette. Talán éppen saját tudathasadásos állapotán csodálkozott el, amikor Szókratész nyomdokait követve azt írta8, hogy „Én tényleg nem tudok semmit, kivéve azt, hogy nem tudok semmit”. Oresme, aki szegényként nőtt fel, a rendszer iránti hűsége jutalmául királyi tanácsadó, követ és V. Károly nevelője lett. A király támogatásával öt évvel halála előtt, 1377-ben nyerte el a püspöki címet.
Bár arra nézve egyáltalán nincsen semmi bizonyíték, hogy Galilei Oresme valamilyen munkájára is közvetlenül támaszkodott volna, mégis az ő szellemi örökösének tekinthető. Oresme matematikában indított forradalma sem virágzott ki igazán, és a világnak további 200 évet kellett várnia, míg – az egyház gyengülésével – két francia óvatosan felvethette az ügyet, most már örökre megváltoztatva a matematika világát.
[bookmark: tart14]
11. Egy katona története

[bookmark: _ednref95]1596. március 31-én egy beteg francia nő, száraz köhögések közepette – ami bizonyára a tuberkulózis jele volt – adott életet harmadik gyermekének1. A baba gyenge és beteges volt. Néhány nap múlva az anya elhunyt. Az orvosok azt jósolták, hogy a kicsi hamarosan követi anyját. A gyerek apja bizonyára rettenetes élményként élte meg ezt az időszakot, de nem adta fel. A következő nyolc évben otthon, többnyire ágyban, egy dajka állandó felügyelete mellett tartotta a gyereket, nem is beszélve az ő szerető gondoskodásáról. A fiú ötvenhárom évig élt, mielőtt tüdejének gyengesége végleg le nem döntötte lábáról. Hát így mentették meg a világ számára az egyik legnagyobb filozófust és a matematika következő forradalmának építészét, René Descartes-ot.
[bookmark: _ednref96]Amikor Descartes nyolcéves volt – egyesek szerint 10 éves2 –, apja La Flèche-be, egy új jezsuita iskolába küldte, amely hamarosan híressé vált. Az iskola rektora megengedte az ifjú Descartes-nak, hogy késő délelőttig az ágyban maradjon, és csak akkor csatlakozzon a többi tanulóhoz, amikor erre késznek érzi magát. Ezt a szokását Descartes élete végéig megtartotta. Jól végezte iskoláit, de amikor nyolc évvel később befejezte tanulmányait, már kimutatta szkepticizmusát, amiről filozófiája később híressé vált. Az volt a meggyőződése, hogy mindaz, amit La Fléche-ben tanult, vagy haszontalan, vagy éppen elhibázott dolog volt. Ennek a meggyőződésének ellenére édesapja kívánságára a következő két évet még céltalanabb tanulással töltötte, ami a jogi fokozat megszerzéséhez vezetett.
Descartes végül abbahagyta tanulmányait és Párizsba ment, ahol éjszakánként a társadalmi összeköttetésekből adódó szerencsét hajszolta. A délelőttöket ágyban töltötte, majd délutánonként a matematika tanulmányozásával volt elfoglalva. Szerette ezt az életmódot és esetenként még némi haszna is származott belőle, már amikor a matematikát a szerencsejátékokra alkalmazta. Egy kis idő múlva azonban Párizs már untatni kezdte.
Mit tesz egy független anyagiakkal rendelkező fiatalember Descartes korában annak érdekében, hogy utazzék és kalandot keressen? Belép a hadseregbe. Ez Descartes esetében orániai Móric herceg seregét jelentette. Valódi önkéntes sereg volt, Descartes nem kapott fizetséget szolgálataiért. Móric herceg azonban pórul járt vele. Nemcsak az történt, hogy Descartes soha nem látott csatát, hanem a következő évben csatlakozott a bajor herceg tulajdonképpen ellenséges seregéhez. Ez persze kicsit furcsának tűnhet – először nem harcolni az egyik oldalon, utána nem harcolni a másik oldalon sem –, de ebben az időben a francia-holland seregeknek a spanyol-osztrák monarchiával folytatott háborújában éppen szünet volt. Descartes nem igazán bánta, hisz nem azért csatlakozott a hadsereghez, hogy harcoljon, hanem, hogy utazzon, szóval: nem politikai célból.
Descartes élvezte a seregben töltött napjait, mert sok, különböző nemzetiségű emberrel találkozhatott. Ugyanakkor meg lehetett találni az egyedüllét idejét is, hogy a matematika és a természettudomány tanulásával foglalkozzék és latolgassa az Univerzum természetét. Utazásai csakhamar gyümölcsözőkké váltak.
1618-ban egy napon Descartes Hollandia egyik kis városában, Bredában volt, amikor észrevette, hogy a nép egy utcán kifüggesztett hirdetmény előtt gyülekezik. Átment a túloldalra, és megkért egy idősebb nézelődőt, hogy fordítsa le neki a hirdetményt franciára. Sok minden lehet ma egy ilyen hirdetményen: hirdetés, parkírozási tilalom vagy akár egy körözés. Ehhez fogható azonban nemigen akad utunkba mostanság: a falragasz egy matematikai feladvány volt.
Descartes elgondolkodott a problémán és csaknem azonnal észrevette, hogy ezt egészen könnyű megoldani. A fordító, talán bosszankodva, talán szórakozottan azt mondta, hogy Descartes blöfföl és kihívta őt, hogy oldja meg a feladatot. Descartes könnyen elbánt vele. Az idősebb emberre, akinek a neve Isaac Beekman volt, igen mély benyomást tett az eset, ami nem csekély fegyvertény volt. Kiderült ugyanis, hogy ez a személy korának egyik legnagyobb holland matematikusa volt.
[bookmark: _ednref97]Jó barátokká lettek, és Descartes Beekmanról úgy írt3, mint „inspirációm és tanulmányaim szellemi irányítójá”-ról. Beekman volt az, akinek négy hónappal később Descartes először leírta a geometriáról vallott forradalmi nézeteit. Descartes levelei, amiket ehhez a barátjához írt a következő pár évben, tele vannak olyan vonatkozásokkal, amelyek a számok és a tér közötti új kapcsolatra utalnak.
[bookmark: _ednref98][bookmark: _ednref99][bookmark: _ednref100]Descartes egész élete során erősen bírálta a görögök munkáit, de a geometriájuk különösen bosszantotta őt. Ez utóbbi olykor bonyolultnak és szükségtelenül nehéznek tűnt számára. Úgy látszott, mintha érezte volna, hogy az az út, ahogyan a görög geometria felépült, sokkal nehezebb munkát jelentett neki, mint amennyit szükségesnek ítélt. Egy probléma analízise közben – amit az ógörög Pappus vetett fel – Descartes ezt írta4: „már kimerít, hogy ennyit kell írnom róla”. Bírálta bizonyítási módszerüket, mert úgy látszott, minden egyes bizonyításhoz egy külön új kihívásra van szükség, amit el lehetne kerülni, mint Descartes írta5, „persze csak azzal a feltétellel, hogy jobban fárasztja a képzeletét”. Azt sem helyeselte, ahogyan a görögök a görbéket definiálták, mert ez tényleg fáradságos volt és a bizonyításokat meglehetősen nehézkessé tette. Manapság a tudósok azt írják, hogy „Descartes matematikai lustasága notórius volt”6, de Descartes nem szégyellte magát, hogy megkeresse azt az alapul szolgáló rendszert, ami a geometriai tételek bizonyítását kevésbé fáradságossá teszi. Ez az, ami lehetővé tette, hogy mindennap alhasson és mégis nagyobb hatású legyen, mint azok a szorgalmas tudóstársak, akik bírálták őt.
Sikereit jól példázza, ha összehasonlítjuk Eukleidész és Descartes definícióját:

Eukleidész: A kör egy olyan egyetlen görbéből álló síkbeli alak, ahol minden egyenes, ami a pontjaiból egy belső pontra – amit középpontnak nevezünk – esik, egyenlő hosszúságú.

Descartes: A kör olyan x és y értékű pontok sokasága, amelyek kielégítik az x2 + y2 = r2 feltételt, ahol r egy konstans szám.

Még azok számára is, akik nem tudják, hogy mit jelent az egyenlet, Descartes definíciója egyszerűbbnek kell, hogy tűnjék. A lényeg nem az egyenlet értelmezésében van, hanem hogy Descartes módszere szerint a kör definíciója csupán egyetlen egyenlet. A teret a számok nyelvére fordította le, és ami még fontosabb, a geometria megfogalmazásában az algebra kifejezéseit használta.
Descartes azzal kezdte elemzését, hogy a síkot egyfajta grafikonná alakította azáltal, hogy egy vízszintes egyenest húzott, amit „x tengelynek” és egy függőleges egyenest, amit „y tengelynek” nevezett el. Egyetlen fontos részlet kivételével a sík minden pontját két szám írja le: az x tengelytől mért függőleges távolság, az y adat; és az y tengelytől mért vízszintes távolság, az x adat. Ezt a két adatot általában „rendezett párként” (x, y) alakban írjuk.
Lássuk részletesen: ha a távolságot a fent leírt módon mérjük, akkor minden (x, y) koordinátapárhoz több pontot látunk megfelelni. Például tekintsünk csak két pontot, ami egységnyi távolságra van az x tengely fölött, de az y tengely két ellenkező oldalán fekszik, mondjuk két egységgel jobbra, ill. balra. Minthogy mindkét pont egységnyi magasan van az x tengely fölött és mindkettő kétegységnyi távolságra van az y tengelytől, a leírásunknak megfelelően mindkettő a (2,1) koordinátapárral írható le.
Ugyanez a bizonytalanság lehetséges az utcai számozással is. Két ember, mindkettő a Nyolcvanadik utca 137. alatt lakik, felkaphatná a fejét és mondhatná: „Sohasem élnék ezen a környéken!”. De miért is ne? A West Side Story és az East Side Story valójában két igen különböző történet. A matematikusok ugyanúgy rendelkezhetnek a koordinátabizonytalanságról, mint ahogyan a városi tervezők megállapítják az utcai címeket, éppen csak annyi az eltérés, hogy a plusz és a mínusz jeleket fogják használni az east/west vagy north/south megjelölések helyett. A matematikusok a mínusz előjelet ragasztják az y tengely bal oldalán lévő pontok x koordinátájához (vagyis a „west side” megjelölésére); és azon pontok y értékeihez, amelyek az x tengely alá esnek (vagyis a „south side” pontjaihoz). Esetünkben az első pont megtartaná a (2,1) megjelölést, de a másiké már (-2,1) lenne. Ez olyan eljárás, mintha a síkot négy negyedsíkká (kvadránssá) osztanánk: északkeletre, és északnyugatra, délkeletre és délnyugatra. Minden olyan pont, ami a déli (south) negyedben van, negatív y értékű lesz, minden olyan, ami a nyugati (west) negyedben lesz, negatív x értékű lesz. A pontok elhelyezésének ezt a módját ma Descartes-koordinátáknak (kartéziánus vagy Cartesianus-koordinátáknak) nevezik. (Ezt egyébként körülbelül ugyanebben az időben Pierre de Fermat fedezte fel, de ahogyan Descartes-nak megvolt az a rossz szokása, hogy publikációihoz nem készített idézetek jegyzékét, ugyanúgy Fermat még rosszabb szokással volt megáldva, mert ő nem is publikált.)
[bookmark: _ednref101]Természetesen, ahogyan már láttuk, nem a koordináták használata volt az egyedüli újdonság. Már Ptolemaiosz is használta ezeket7 a II. évszázadban készült térképein. Mégis, Ptolemaiosz munkája csupán földrajzi jellegű volt. A földgömbön túl nem is látta jelentőségét. Descartes koordinátaideájának igazi jelentősége nem a koordináták fogalmának megalkotásában volt, hanem abban, ahogyan Descartes felhasználta azokat.
A klasszikus görög görbék tanulmányozásakor – amelyek definíciós módszere annyira nem tetszett neki – Descartes meglepő dologra lett figyelmes. Például ha húz egy csomó egyenest, akkor azt találja, hogy az egyenes vonalak mindegyikén a pontok x és y koordinátája ugyanazon a módon áll kapcsolatban egymással. Algebrai szempontból ezt a kapcsolatot az ax + by + c = 0 alakban lehet kifejezni, ahol az a, b és c konstansok, egyszerű számok, mint a 3 vagy 4,5 és értékük csak attól a különleges egyenestől függ, hogy éppen melyik egyenest vizsgáljuk. Ez pedig azt jelenti, hogy az (x, y) páros által leírt pontok akkor és csak akkor vannak az egyenesen, ha a-szor x meg b-szer y meg c egyenlő nullával. Ez pedig az egyenes egy másik lehetséges algebrai megfogalmazása.
Descartes szemszögéből az egyenes egy pontsokaság, amelynek az a tulajdonsága, hogy ha az egyik koordinátát megnöveljük a másik pont elérése érdekében, akkor a másik koordinátát meghatározott arányban kell megnövelnünk. Descartes definíciója, amit a kör (vagy az ellipszis) számára adott, ugyanezen az elven működik, csak azzal a különbséggel, hogy az egyenessel ellentétben nem egyszerűen a két koordináta (súlyozott) összegének, hanem négyzeteik (ellipszis esetén ugyancsak súlyozott) összegének kell állandónak maradni.
[bookmark: _ednref102]Három évszázaddal korábban Oresme is megjegyezte, hogy a görbéket a koordináták közötti összefüggésekkel lehet definiálni, és szintén levezetett egy egyenletet az egyenes vonal számára. Akkoriban azonban az algebra nem terjedt még el oly széles körben, így jobb jelölés hiányában8 Oresme nem vihette tovább elgondolását. Descartes módszerében az algebra és a geometria összetársítása Oresme gondolatainak általánosítását jelenti. Ezáltal a görög matematika minden görbéjét egyszerűen és tömören lehet már leírni. Az ellipszisek, a hiperbolák, és a parabolák mind definiálhatókká váltak az x és y koordinátáik közti egyenletek segítségével.
[bookmark: _ednref103]Az a tény, hogy a különböző görbék egyetlen egyenlet segítségével definiálhatók, messzemenő következményekkel járt a tudomány számára. Így például tekintsük Nicolai adatait alább, de most a tizedesvesszőt, egy számjeggyel toljuk el jobbra. Ezáltal kiderül, hogy mit is jelentenek a számok: minden hónap 15. napján az átlagos csúcshőmérsékletet (kivéve a januári adatot) New York City területén9. Egy tudós azonnal megkérdezi: van-e valami egyszerű összefüggés az adatok között?

	Dátum
	Átlagos csúcshőmérséklet (Fahrenheit-fokban)

	2/15
	40

	3/15
	50

	4/15
	62

	5/15
	72

	6/15
	81

	7/15
	85

	8/15
	83

	9/15
	78

	10/15
	66

	11/15
	56

	12/15
	40



Mint láttuk, ha az adatokat grafikusan ábrázoljuk, egy egyszerű geometriai görbe: parabola adódik. A parabolát definiáló egyenlet helyes ismerete lehetővé teszi, hogy bizonyos előrejelző erővel fogalmazzuk meg New York City időjárására vonatkozóan az „átlagos hőmérsékleti maximumok törvényét”. A törvény a következőképpen hangzik: jelölje y azt, hogy hány Fahrenheit-fokkal alacsonyabb a hőmérséklet 85 °F-nál, továbbá jelölje x a július 15-étől számított, hónapokban kifejezett, időbeli távolságot, ebben az esetben x négyzetének a kétszerese y-nal lesz egyenlő.
Most pedig próbáljuk ki a törvényt. Hogy megkapjuk az átlagos csúcshőmérsékletet New Yorkban, mondjuk október 15-én, vegyük először észre, hogy október három hónappal van július után, ezért x = 3. Minthogy 3 négyzete 9, az októberi átlagos hőmérséklet kétszer 9, vagyis 18 fokkal kevesebb, mint a júliusi átlag, a 85. Így a „törvény” szerint az átlagos csúcshőmérséklet közelítőleg 67 (°F). A tényleges érték 66 (°F). A legtöbb hónap esetén a törvény egészen jól működik, és még a hónap más napjaira is – nemcsak a 15-ikére – használható, ha nem zavar minket a törtekkel való számolás.
Az átlagos hőmérsékleti maximumok törvénye kapcsolatot definiál y és x között, ez speciális esete annak, amit a matematikusok függvénynek hívnak. Ebben az esetben a függvény ábrája, grafikonja a parabola. A fizika nagyjából olyasmivel foglalkozik, amit az előbb tettünk: megfigyeli az adatok között a szabályszerűségeket, felfedezi a függvénykapcsolatokat (amit mi nem tettünk most), és megmagyarázza az okaikat.
Ahogyan a fizikai törvényekre következtetni lehet a Descartes-módszer grafikus alkalmazásából, úgy Eukleidész tételeinek is megvannak az algebrai következményei. Például tekintsük a Pitagorasz-tételt a descartes-i formában. Képzeljünk el egy derékszögű háromszöget. Az egyszerűség kedvéért gondoljuk azt, hogy a függőleges oldala fekszik az y tengely mentén az A pontig, a vízszintes oldala pedig az x tengelyen az origótól a B pontig. A függőleges oldal hossza egyszerűen a végpont, az A y koordinátája; a vízszintes oldal hossza pedig a B pont x koordinátája.
[bookmark: _ednref104]A Pitagorasz-tétel ebben az esetben azt mondja ki, hogy a vízszintes és a függőleges oldal négyzeteinek az x2 + y2 összege egyenlő az átfogó négyzetével. Ha elfogadjuk, hogy két pont, az A és a B közti távolság10, az A és a B közti egyenes hossza, akkor épp most állapítottuk meg, hogy ennek négyzete x2 + y2. De most tekintsünk két bármilyen pontot, A-t és B-t a síkon. Akkor elérhetjük azt, hogy az x tengelyt és az y tengelyt úgy rajzoljuk meg, hogy a fenti helyzetet kapjuk: az A a vízszintes tengelyen, B a függőleges tengelyen legyen. Ez pedig azt jelenti, hogy két pont, az A és a B közti távolság négyzete egyszerűen a vízszintes és függőleges koordinátáik különbségének négyzetösszege.

* * *

[bookmark: _ednref105]Descartes távolságképlete11 szorosan kötődik az euklideszi geometriához – ahogyan azt a későbbiekben még látni fogjuk. De Descartes módszere, a távolságot a koordinátakülönbségek függvényének tekintő karteziánus módszer azonban általános érvényű koncepció, amely később kulcsfogalommá vált mind az euklideszi, mind a nem euklideszi geometriák természetének megértésében.
[bookmark: _ednref106]Descartes geometriai meglátásait a fizika számos területén alkalmazta, és híres alkotásokat hozott létre. Az első volt, aki a fénytörés törvényét a ma is használt trigonometrikus alakban fogalmazta meg, és első volt abban is, hogy átfogó fizikai magyarázatot adott a szivárvány jelenségére. Geometriai módszerei annyira lényeges szerepet játszottak gondolatai irányításában, hogy azt írta: „egész fizikám nem más, mint geometria”12. Ennek ellenére Descartes 19 évig halogatta a koordináta-geometria publikálását. Tulajdonképpen nem is publikált semmit, amíg 40 éves nem lett. Mitől félt? A szokásos gyanú: a katolikus egyháztól.
[bookmark: _ednref107][bookmark: _ednref108]Barátai ismételt unszolására Descartes néhány évvel korábban, 1663-ban már éppen azon volt, hogy kiad egy könyvet. Ekkor egy itáliai szerző, bizonyos Galilei jelentetett meg egy könyvet, melynek címe: Dialógus a két fő világrendszerről. Pikáns színdarab, melyben három résztvevő beszélget a csillagászatról. Persze korántsem a Broadway nagyközönségének szánt módon. Valamilyen okból kifolyólag az egyházatyák úgy döntöttek, hogy gondosan áttanulmányozzák a darabot, amely nem tett rájuk túl jó benyomást. Talán azt gondolták, hogy az a szereplő, aki az ő ptolemaioszi szempontjukat fejtegeti, nem egészen jól látja el a feladatát. Akkoriban egy könyv egyházi átvizsgálása sajnos azt jelentette, hogy a szerzőt is átvilágították, aki könyvéhez hasonlóan nagy valószínűséggel szintén máglyán végezte. Galilei esetében csak a könyvet égették el. Galilei maga csak arra kényszerült, hogy megtagadja művét, és sajnos, az inkvizíció határozatlan időtartamú bebörtönzésre ítélte. Descartes nem volt Galilei fanatikus híve. Egyik levelében Galilei munkájáról maga is leírta véleményét13: „Úgy tűnik nekem, hogy Galileinek nagy hiányosságai vannak, amiket folyamatosan elkerül, és sohasem teszi meg, hogy egy tárgykört részletesen megmagyarázzon, ami azt bizonyítja, hogy ezeket nem vizsgálta meg rendes módszerességgel…”. Mégis osztotta Galilei napközéppontú felfogását és más racionális eszméit, elítélését pedig igencsak szívére vette. Bár maga protestáns országban élt, a könyvének publikálását leállította14.
[bookmark: _ednref109]Descartes végül mégis visszanyerte bátorságát, és 1637-ben publikálta első művét, arra törekedve, hogy munkája a lehető legkevésbé se sértse az egyházat. Negyvenéves korára Descartes-nak már sokkal több közölnivalója volt, mint a geometria, és ennek nagy részét egyetlen könyvbe gyúrta össze, amelynek már a bevezetője is több volt, mint 78 oldal. Az eredeti kézirat nem túlságosan harapós címe így hangzott15: Egy univerzális tudomány terve, amely természetünket a tökély legmagasabb fokára emelheti. Aztán a dioptrika, a meteorok és a geometria következik, ahol a legkülönösebb dolgok szerepelnek, amelyeket a szerző csak találni tudott, hogy bizonyítékul szolgálhassanak annak az univerzális tudománynak, amelyet kifejt, és úgy magyaráztatik mindez, hogy még azok is megérthessék, akik sohasem tanulták. A megjelenés során a címet egy kicsit lerövidítették, föltehetően a marketingosztály XVII. századi megfelelőjének javaslatára. De még így is elég terjengős volt. Az idő tovább koptatta hosszát, ma a dolgozatra általában csak mint Értekezés, vagy Értekezés a módszerről címen hivatkozunk.
Az Értekezés a módszerről (Discours de la méthode) egy hosszú esszé Descartes filozófiájáról és a problémamegoldás tudományos megközelítéséről. A harmadik függelék, a Geometria, a szerző szerint azért készült, hogy bemutassa, mit lehet elérni ezzel az eljárással. A nevét a címlapon nem tüntette fel, nem azért, mert a cím mellett már nem fért volna el, hanem mert még mindig tartott az üldöztetéstől. Barátja, Marin Mersenne elég szerencsétlenül megírt bevezetője azonban nem hagyott kétséget afelől, hogy ki is a könyv szerzője.
Mint arra számítani lehetett, Descartes-ot rosszindulatú kritikák támadták, észrevehetően egyházellenes kihívása miatt. Még matematikáját is kellemetlen bírálatok érték. A geometria hasonló algebraizálását felfedező Fermat is ellenvetéseket tett triviális pontokon. Blaise Pascal, egy másik fényes tudású francia matematikus pedig teljesen elítélte. A személyes ellentétek a tudományos előrehaladást csak ideig-óráig tudják hátráltatni, néhány év alatt Descartes geometriája bekerült csaknem valamennyi egyetem tantervébe. Filozófiáját azonban már nem fogadták el olyan készségesen.
[bookmark: _ednref110]Descartes-ot az Utrechti Egyetem hittudományi tanszékének vezetője, egy bizonyos Voetius nevű ember támadta16 igencsak rosszindulatú hangnemben. Voetius úgy vélte, hogy Descartes eretneksége szokás szerint abból állt, hogy elhitte, hogy az ész és a megfigyelés meghatározhatja az igazságot. Descartes valójában még tovább ment; hitt abban, hogy az emberek a természet felett uralkodnak, és hogy minden betegség gyógymódját, meg az örök élet titkát is hamarosan meg fogják találni.
[bookmark: _ednref111]Descartes-nak kevés barátja volt, sohasem házasodott meg. Volt azonban dolga – egyszer az életében17 – egy Helen nevű hölggyel, akitől 1635-ben gyereke született, Francine. Úgy hírlik, hogy ők hárman együtt is éltek 1637 és 1640 között. 1640 őszén, a Voetiusszal vívott küzdelem közepette Descartes elutazott, hogy egyik könyvének kiadását intézze. Francine megbetegedett, bíbor kiütések borították egész testét. Descartes hazasietett. Azt nem tudjuk, hogy idejében ért-e haza, de a leányka betegsége harmadik napján meghalt. Descartes és Helen hamarosan szakítottak. Ha Descartes egy könyvének fülszövegén nincs ott a kislány életének és halálának a híre, sohasem tudjuk meg, hogy Francine a lánya volt és nem az unokahúga – amint állította, hogy elkerülje a botrányt. Jóllehet Descartes egész életében híres volt érzelemmentességéről, ez a veszteség őt is lesújtotta. Alig egy évtizeddel élte túl leányát.
[bookmark: tart15]
12. A Hókirálynő dermesztő hidege

[bookmark: _ednref112]Néhány évvel Francine halála után a huszonhárom esztendős Krisztina svéd királynő1 udvarába hívta Descartes-ot. Az 1933-ban készült életrajzi filmben Krisztinát Greta Garbo alakította, és az elegáns fiatal svéd nő alakja bizonyára egy magas, szőke, és jókedvű szépség képét idézi fel bennünk, ha a királynőre gondolunk. Mint rendesen, a hollywoodi történetnek nem volt egészen szerencséje a tényekkel. Az igazi Krisztina alacsony volt, ferdén tartotta vállát és mély, férfias hangon beszélt. Nem szerette a szokásos női öltözéket, és néhányan egyenesen úgy írják le, mintha valami lovassági tiszt lett volna. Azt mondják róla, hogy gyerekkorában odavolt az ágyútűz hangjáért.
Huszonhárom éves korára Krisztina már kíméletlen zsarnok lett, akinek kevés türelme volt a hajfürtökhöz. Csak öt órát töltött alvással naponta, és nem hozta lázba az a gondolat, hogy a fagyos svéd téli időben az ember jéghokit játszhatna a fölöntözött aszfalton (feltéve, persze, hogy az öntözőcsövet, az aszfaltot és a hokit már feltalálták volna). Évszázadokkal később Descartes-ról olvasva, csak találgathatjuk, hogy Krisztina udvara miért volt vonzó Descartes számára. Ő azonban elment Svédországba. De miért?
Krisztina egy briliáns nő volt, aki a tudásnak szentelte életét és teljesen elszigeteltnek érezte magát északi országában. Hogy északi havas országából intellektuális paradicsomot, egy Európa központjától távol lévő tudományos központot varázsoljon, hatalmas pénzeket költött arra, hogy könyvtára számára könyveket vásároltasson. Ptolemaioszhoz hasonlóan ő is gyűjtötte a könyveket, tőle eltérő módon Krisztina még a könyvek szerzőit is összetoborozta. Descartes sorsa akkor pecsételődött meg, amikor 1644-ben összetalálkozott és barátságot kötött Pierre Chanut-vel. A következő évben Chanut a francia király egyik minisztereként ment Svédországba. Krisztina megegyezett Chanut-vel, hogy Descartes lesz az első nagy fogás, ezért Franciaországba küldte egyik admirálisát, hogy Descartes-ot rábeszélje a svédországi kirándulásra. Krisztina azt ígérte Descartes-nak, ami régtől fogva a leghőbb vágya volt: épít számára egy akadémiát, aminek ő lesz az igazgatója, és még egy házat is kap Svédország legmelegebb részében (ami, úgy visszatekintve, nem volt valami nagy ígéret). Descartes ingadozott egy kicsit, de végül elfogadta a meghívást. Nem volt lehetősége arra, hogy kikérje a weather.com ajánlatát, de bizonyára tudott a rá váró klíma és személyiség zordságáról. Elindulása előtti napon letétbe helyezte végrendeletét.
1649-ben Svédország egész történetének legkeményebb tele fogadta Descartes-ot. Eleinte még szórakoztatta is, hogy egész nap több vastag takaró alatt fekhet, meleg és lakályos helyen, védve a fagyos hidegtől és így nyugodtan latolgathatja az Univerzum természetének kérdéseit. Hamarosan azonban kegyetlen ébresztőben részesült. Minden reggel 5 órakor kellett jelentkeznie Krisztina udvarában, hogy a királynőnek megtartsa napi ötórás előadását az etikáról. Descartes így írt egy barátjának: „Úgy tűnik számomra, hogy az emberek gondolatai itt télen pont olyanok, mint a víz…”
Abban a januárban barátja, Chanut, akinél tartózkodott, tüdőgyulladásban megbetegedett. Descartes barátja segítségére sietett, de az ápolás közben ő lett beteg. Saját orvosa távol volt, Krisztina ezért egy másik orvost küldött, aki véletlenül Descartes bevallott ellensége volt és a svéd udvar sok tagját felbosszantotta féltékenységével. Descartes megtagadta, hogy egy olyan ember gyógyítsa, aki amúgy sem segített volna (az orvos által előírt kezelés ugyanis az lett volna, hogy eret vágjon rajta). Descartes láza egyre emelkedett. A következő héten delíriumos rohamai voltak. Közben a halálról és a filozófiáról beszélt. Levelet is diktált testvéreinek, hogy keressék meg azt az asszonyt, aki őt törékeny gyermekkorában gondozta. Néhány órával ezután, 1650. február 11-én elhunyt.
[bookmark: _ednref113]Svédországban temették el. 1633-ban Voetius végül is elérte célját: bírálatai nyomán az egyház elítélte Descartes írásait. Az egyház hatalma azonban addigra oly mértékben meggyengült, hogy sokak szemében ez már csak növelte Descartes népszerűségét. A francia kormánya követelésére, sok egyezkedés után, a svédek 1666-ban visszaszolgáltatták Descartes földi maradványait. Azaz, hogy csak a csontok nagy részét, mert a koponyát megtartották2. A csontok helyét ma egy kis emléktábla jelzi a Saint Germain-des-Prés templomban. A koponyát végül is 1822-ben szolgáltatták vissza Franciaországnak. Ezt ma egy üvegkazettában a Musée de l’Homme épületében lehet látni.
Négy évvel Descartes halála után Krisztina lemondott a trónról. Áttért a katolikus hitre, a felvilágosításáért Chanut-nek és Descartes-nak mondott köszönetet. Végül Rómában telepedett le, talán Descartes-tól tanulta meg a melegebb éghajlat előnyeit.



[bookmark: tart16]III. GAUSS TÖRTÉNETE


Vajon a párhuzamos vonalak metszhetik egymást a térben? Napóleon kedvenc csodatette Eukleidész számára Waterlooval egyenértékű. A geometria tudományának görögök utáni legnagyobb forradalma.
[bookmark: tart17]
13. A görbült tér forradalma


Eukleidész célja az volt, hogy konzisztens matematikai struktúrát alkosson meg a tér geometriájára alapozva. A tér tulajdonságait az euklideszi geometriából vezették le, ezért olyanok, amilyeneknek a görögök gondolták azokat. Felmerül azonban a kérdés, hogy a térnek megvannak-e azok a tulajdonságai, amelyeket Eukleidész leírt és amelyek kvantifikációját Descartes elvégezte? Vagy vannak más lehetőségek is?
Nem tudjuk, hogy Eukleidész szeme megrebbent volna-e, ha azt mondják neki, hogy az Elemek szent és sérthetetlen marad 2000 évig, de ahogyan a szoftverüzletágban mondják, 2000 év bizony túl hosszú idő ahhoz, hogy a kettes verziót kivárjuk. Rengeteg dolog megváltozott ez idő alatt: felfedeztük a Naprendszer szerkezetét, megügyesedtünk annyira, hogy körbeutazzuk és feltérképezzük a Földet, és leszoktunk arról, hogy reggelire hígított bort igyunk. Továbbá ez alatt az idő alatt a nyugati világ matematikusai univerzális ellenérzést fejlesztettek ki Eukleidész ötödik, a párhuzamosok posztulátumával szemben. Sajnos nem a tartalmát kifogásolták, hanem hogy a helye inkább a feltételek, és nem a tételek közt van.
Évszázadok hosszú során át azok a matematikusok, akik megkísérelték, hogy a párhuzamosok posztulátumát tételként bizonyítsák, egészen közel jutottak ahhoz, hogy különös és érdekes térfajtákat fedezzenek fel, azonban mindegyik esetben egy egyszerű tévhit akadályozta meg őket ebben: azt hitték, hogy a posztulátum a tér igazi és szükséges sajátsága.
Kivéve egyvalakit, egy tizenöt éves fiút, akit Carl Friedrich Gaussnak neveztek. 1792-ben ennek a fiatal zseninek az erőfeszítései nyomán egy új forradalom magjai kerültek a földbe. A korábbiakkal ellentétben, ez nem az euklideszi tanok forradalmi kiegészítése volt, hanem egy teljesen új, működő rendszer. Hamarosan felfedezték és leírták azokat a különös és érdekes tereket, amelyeket oly sok évszázadon át figyelemre sem méltattak.
A görbült terek felfedezésével egy időben merült fel a természetes kérdés: vajon a mi terünk euklideszi-e, vagy éppen valamilyen másmilyen. Ez a kérdés valójában a fizikát forradalmasította. Persze a matematika is nehéz helyzetbe került. Ha Eukleidész struktúrája nem egyszerűen a valóságos tér absztrakciója, akkor micsoda? És ha a párhuzamosság posztulátumát kétségbe lehet vonni, akkor mi lesz Eukleidész építményének többi részével? A görbült terek felfedezése után nem sokkal az egész euklideszi geometria összedőlt, hogy aztán valami még meglepőbb következzen. A matematika maradéka is ugyanígy összeomlott. Mire a por leülepedett, nemcsak a tér elmélete, hanem a fizika és a matematika is egy új világban találta magát.
[bookmark: _ednref114]Hogy megérthessük, milyen nehéz lépés volt Eukleidésznek ellentmondani, az embernek értékelnie kell, hogy milyen mélyen beivódott a köztudatba az ő térleírása. Eukleidész Elemek című munkája már az ókori időkben is klasszikusnak számítottak. Eukleidész nemcsak definiálta a matematika természetét, de könyve a logikus gondolkodás modelljeként központi szerepet játszott a nevelésben és a filozófiában. Kulcsfontosságú mű volt a középkori szellemi újjászületésben. A könyvnyomtatás felfedezése, 1455 után az egyik legelső nyomtatott könyv volt1, és 1533-tól a XVIII. századig ez volt az egyetlen ógörög mű, amely nyomtatásban eredeti nyelven megjelent. A XIX. századig minden építészeti mű, minden rajz és festmény szerkezete, a tudományban minden elmélet minden egyenlete eredendően euklideszi volt. Az Elemek nem volt méltatlan erre a nagy megbecsülésre. Eukleidész a térintuíciónkat olyan absztrakt logikai elméletté alakította, amelyekből következtetéseket tudtunk levonni. De talán a leginkább az a fontos: Eukleidészt illetően el kell ismernünk, hogy szemérmetlenül lecsupaszította feltevéseit, és sohasem állította, hogy az általa bizonyított tételek többek lennének, mint az általa választott bizonyítatlan posztulátumok logikai következményei. Ahogyan az I. részben láttuk, az egyik ilyen posztulátum, a párhuzamossági posztulátum azonban csaknem mindegyik tudós számára, aki elmélyülten tanulmányozta Eukleidészt, meglepetést okozott, mert nem volt olyan egyszerű és intuitív, mint a többi euklideszi feltételezés. Idézzük csak fel szavait:

Ha egy szakasz, mely úgy metsz két másik egyenest, hogy a belső oldalon lévő szögek összege ugyanazon az oldalon kevesebb, mint két derékszög, akkor a két egyenes hamarosan találkozni fog (az egyenesdarab megfelelő oldalán).

Eukleidész egyáltalán nem használta fel a párhuzamossági posztulátumot az első huszonnyolc tétel bizonyításában. Addigra már bizonyította a posztulátum megfordítottját, valamint más megállapításokat, amelyek sokkal jobb jelölteknek tűntek az „axiómaságra” – miként az az alapvető tény is, hogy egy háromszög bármely két oldalának hossza nagyobb, mint a harmadik oldal hossza. Hát akkor miért kellett neki, ekkora út megtétele után, bevezetni egy ilyen misztikus technikai posztulátumot? Vagy tán ezt a fejezetet a „nyomdai határidő” pillanatában írta meg?
Több mint 2000 évvel később, miközben mintegy 100 generáció élt és halt meg, országhatárok változtak, politikai rendszerek emelkedtek és buktak el, a Föld pedig 1000 milliárdnyi mérföldet tett meg a Nap körül, a gondolkodók mindenütt mély érdeklődéssel fordultak Eukleidész munkájához, az istenüket nem tartalmi kérdésekkel zaklatták, hanem csak ezért az apróságért: vajon be lehetne-e bizonyítani azt a csúf párhuzamossági posztulátumot?
[bookmark: tart18]14. Baj van Ptolemaiosszal!

[bookmark: _ednref115]Az első ismert próbálkozás a párhuzamossági posztulátum bizonyítására Ptolemaiosztól származik Kr. u. a II. századból1. Gondolatmenete meglehetősen bonyolult volt, de módszere lényegében egyszerű: egy megváltoztatott alakban tette fel a posztulátumot és ebből megpróbálta levezetni az eredeti alakot. Mit is gondoljunk Ptolemaioszról? Egy intelligenciamentes zónában élt talán? Vagy képzeljük el, amint barátaihoz rohan és így kiált fel: „Heuréka! Megtaláltam a bizonyítás új formáját: a körkörös érvelést!” A matematikusok kétszer biztosan nem követik el ugyanazt a hibát. Inkább újra és újra ellenőrzik számításaikat. Ám ahogy a későbbiekben a legártatlanabb feltevésekről is kiderült, még ha oly nyilvánvalóak is akár, hogy szinte ki se kellene mondani azokat, végül a párhuzamossági axióma álcázott formájához vezettek. A posztulátum kapcsolata az euklideszi elmélet többi részével oly elvont, mint amilyen szoros is egyben. Néhány évszázaddal Ptolemaiosz után Próklosz Diadochusz tette meg a következő említésre méltó lépést, hogy ezt a posztulátumot egyszer s mindenkorra bebizonyítsa. Próklosz az V. századi Alexandriában nevelkedett, majd Athénbe költözött, ahol Platón Akadémiájának vezetője lett. Sokáig tanulmányozta Eukleidész munkáját, és olyan művekhez is hozzáférhetett, amelyek később hosszú időre eltűntek a föld színéről. Ilyen például a Geometria története Eudémusztól, Eukleidész egyik kortársától. Próklosz az Elemek első könyvéről írt kommentárja az ókori görögök geometriatudományáról szóló ismereteink egyik legfontosabb forrása.
Hogy Próklosz érvelését megérthessük, három dolgot érdemes megtenni. Először, a párhuzamosokról szóló posztulátumnak egy másik változatát fogjuk használni, amit Playfair-axiómának nevezünk. Másodszor, Próklosz érvelését egy kissé kevésbé technikai jellegűvé tesszük. S harmadszor, lefordítjuk az egészet görögből. Playfair axiómája pedig így szól:

Ha adott egy egyenes és egy (rajta kívül fekvő) pont, akkor egyetlen olyan (másik) egyenes húzható csak, amely párhuzamos az adott egyenessel és áthalad az adott ponton.

A mai világban közülünk legtöbben sokkal könnyebben eligazodnak a térképek és az utcák világában, mint az olyan ábrákon, amelyeken érthetetlen szimbólumok, alfák és lambdák jelennek meg. Ezért, hogy Próklosz érvelését sokkal közvetlenebb formába öntsük, képzeljük el a Fifth (5.) Avenue-t New York Cityben. Ezután mindjárt képzeljünk el egy másik, a Fifth Avenue-val párhuzamos utat is, amit a továbbiakban Sixth (6.) Avenue-nak fogunk nevezni. Emlékezzünk arra, hogy a párhuzamosokon – Eukleidész szerint – azt értjük, hogy „nem metszik egymást”, így feltevésünk szerint a Fifth Avenue nem metszi a Sixth Avenue-t.
A Sixth Avenue mentén a kávézók és az újságosbódék fölé emelkedő tekintélyes épületek egyikében találjuk a The Free Press cég, a legjobb minőségű könyvek kiadójának irodáit (véletlen egybeesés, de ez a cég a könyvünk amerikai kiadója is). Nem azért, hogy csökkentsük érdemeit, de ebben a példában a The Free Press háza fogja „az egyenesen kívül fekvő pont” szerepét játszani.
Most pedig a matematikai hagyomány szerint tartsuk észben, hogy mindaz, amit eddig elmondtunk, az „minden”, amit ezekről az utakról feltételeztünk. Bár gondolatvilágunkban e két sugárúthoz bizonyosan további, jellemző tulajdonságokat is társíthatnánk, de mint matematikusoknak, jelen esetben el kell tekintenünk ettől. Így hát, ha véletlenül tudják, hogy egy másik kiadó (amely esetleg e könyvért még akcióban volt), a Random House is ezen az úton van, vagy hogy a Fifth Avenue és a Sixth Avenue egy bizonyos távolságra vannak egymástól, vagy hogy az egyik sarkon egy fecsegő pszichopata is lakik, ezeket a gondolatokat kérem, tegyék most félre! A matematikai bizonyítás olyan gyakorlat, amely csak a kifejezetten adott tényeket alkalmazza – márpedig New York City egyik tulajdonsága sincs említve Eukleidész Elemek című munkájában. Ez valóban egy olyan meg nem engedett feltevés lenne, amit egyébként gondolkodás nélkül feltennénk, de a most következő Próklosz-féle bizonyítást meghamisítaná.
Most már készen állunk arra, hogy Playfair axiómáját a berendezett környezetre alkalmas formában mondjuk ki:

Ha adott a Fifth Avenue és a The Free Press kiadó a Sixth Avenue-n, akkor nincs más olyan út, mely a The Free Press kiadón haladna keresztül és párhuzamos lenne a Fifth Avenue-val – csak amilyen a Sixth Avenue.

Ez a megállapítás nem egzaktul egyenértékű Playfair axiómájával, mert mint Próklosz, mi is feltételeztük, hogy legalább egy vonal (vagy út, a Sixth Avenue) létezik, amely párhuzamos az adott egyenessel (a Fifth Avenue-val). Ezt most tényleg bizonyítani kell, de Próklosz úgy értelmezte Eukleidész egyik tételét, amely garantálja ezt a kijelentést. Ezt most elfogadjuk és megnézzük, hogy érvelését követve bebizonyíthatjuk-e az axiómát a fenti alakban.
Hogy bebizonyítsuk a posztulátumot, vagyis hogy tételt csináljunk belőle, meg kell mutatnunk, hogy bármely útnak, ami a The Free Press mellett elhalad és másmilyen, mint a Sixth Avenue, metszenie kell a Fifth Avenue-t. Ez nyilvánvaló – már ami a mindennapos tapasztalatainkat illeti – és ez az, ami miatt az ilyen utakat keresztutcának nevezzük. Csak azt kell tennünk, hogy bizonyítjuk ezt, de a párhuzamossági posztulátum használata nélkül. Kezdjük azzal, hogy elképzelünk egy harmadik utat, amelynek kizárólagos tulajdonságai, hogy egyenes és hogy a The Free Press érintésével halad. Nevezzük ezt az utat Broadwaynek!
A bizonyítás szerint Próklosz a The Free Press épületétől indul és lefelé halad a Broadway mentén. Képzeljünk el egy utcát, amelyik pont onnan indul, ahol Próklosz éppen áll, s a Sixth Avenue felé merőlegesen haladó új utcát nevezzük el Nicolai Streetnek. A térképet a következő oldalon mutatjuk.
A Nicolai Street, a Broadway és a Sixth Avenue egy derékszögű háromszöget alkot. Ahogyan Próklosz a Broadway mentén tovább halad lefelé, ez a derékszögű háromszög egyre nagyobb és nagyobb lesz.
Történetesen ennek a háromszögnek az oldalai – és a Nicolai Street is – egyre hosszabbak és hosszabbak lesznek, amekkorának
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Próklosz bizonyítása

csak akarjuk. A Nicolai Street hossza akár meg is haladhatja a Fifth Avenue és a Sixth Avenue közti távolságot. Ezért aztán Próklosz azt mondhatja, hogy a Broadwaynak metszenie kell a Fifth Avenue-t – és végül is pontosan ez az, amit bizonyítani kellett.
Ez az érvelés tagadhatatlanul egyszerű – de hamis. Először is azért, mert kissé félrevezetően használjuk az „egyre hosszabbak és hosszabbak lesznek” fordulatot. A Nicolai Street ugyan lehet egyre hosszabb és hosszabb anélkül, hogy egyetlen háztömb méreténél nagyobb lenne, miként az 1/2, 2/3, 3/4, 4/5, 5/6 … számsorozat, amelyik növekszik ugyan, de soha nem lesz nagyobb, mint 1. Ezen viszont lehet segíteni. Az az érdekes, hogy Ptolemaiosz, miként Próklosz is, egy meg nem engedett feltevést használtak. Nevezetesen azt, hogy léteznek a párhuzamos utak, ami érzésünk szerint helyes ugyan, de nem bizonyított. Tehát mit is tételeztek fel?
Próklosz tévedése az volt, hogy felhasználta a „Fifth Avenue és a Sixth Avenue közti távolság” fogalmát. Idézzük csak vissza a figyelmeztetést: „ha véletlenül tudják, hogy egy bizonyos távolságra vannak egymástól … ezeket a gondolatokat tegyék félre most!” Jóllehet Próklosz nem mondta ki pontosan, milyen távolságról van szó, mégis annyit határozottan állított, hogy a köztük lévő távolság állandó. Ez a tapasztalatunk a párhuzamos egyenesekkel! A Fifth Avenue meg a Sixth Avenue esetén is ez a helyzet, viszont ezt nem lehet a párhuzamosok posztulátuma nélkül alkalmazni: tehát magával a párhuzamossági axiómával egyenértékű!
[bookmark: _ednref116]A nagy bagdadi tudós, Szabit ibn Kurra is hasonló problémába ütközött2 a IX. században. Ha Szabit érvelését követni akarjuk, akkor képzeljük el, hogy lefelé sétál a Fifth Avenue-n, kezében egy mérőrúddal, amely a Fifth Avenue-ra merőleges és olyan hosszú, mint egy New York-i háztömb. Milyen vonalat ír le a mérőrúd másik vége? Szabit azt mondja, hogy ez a vonal egyenes, mondjuk ez éppen a Sixth Avenue. Ebből a feltevésből folytatná Szabit a párhuzamosság „bizonyítását”. A vonal, amit a mérőrúd másik vége ír le, bizonyára valamilyen tulajdonságú görbe, de milyen szaktekintély állíthatná, hogy ez egyenes vonal? Ez a szaktekintély nem más – ugye kitalálták? – mint a párhuzamossági posztulátum. Csak az euklideszi térben áll az, hogy egy egyenes vonaltól egyenlő távolságban elhelyezkedő pontok sokasága szintén egyenes vonal. Ezért hát Szabit is csak megismételte Ptolemaiosz hibáját.
Szabit elemzése a térfogalom mély rétegeit érinti. Eukleidész geometriai rendszere attól függ, hogy az ember képes-e alakzatot elmozgatni és egymással fedésbe hozni. Ezzel az eljárással ellenőrizhető ugyanis az egybevágóság és a hasonlóság. Képzeljük el, hogy egy háromszöget akarunk mozgatni. Ennek természetes módja, hogy fogjuk a három oldalt, melyek mindegyike egy szakasz, és mindet egyenlő távolságra és egyenlő irányban mozgatva újra letesszük. De ha a pontsokaság, ami egy szakasztól egy megadott távolságra van, nem alkot ismét egy szakaszt, ez azt jelenti, hogy az áthelyezett háromszög oldalai nem is lesznek egyenes vonalak, alakja meg fog változni. Lehetséges, hogy a térnek ilyen tulajdonságai vannak? Sajnos, ahelyett, hogy ezt a gondolatmenetet folytatta volna, Szabit az áthelyezés eredményét „bizonyítéknak” tekintette arra vonatkozólag, hogy az egyenlő távolságra eltolt szakaszokra vonatkozó feltételezése helyes.
Nem sokkal Szabit után a tudományok iszlám támogatása meggyengült. Az egyik helyen egy tudós még panaszkodott is arról, hogy ahol ő él, a matematikusok megölése teljesen legális dolog. (Ez valószínűleg nem a szamárságok megvetésének, hanem inkább a matematikusok asztrológiát tanulmányozó szokásának volt köszönhető, ami a történelem folyamán gyakran talált kapcsolatot a fekete mágiával. Manapság ez mulatságosan hangzik, de akkoriban nagyon veszélyes dolognak tartották.)
Amikor a keresztény kalendáriumban az évek száma közel kétszer annyi volt, mint Szabit idejében, Szabit és tanítványainak munkái újjáéledtek. Ez 1663-ban történt, amikor John Wallis angol matematikus előadásában Szabit egyik követőjére, Naszíraddin at-Tuszira hivatkozott.
Wallis 1616-ban született Ashfordban, Kentben. Amikor tizenöt éves volt, beleolvasott bátyja aritmetikakönyvébe és bizony igen fellelkesítette őt ez a téma. Noha folytatta hittudományi tanulmányait a cambridge-i Emmanuel College-ben, majd 1640-ben pappá szentelték, megőrizte a matematika iránti odaadását. Ez volt az angol polgárháború kora, I. Károly az angol parlament ellen folytatott, vallási felhangokkal zajló küzdelemének időszaka. Wallis mesterévé vált a titkos írásnak – üzenetek matematikai kódolásával és dekódolásával foglalkozott –, és e mesterségbeli tudásával a parlament híveit segítette. Állítólag ennek köszönhető, hogy 1649-ben felajánlották neki az Oxfordi Egyetemen a Savilian-féle geometriakatedrát, miután elődjét, Peter Turnert királypárti nézetei miatt eltávolították. Akárhogyan is történt, az Oxfordi Egyetem jól járt vele.
Turner sohasem volt több, mint a Canterbury érsek cimborája, aki minden politikai körből négyszöget csinált, de egyetlen árva matematikai cikket sem publikált. Wallis a Newtont megelőző kor vezető angol matematikusává lett és még magára Newtonra is lényeges hatást gyakorolt. Ma még a laikusok is (főleg a Lexus márkájú autók tulajdonosai) jól ismerik munkájának egy eredményét: ő vezette be a ∞ jelet a végtelen számára.
Wallis elgondolása az euklideszi geometria megreformálásáról abból állt, hogy Eukleidész ellenszenves párhuzamossági axiómáját helyettesíteni kell egy intuíción alapuló, nyilvánvaló másikkal, amit így lehet megfogalmazni:

Ha adott egy tetszőleges háromszög bármelyik oldala, akkor a háromszög akár felnagyítható, akár lekicsinyíthető úgy, hogy a kiválasztott oldal hossza tetszőleges lehet, de a háromszög szögei nem fognak változni.

[bookmark: _ednref117]Például, ha a háromszög mindegyik szöge 60°, és minden oldala egységnyi hosszú, akkor feltételezzük, hogy lehetséges olyan háromszög, amelynek mindegyik szöge szintén 60°, de oldalai tetszőleges hosszúságúak is lehetnek: például 10, 10, 10; vagy 1/10, 1/10, 1/10; vagy 10 000, 10 000, 10 000. Az olyan háromszögeket, amelyek oldalai arányosan nagyobbak vagy kisebbek, de a megfelelő szögeik ugyanazok, hasonló háromszögeknek nevezzük. Ha elfogadjuk Wallis axiómáját – és most nem törődünk néhány technikai részlettel, amelyek mind megoldhatók –, a párhuzamossági axiómát a Prókloszéhoz hasonlító okfejtéssel most már könnyű bebizonyítani3. A matematikusok soha nem fogadták el a Wallis-féle „bizonyítást”, mert csak az egyik axiómát helyettesítette a másikkal. Ám Wallis gondolatmenetének megfordítása egy meglepő megállapításhoz vezet: ha létezik olyan tér, amelyben a párhuzamossági axióma nem áll fenn, akkor ott nem léteznek hasonló háromszögek.
De ki törődik ezzel? Nos az a baj, hogy háromszögek mindenütt előfordulnak. Vágjunk ketté egy négyszöget az átlója mentén, és máris van két háromszögünk. Tegye a kezét a csípőjére és akkor a behajlított karja a törzsével egy háromszöget alkot. Valóban – bár minden ember teste különböző –, a testünk, és a legtöbb tárgy is, jó közelítéssel modellezhető háromszögekből álló hálózattal. Ez a 3D-s számítógépes grafika mögöttes alapelve. Ha a hasonló háromszögek nem léteznének, akkor a mindennapi életünk nagyon sok feltevése nem lenne igaz. Nézze csak meg a csinos öltönyt a ruházati katalógusban. A megrendeléskor jogosan feltételezzük, hogy ami majd a csomagban érkezik, az hasonlítani fog a képre, még ha sokkal nagyobb is lesz. Amikor kedvenc légitársaságával repül, azt a hitet táplálja magában, hogy a szárnyalak, ami oly jól működött a méretarányos modellek esetében, most is megfelelő tulajdonságú lesz, amikor egy óriási jet részét képezi. Hívjon egy építészt, hogy néhány új szobával bővítse ki a házát: azt várja, hogy a bővítést a tervrajzon fogja megítélni. Egy nem euklideszi térben ezek közül egyben sem bízhat. Sem a ruha, sem a repülőgép, sem az új hálószoba nem ússza meg alakváltozás nélkül.
Az lehetséges, hogy a matematikában léteznek ilyen furcsa terek, de lehetnek-e a valódi térnek ilyen tulajdonságai? Észrevettünk ilyesmit? Talán nem. A gyermek mosolyának 10%-os eltérése már nem kerülheti el a mama figyelmét. De 0,000 000 0001 százaléknyi? A kicsiny alakzatok esetében a nem euklideszi terek csaknem euklidesziek, márpedig mi az Univerzum parányi sarkában élünk. A kvantumelméletben például a fizikai törvények bizarr alakot öltenek, de csak a sokkal kisebb méreteknél, mint amilyenekkel a napi életünkben találkozunk. Hasonlóképpen a görbült terek is létezhetnek, csak annyira közelítően euklidesziek, hogy a normális földi életben mi nem érezzük a különbséget. És mégis, a fizikai elméletek számára a görbület következményei is óriási jelentőségűek (mint például a kvantumelmélet esetében).
A XVIII. század végére, a matematikusok a felfedezéseik alapján arra a következtetésre juthattak volna, hogy a nem euklideszi terek márpedig létezhetnek, és ha tényleg léteznek, akkor van valami különleges tulajdonságuk. Ehhez csupán más szemszögből kellett volna megítélni eredményeiket. Ehelyett a matematikusok inkább elkedvetlenedtek, mert nem tudták bizonyítani, hogy ezek a furcsa tulajdonságok ellentmondáshoz vezetnek. Ennélfogva a tér fogalma továbbra is euklideszi maradt.
A következő ötven év egy titkos forradalom időszaka volt. Különböző országokban fokozatosan új tértípusokat fedeztek fel, de ezeket vagy nem publikálták, vagy elkerülték a matematikus közösség figyelmét. A nem euklideszi geometria titkaira egészen addig nem vetődött fény, amíg a XIX. század közepén, a németországi Göttingenben elhunyt öregember dolgozatait át nem tanulmányozták. Addigra azonban mindazok, akik a titkokat feltárták, már szintén mind meghaltak.
[bookmark: tart19]15. Egy napóleoni hős

[bookmark: _ednref118]Göttingenben, 1855. február 23-án, az Eukleidész elleni támadás frontembere öregen, minden lélegzetvételért küzdve feküdt hideg ágyában1. Gyenge szíve már alig hajtotta vérét, tüdejét lassan elárasztotta a folyadék. Zsebórája még ketyegve mérte a földi életéből hátralévő időt. Egyszer csak megállt. Csaknem ugyanabban a pillanatban, amikor a szíve is. Ez valami olyan jelképes dolog volt, ami normális esetben csak egy regényíró fantáziájában születhet meg.
Néhány nap múlva az öreg embert eltemették édesanyja jeltelen sírja mellé. Halála után meglehetősen nagy pénzvagyont találtak a házában, elrejtve különböző helyeken, polcokon, fiókokban, szekrényekben, íróasztalon. A ház szerény volt, a parányi dolgozószobában csak egy kis asztal, szekrény és egy szófa volt, amit egyetlen lámpa világított meg. A kis hálószobában egyáltalán nem volt fűtés.
[bookmark: _ednref119][bookmark: _ednref120][bookmark: _ednref121][bookmark: _ednref122]Élete legnagyobb részében boldogtalan ember lehetett, igen kevés közeli baráttal, és mélyen pesszimista életfelfogással2. Évtizedeket töltött azzal, hogy az egyetemen tanított, ezt mégis „terhes és hálátlan tevékenységnek” tartotta3. Úgy érezte, hogy „halhatatlanság nélkül a világnak nincs értelme”4, mégsem tudta rávenni magát, hogy hívő legyen. Sok dicsősége ellenére mégis úgy vélte, hogy „a bánatok az örömöket százszorosan felülmúlják”5. Az Eukleidész elleni forradalom élharcosa volt, mégsem akarta, hogy ez kitudódjék. A matematika tudósainak szemében, Arkhimédésszel és Newtonnal együtt ő volt a világ történelmének egyik legnagyobb matematikusa.
Carl Friedrich Gauss Braunschweigben (Németország) született, 1777. április 30-án, ötven évvel azután, hogy Newton meghalt. Szegény sorból származott, egy nyomorúságos kisvárosból, amely 150 éve elvesztette vezető szerepét. Szülei a népességnek abba az osztályába tartoztak, amit német precizitással „félpolgároknak” neveztek. Édesanyja, Dorothea nem tudott írni-olvasni, szolgálóként dolgozott. Édesapja, Gebhard különféle szerényen fizetett szolgai munkákból élt, ami az árokásástól és a téglarakodástól egészen a helyi temetkezési vállalkozás számláinak kezeléséig terjedt. Gebhard Gauss kétkezi munkából élő és tisztességes ember volt.
Sok történet ismeretes Carl Gauss gyerekkoráról. Már akkor tudott számolni, amikor csak tanulta a beszédet. Elképzelhetjük azt a jelenetet, amikor a gyerek az utcai árus bódéja előtt megáll és így könyörög anyjának: „Éhes! Akarom!” Fizetés után viszont bőg, mert nem tudja még kimondani, hogy „becsapott harmincöt centtel!” Minden látszat szerint az ilyen történet nincs messze az igazságtól. A leghíresebb eset, amely a kis Gauss korán megmutatkozó tehetségéről szól, hároméves korában, egy szombat délután történt. Édesapja a munkások fizetési listáját adta össze. A számolás már eltartott egy ideje, és Gebhard nem vette észre, hogy fia figyeli őt. Tegyük fel, hogy Gebhardnak van egy két- vagy hároméves fia, akit Nicolainak hívnak. Mi történne ilyen esetben? Az, hogy Nicolai feldöntené a pohár tejet, rá a számolásra és ugyanazzal a lélegzettel ordítaná: „Bocs” és „kérek még tejet”. Carl ezzel szemben valami ilyet mondott: „Az összeadás hibás, az összeg…”
Sem Gebhard, sem Dorothea nem gyakorolta a gyerekkel az összeadást, tulajdonképpen senki sem tanította Carlnak az aritmetika rejtelmeit. Legtöbbünk számára ez a viselkedés körülbelül olyan természetesnek tűnne, mintha Nicolai hajnali kettőkor felülne ágyában és az ősi aztékok nyelvén kezdene beszélni, mintha beléköltözött volna – no, nem a sátán – egy legalább tízesztendős gyermek elméje. Carl szülei viszont az ilyenhez már hozzászoktak. Ekkorra már megtanult olvasni, teljesen egyedül.
Sajnos, Gebhard elgondolása nem az volt, hogy Carl tehetségét egy magántanár felkérésével támogassa, vagy hogy egy Montessori-iskolába írassa be. Azt meg lehet érteni, hogy a család szegény volt és Maria Montessori sem született meg még ekkor. Mégis, Gebhard módot találhatott volna arra, hogy fia tehetségét gondozzák. Ehelyett fiára bízta, hogy a heti fizetési listát ellenőrizze számtanilag, és ezzel a gyerekmutatvánnyal szórakoztatta barátait. Az ifjú Carl látása nem volt jó, és néha nem tudta rendesen elolvasni az összeadandó számjegyeket, amiket apja firkált a papírra. Túlságosan szégyenlős volt, hogy bármit is mondjon, Carl csak ült ott és beletörődött a kudarcba. Nemsokára Gebhard elküldte Carlt dolgozni délutánonként a lenszövőkhöz, hogy a család bevételét növelje.
[bookmark: _ednref123]Későbbi éveiben Gauss nyíltan lenéző volt apjával szemben, „uralkodni vágyó, faragatlan és javíthatatlan” embernek6 nevezte. Szerencsére talált a családban két másik embert, akik értékelték képességeit, édesanyját és Johann nagybátyját, Dorothea fivérét. Amíg Gebhard nem vette tekintetbe fiának adottságait és minden formális nevelést céltalannak tartott, Dorothea és Johann hittek a fiú adottságaiban és küzdöttek Gebhard ellenállásával szemben. Carl volt Dorothea büszkesége és öröme attól a pillanattól kezdve, hogy megszületett. Évekkel később, egy alkalommal Carl elhozta szerény otthonába kollégiumi társát, Bolyai Farkast, aki attól ugyan messze volt, hogy gazdag legyen, de mégis egy magyar nemesember volt. Dorothea félrehívta fia barátját és megkérdezte tőle, hogy Carl vajon tényleg olyan kiváló, mint mindenki mondja, és hogy mindez hova vezetheti őt. Bolyai azt válaszolta, hogy Carl a sorsa szerint Európa legnagyobb matematikusa lesz. Dorothea erre könnyekre fakadt.
Carl iskoláit hétéves korában kezdte el, a helyi általános iskolában. Ez nem volt olyan patinás, mint a La Flèche, a jezsuita iskola, ahova Descartes lépett be nyolcévesen, s ami később oly híressé vált. Gauss leírásai szerint ez az első iskola inkább „a mocskos börtön” és „a pokol kapuja” között mozgott. Ezt a mocskos börtönt, illetve a pokol kapuját egy Büttner nevezetű börtönőr/ördög/iskolamester vezette, akinek a nevelési módszere a „csináld ahogy mondtam vagy elverlek” lehetett. Az iskolában Carl csak a harmadik évben tanulhatta végre az aritmetikát, amire már kétéves korában is képes lett volna.
Az aritmetikaosztályban Büttner élvezte, hogy fiatal tanítványai matematikai érzékének serkentésére hatalmas számoszlopok összeadását adhatja fel. Büttner látszólag nem érezte magát méltónak arra, hogy ilyen szórakoztató feladatokat elvégezzen, ezért mindig úgy jelölte ki az összeadandó számokat, hogy könnyen maga is elvégezhesse a feladatot ilyen vagy olyan ötlet alkalmazásával, amit viszont nem kegyeskedett osztályával ismertetni.
Egyik nap Büttner feladta, hogy összegezzék a számokat 1-től százig. Abban a pillanatban, amikor Büttner befejezte a probléma feladását, a legfiatalabb tanítványa, Carl megfordította palatábláját. A többiek még egy órán át küszködtek a feladattal. Amikor végül Büttner ellenőrizte a táblákat, azt találta, hogy az ötven tanulót számláló osztályból egyedül Carl végezte el a feladatot helyesen, pedig Carl tábláján semmi jele nem volt a számításnak. Nyilvánvaló, hogy kitalálta az összegezés képletét és fejben számította ki a választ.
Sokak szerint Gauss erre úgy jött rá, hogy észrevette, mi történik, ha nem egy, hanem két számoszlopot adunk össze az egészekből egytől százig. Akkor úgy rendezhetjük a dolgot, hogy a 100 és 1, 99 és 2, 98 és 3 stb. legyen az összeadandó. Így összesen 100 tagot kapunk, mindegyik értéke 101. Így az 1 és 100 között minden egész összege fele annyi, mint 100-szor 101, vagyis 5050. Ez speciális esete annak a képletnek, amit már a püthagoreusok is ismertek. Valójában ez volt a titkos társaságuk jelszava: egytől valamilyen számig a számok összege egyenlő a számsorozat utolsó számának és az annál eggyel nagyobb szám szorzatának a felével.
[bookmark: _ednref124]Büttner teljesen elképedt. Bár a keze gyorsan eljárt a rendetlenkedők esetében, azért a zsenit mégis értékelte. Gauss, bár tanított matematikát kollégiumban, sohasem verte meg a gyerekeket. Ennek ellenére Büttner viselkedése a zsenivel szemben és megvetése azokkal szemben, akiknek a zsenialitás nem adatott meg, mély nyomokat hagyott benne. Évekkel később Gauss utálattal írt három osztálytársáról: „az egyikük csak közepesen felkészült, a másikuk kevésbé, mint közepesen, a harmadik pedig mind a felkészültségben, mind a képességben hiányos…”7. E három iskolatársról adott jellemzése általában mutatja a tanítással való kapcsolatát. Ami viszont a tanítványokat illeti, legtöbbjük egyformán megvetette tanítói képességét.
Büttner saját pénzén rendelte meg Hamburgból a lehető legfejlettebb aritmetikakönyvet. Talán Carl végre megtalálta azt a mentort, akit oly kétségbeesetten keresett? Carl hamar elolvasta a könyvet. Sajnálatos módon a könyvben nem talált semmi kihívást. Ezen a ponton Büttner, aki ugyanolyan ügyes szónok volt, mint matematikus, felkiáltott: „Nem tudok neki mit tanítani tovább”, és feladta, feltehetőleg azért, hogy minden figyelmét a kevésbé tehetséges tanulók verésére fordíthassa, akik már bizonyára elhanyagoltnak érezhették magukat.
Büttner azonban mégsem hagyta Carl zsenialitását teljesen figyelmen kívül. Utasította tehetséges, tizenhét éves segédtanítóját, Johann Bartelst, hogy nézze meg, mit lehet tenni. Abban az időben Johann lúdtollkészítéssel foglalkozott és Büttner tanítványait próbálta használatukra megtanítani. Büttner tudta, hogy Bartels szenvedélyesen szereti a matematikát. Hamarosan a kilencéves Carl és a tizenhét éves Johann együtt tanult, együtt javították a tankönyvek korrektúráit, és segítették egymást, hogy új fogalmakkal ismerkedjenek. Eltelt néhány év. Gauss is tizenéves lett. Bárki, akinek volt szerencséje egy tizenéveshez, aki ismeri a tizenéveseket, aki volt tizenéves, az aztán tudja, hogy ez problémát jelent. Gauss esetében csak az volt a kérdés, hogy kinek jelent bajt?
Manapság az, hogy valaki egy lázadó tinédzser, azt jelentheti, hogy egész éjjel kimarad egy kislánnyal, akinek a nyelvén egy gyémánttű van átszúrva. Gauss idejében a testátszúrást még csak a harctereken gyakorolták, az erkölcsök elleni lázadás viszont már akkor is bevett szokás volt. A korszak nagy német intellektuális mozgalma a „Sturm und Drang”, a „vihar és feszültség” volt.
Ha egy német szociális mozgalom a zászlajára tűzi a „vihar” szót, az ember jobban teszi, ha óvatos marad, de ebben az esetben erre nem volt szükség, mert olyan személyiségek voltak a vezető alakok, mint Goethe és Schiller, nem pedig Hitler és Himmler. A mozgalom az egyéni zsenialitást és az elfogadott szabályok elleni lázadást hirdette. Noha Gauss nem volt igazán tagja ennek a mozgalomnak, azonban zseni volt és a maga módján ő is felrúgta a konvenciókat: nem a szülei vagy a politikai rendszer ellen lázadt, hanem Eukleidész ellen.
Gauss tizenkét éves volt, amikor elkezdte olvasni Eukleidész Elemek című művét. Figyelme, mint másoké is, főleg a párhuzamossági axiómára összpontosult. Kritikája új és eretnek volt. Elődeivel szemben Gauss nem akart elfogadhatóbb formát találni a posztulátumnak, s nem is akarta szükségtelenné tenni azáltal, hogy a többiből bebizonyítja. Ehelyett inkább érvényességét kérdőjelezte meg. Gauss kíváncsi volt rá, lehetséges-e, hogy a tér valójában görbült.
Tizenöt éves korára Gauss a történelem első olyan matematikusa lett, aki belátta, hogy létezhet egy olyan logikailag konzisztens geometria, amelyben Eukleidész párhuzamossági axiómája nem áll fenn. Addig még természetesen hosszú az út, ameddig be is lehet ezt bizonyítani vagy meg lehet alkotni ezt az új geometriát. Gauss tehetsége ellenére tizenöt éves korában még fennállott annak a veszélye, hogy belőle is csak egy árokásó lesz. Gauss és a tudomány szempontjából szerencse, hogy barátja, Bartels ismert egy fickót, aki szintén ismert egy másik fickót, aki viszont Ferdinánd volt, Brunswick hercege.
Ferdinánd Bartels révén hallott erről az ígéretes fiatalemberről, aki egy matematikai zseni. A herceg felajánlotta, hogy fizeti Gauss kollégiumi költségeit. Édesapja, Gebhard Gauss ugyan őszintén hitte, hogy az előbbre jutás egyetlen módja, a jó árokásás. Itt Dorothea, aki képtelen volt elolvasni még a címlapját is azoknak a könyveknek, amiből fiának tanulnia kellett, határozottan állást foglalt. Fia mellé állt, és Carlnak megengedték, hogy elfogadja a herceg ajánlatát. Tizenöt éves korában így Carl a helyi gimnázium tanulója lehetett, ami nagyjából megfelel a mai középiskolának. 1795-ben, tizennyolc évesen bejutott a Göttingeni Egyetemre.
A herceg és Gauss végül jó barátok lettek. A herceg folytatta Carl támogatását még a kollégium után is, de Gaussnak tudnia kellett volna, hogy ez nem tarthat örökké. A szóbeszéd azt tartotta, hogy a herceg bőkezűsége gyorsan emészti vagyonát. Mindenesetre a herceg már a hatvanas éveiben járt, és nemigen lehetett arra számítani, hogy utóda is ennyire adakozó lesz. Ennek ellenére a következő tizenkét év Gauss számára intellektuális szempontból a legnagyobb hatású volt.
[bookmark: _ednref125]1804-ben szerelmes lett egy kedves és vidám hölgybe, akit Johanna Osthoffnak hívtak. Hívó szavára Gauss, aki az életben oly sokszor arrogánsnak látszott és fenségesen magabiztos volt, alázatosnak és önmagát lekicsinylőnek mutatkozott. Johannáról így írt barátjának, Bolyainak8:

„Már három napja, hogy ez az angyal, aki túlságosan mennyei e föld számára, a jegyesem. Engem túláradó boldogság tölt el… Kedvesem fő jellemvonása a nyugodt, jámbor lélek, egyetlen cseppnyi keserűség vagy kedvetlenség nélkül. Oh, hát sokkal jobb mint én. … Sohasem reménykedtem ekkora üdvösségben, hiszen én magam sem csinos, sem gáláns nem vagyok, és semmi mást nem ajánlhatok fel neki, mint egy tiszta szívet, amely odaadó szerelemmel teli. Engem kétségbe ejtett, hogy szerelemre találhatok-e valaha”.

Carl és Johanna 1805-ben kötöttek házasságot. A következő évben megszületett fiuk, Joseph, majd 1808-ban leányuk, Minna. Boldogságuk azonban nem volt tartós.
1806 őszén a Napóleon ellen vívott csatában egy muskétás golyója oltotta ki a herceg életét. Gauss csak állt göttingeni ablakában, és nézte, amint halálra sebzett barátját és jótevőjét egy szekérre fektetve hozzák haza. Elég ironikus körülmény, hogy Napóleon később azért kímélte meg Göttingent a pusztítástól mert Gauss, szerinte „minden idők legnagyobb matematikusa él ott”.
A herceg halála természetesen anyagi nehézséget okozott Gauss családjának. De ez csak a kisebbik gond volt. Az elkövetkező években Carl édesapja és az őt támogató Johann nagybácsi is meghalt. Később, 1809-ben Johanna életet adott harmadik gyermeküknek, Louisnak. Már Minna születése is nehezen ment, de Louis esetében mind Johanna, mind a gyermek súlyosan megbetegedett. Egy hónappal később Johanna meghalt. Nem sokkal később a baba is elhunyt. Igen rövid idő alatt Carl életében tragédia tragédiát követett. És ezzel még nem szakadt vége a megpróbáltatásoknak: Minna is elhunyt kicsi korában.
[bookmark: _ednref126]Gauss hamarosan újra megházasodott és még három további gyermeke lett. De az élet – Johanna halála után – már nem hozott sok örömöt. Ezt írta Bolyainak9: „Igaz, hogy életemben sok mindent elértem, amit a világ elismer. De, kedves barátom, a tragédia vörös szalagként fonta át az életemet”. Nem sokkal saját halála előtt Gauss egyik unokája a nagypapa iratai között talált egy levelet, amin könnyek nyoma látszott. Ez állott a levélben:

„Egyedül kóválygok a körülöttem élő boldog emberek között. De ha pár pillanatra el is felejtetik velem bánatomat, az kettős erővel jön vissza… Még a derült égbolt is csak elszomorít…”
[bookmark: tart20]16. Az ötödik posztulátum összeomlik

Gausst nem tekintenék a valaha is élt matematikusok legnagyobbikának, ha nem gyakorolt volna mély benyomást a matematika több területén is. Ennek ellenére egyesek csak átmeneti hatású alaknak tartják, aki a jövendő generációk számára nem rakta le az alapokat, hanem csak a Newton által megkezdett fejleményeket vitte tovább. Ez nem igaz a tér geometriájával kapcsolatos munkájára, ami ténylegesen legalább egy évszázadon át látta el munkával mind a matematikusokat, mind a fizikusokat. Forradalmának csak egyetlen dolog állt az útjában: munkája eredményeit titokban tartotta.
[bookmark: _ednref127]Amikor Gauss 1795-ben Göttingenbe érkezett, élénk érdeklődést tapasztalt a párhuzamossági posztulátummal kapcsolatban. Egyik tanára, Abraham Kaestner összegyűjtötte az irodalmat a posztulátum történetéről. Kaestner egyik tanítványa, Georg Klügel disszertációt készíttetett az ötödik posztulátum huszonnyolc sikertelen bizonyításának elemzéséről. Azonban sem Kaestner, sem bárki más nem volt elég nyitott ahhoz, amit Gauss már gyanított: hogy a posztulátum esetleg nem is igaz. Kaestner még meg is jegyezte, hogy őrült az, aki a posztulátum érvényességét kétségbe vonja. Gauss megtartotta a gondolatait magának, jóllehet, egyszer kifejtette nézeteit erről egy tudományos lapban, amit csak negyvenhárom évvel halála után fedeztek fel. Később Gauss bírálta Kaestnert1, aki belekontárkodott az irodalomba is, és „a költők között vezető matematikusnak, a matematikusok között vezető költőnek” nevezte.
[bookmark: _ednref128]1813 és 1816 között, miközben matematikai csillagászatot tanított Göttingenben, Gauss végül megtette azt a döntő áttörést, ami Eukleidész óta váratott magára. Kidolgozta azokat az egyenleteket, amelyek a háromszög alkotóelemeit egy új, nem euklideszi térben kapcsolják össze, és amit ma hiperbolikus geometriának nevezünk. 1824-re Gauss már nyilvánvalóan az egész elméletet kidolgozta. Abban az évben november 6-án Gauss így írt F. A. Taurinusnak2, egy jogásznak, aki meglehetősen intelligensnek bizonyult a matematikában: „Az a feltevés, hogy (egy háromszögben) a szögek összege kevesebb mint 180°, egy különleges geometriához vezet, ami egészen eltérő a mienkétől (az euklideszitől), de abszolút konzisztens, és amit egészen kielégítő módon én építettem ki magamnak”. Gauss soha nem hozta ezt nyilvánosságra, és azon erősködött, hogy se Taurinus, se mások ne publikálhassák ezt a felfedezést. Hogy miért? Gauss már nem az egyháztól félt, hanem annak maradványától: a világi filozófusoktól. Gauss idejében a természettudomány és a filozófia még nem határolódott el teljesen egymástól. A fizikát akkoriban még „természetfilozófia” néven ismerték. A természettudományos gondolkodást már nem büntették halállal, mégis a hitből eredő, vagy egyszerű intuícióból származó gondolatokat gyakorta egyformán érvényesnek tekintették. Gauss különösen jól mulatott azon, hogy mekkora divat lett az „asztaltáncoltatás”, amikor az egyébként művelt emberek egy csoportja egy asztal köré ül és kezeit ívelt formában az asztalra helyezi. Úgy körülbelül félóra múlva az asztal, mintha megunná az embereket, elkezd mozogni, forgolódni. Ezt a feltételezések szerint a holt lelkek pszichés üzenetének tartották. Az, hogy a holt lélek mit is tudna üzenni, nem egészen világos, de a nyilvánvaló konklúzió az, hogy a meghalt emberek azt szeretik, ha az asztal a távolabbi fal mellé megy. Egy alkalommal az egész heidelbergi jogi kar követte az asztalt, amint az a szobán át mozgott. Az ember elképzeli, hogy egy csomó szakállas, fekete ruhás jogász ül egymás mellett és küzd, hogy kezét a kijelölt folt felett tartsa, miközben az asztal mozgását valami okkult állati magnetizmusnak tulajdonítja inkább, mint kezük mozgató hatásának. Gauss világában ez elképzelhető volt, az a gondolat azonban, hogy Eukleidész tévedett, viszont nem.

* * *

[bookmark: _ednref129]Gauss túl sok tudóstársát látta belebonyolódni időt rabló vitákba kisebb elmékkel, semhogy megpróbáljon akár eggyel is kikezdeni. Így például Wallis, akinek munkásságát Gauss nagyra tartotta, annak idején keserves vitába keveredett Thomas Hobbes angol filozófussal azon, hogy mi a legjobb módja a kör területe kiszámításának. Hobbes és Wallis3 több mint húsz éven át nyilvános sértegetéseket intéztek egymás ellen olyan kiáltványok megírásával, mint pl. Az abszurd geometria jelei, Doctor Wallis vidékies nyelvezete stb. Ezt Gauss megbocsáthatatlan időpocsékolásnak tekintette.
[bookmark: _ednref130][bookmark: _ednref131][bookmark: _ednref132]Gauss leginkább az 1804-ben elhunyt filozófus, Immanuel Kant követőitől félt4. Termetre Kant görnyedt, alig 155 cm magas, betegesen deformált alkat volt. 1740-ben csatlakozott a Königsbergi Egyetemhez, mint teológiai hallgató, de később úgy találta, hajlama inkább a fizika és a matematika felé húzza. Tanulmányai végeztével filozófiai műveket kezdett publikálni, később magántanító és keresett előadó lett. Úgy 1770 táján kezdett el dolgozni A tiszta ész kritikája című művén, amit 1781-ben jelent meg és hamarosan leghíresebb könyve lett. Megfigyelte, hogy az akkori idők geométerei a józan észt és a grafikus ábrákat használták bizonyításaikban. Kant hitte, hogy a szigorúság nélkülözhető, és helyettesíthető az intuícióval5. Gauss ellenkező véleményen volt – a szigor szükséges6 és a legtöbb matematikus ebben inkompetens.
[bookmark: _ednref133][bookmark: _ednref134]A tiszta ész kritikájában Kant az euklideszi teret „a gondolkodás kikerülhetetlen szükségességének” nevezi. Gauss nem utasította el azonnal Kant munkáját7. Előbb áttanulmányozta, csak azután vetette el. Állítólag Gauss ötször olvasta el A tiszta ész kritikáját, és próbálta megérteni. Mindez óriási erőfeszítést jelent még egy olyan ember számára is, aki az orosz és a görög nyelvet kevesebb erőfeszítéssel sajátítja el, mint legtöbbünk, akik kínkeservesen próbáljuk kibogarászni a Χωριατικη Σαλάτα8 jelentését egy athéni étlapon. Gauss küzdelme sokkal érthetőbbé válik, ha figyelembe vesszük, milyen tisztán fogalmazott Kant az analitikus és a szintetikus ítéletek megkülönböztetésével kapcsolatban:

[bookmark: _ednref135]„Minden ítéletben, amelyben a szubjektumnak a predikátumhoz való viszonyára gondolunk (csak állító ítéleteket véve megfontolás tárgyává most, a következő alkalmazás a tagadó ítéletekre vonatkozóan könnyen megtehető), ez a viszony két különböző módon lehetséges. Vagy a predikátum magához az A szubjektumhoz tartozik, mint valami, ami ebben az A fogalomban (rejtve) van; vagy az A fogalmon kívül van, jóllehet valóban kapcsolatban van vele. Az első esetben az ítéletet analitikusnak nevezem, a másik esetben szintetikusnak”9.

[bookmark: _ednref136]Manapság a matematikusok és a fizikusok nem sokat törődnek azzal, hogy a filozófusok mit gondolnak elméleteikről. Amikor megkérdeztem Richard Feynman amerikai fizikust10, mit gondol a filozófia területéről, olyan tömör választ adott, amely csak két betűből állt, egy „b”-ből és egy másikból, amellyel általában a többes számot képezik. Gauss viszont komolyan vette Kant munkáját. Azt írta, hogy az analitikus és szintetikus ítéletek fenti megkülönböztetése „olyan valami, ami vagy lassan elkopik és trivialitáshoz vezet, vagy pedig hamis”. Végül mégis megosztotta ezeket a gondolatokat, miként a nem euklideszi térrel kapcsolatos elméletét is, de csak azokkal, akikben megbízott. A történelem furcsa fordulata, hogy bár Gauss nem publikálta 1815-1824 között született áttörő eredményeit, körülbelül ugyanebben az időben, két másik ember, aki valahogyan kapcsolatban állott vele, megtette ezt.

* * *

[bookmark: _ednref137]1823. november 23-án Bolyai János, Gauss régi jó barátjának, Bolyai Farkasnak fia azt írta édesapjának, hogy „a semmiből egy újj más világot teremtettem”11 (Bolyai János helyesírása – a ford. megj.) – felfedezte a nem euklideszi teret. Még ugyanabban az évben, az oroszországi Kazanyban Nyikolaj Ivanovics Lobacsevszkij rájött, hogy mik a következményei annak, ha a párhuzamossági posztulátum megsérül. Eredményét egy nem publikált tankönyvben írta le. Lobacsevszkij tanára az a Johann Bartels, aki akkoriban a Kazanyi Egyetemen volt professzor. Mind Bolyai Farkas, mind Bartels hosszú ideig érdeklődtek a nem euklideszi terek iránt és rávették Gausst arra, hogy vitassa meg velük a témát.
[bookmark: _ednref138]Mindez csupán véletlen egybeesés lenne? A zseniális Gauss felfedez egy elméletet és boldogan tárgyalja barátaival, de nem hajlandó publikálni. Ezután hamarosan a barátok és a barátok rokonai kiállnak és azt állítják, hogy ugyanazt a nagy felfedezést tették. Enyhén szólva gyanús. Ez mindenesetre elegendő volt arra, hogy Lobacsevszkijről egy gyanúsító hangvételű dalocska szülessen12: „Plagizálj, ne hagyd, hogy más munkája elkerüljön, ne várj…” Ennek ellenére ma a legtöbb tudománytörténész meg van róla győződve, hogy inkább csak Gauss szellemisége, nem pedig munkájának ismerete volt az, ami megihlette a tanítványokat, és sem Bolyai, sem Lobacsevszkij nem tudott egymás erőfeszítéseiről – legalábbis az indulás pillanatában.
Sajnos, senki más sem tudott. Amikor ezek a teljességgel ismeretlen matematikusok meg-megnyilatkoznak, senki sem figyel oda! Nem segített az sem, hogy Lobacsevszkij végül nyilvánosságra hozta munkáját, igaz, hogy egy ismeretlen, orosz nyelvű lapban, a Kazanyi Hírnökben. Az ifjú Bolyai műve, a Scientia Spatii sem járt nagyobb szerencsével, ami apjának egyik könyvében, a Tentamen függelékében jelent meg. Tizennégy év is eltelt, mire Gauss rábukkant Lobacsevszkij cikkére. Hiába írt neki Bolyai Farkas fia szép eredményéről, Gauss nem volt hajlandó publikálni egyik cikket sem, mert attól félt, hogy viták kereszttüzébe kerül. Egy „kedves” gratuláló levelet küldött Bolyainak (megemlítette benne, hogy már ő is hasonló eredményekre jutott), és kegyesen javasolta Lobacsevszkijt a Göttingeni Királyi Tudományos Társaság levelező tagjául (azonnal be is választották 1842-ben).
[bookmark: _ednref139]Bolyai János nem publikált több matematikai dolgozatot13. Lobacsevszkij sikeres hivatali pályát futott be, végül a Kazanyi Egyetem elnöke lett. Bolyai és Lobacsevszkij mindketten feledésbe merültek volna, ha nem tartották volna a kapcsolatot Gauss-szal. A történelem iróniája, hogy éppen Gauss halála volt az a körülmény, ami végül is kirobbantotta a nem euklideszi forradalmat.
[bookmark: _ednref140]Gauss aprólékos krónikása volt a körülötte zajló dolgoknak. Különös élvezetet talált a különleges adatok összegyűjtésében14, pl. elhunyt barátai életének hossza napokban, vagy a lépések száma azokhoz a helyekhez, amiket szeretett meglátogatni az obszervatóriumban, ahol dolgozott. Halála után a történészek átrágták magukat levelezésein és feljegyzésein. Ott aztán felfedezték kutatásait a nem euklideszi térről, de megtalálták Bolyai és Lobacsevszkij munkáit is. 1867-ben mind Bolyai, mind Lobacsevszkij cikke megjelent a Richard Balzer nagy hatású Elemente der Matematik (A matematika elemei) című könyvének második kiadásában. Hamarosan e cikkek alapvető munkának számítottak mindazok számára, akik az új geometriákon dolgoztak.
1868-ban Eugenio Beltrami olasz matematikus egyszer s mindenkorra nyugvópontra hozta a párhuzamosok posztulátuma bizonyításának kérdését: bebizonyította ugyanis, hogy ha az euklideszi geometria konzisztens matematikai struktúra, akkor ilyeneknek kell lenniük az imént felfedezett nem euklideszi tereknek is. Azt hogy az euklideszi geometria maga konzisztens-e, azt mint majd látni fogjuk, mindeddig sem bebizonyítani, sem pedig megcáfolni nem sikerült senkinek.
[bookmark: tart21]
17. Elveszve a hiperbolikus
térben







Mi is a nem euklideszi tér? Az a tér, amit Gauss, Bolyai és Lobacsevszkij felfedezett: a hiperbolikus tér, vagyis az a tér, amelyet akkor kapunk, ha a párhuzamossági axiómát egy másikkal helyettesítjük. Ez pedig úgy hangzik, hogy bármely egyeneshez, egy az egyenesen kívül fekvő ponton át nemcsak egyetlenegy, hanem több párhuzamos is húzható. Ennek egyik következménye az, hogy egy háromszög szögeinek összege mindig kisebb, mint 180°. A különbséget Gauss Taurinusnak írt levelében szögeltérésnek nevezte. Egy másik érdekesség, amire már Wallis is rájött, hogy nem léteznek hasonló háromszögek. A két állítás kapcsolatban van egymással, mert a szögeltérés a háromszög nagyságával változik. Nagy háromszögek esetén a szögeltérés nagyobb, a kisebb háromszögek viszont sokkal inkább hasonlítanak az euklidesziekre. Hiperbolikus térben az euklideszi alak megközelíthető, de soha el nem érhető – akárcsak a fény sebessége, vagy az emberek ideális testsúlya.
Egy egyszerű axiómában tett parányi kis változtatás a párhuzamosok posztulátumának olyan lavináját indította el, amely végigsöpört a térelméleten és megváltoztatta mindazon euklideszi tételeket, amelyeknek köze volt a tér alakjához. Olyan volt ez, mintha Gauss kicserélte volna Eukleidész ablakát egy torzító lencsére.
[bookmark: _ednref141][bookmark: _ednref142]Sem Gauss, sem Lobacsevszkij, sem Bolyai nem fedeztek fel olyan egyszerű módszert, amivel szemléltetni lehetne ezt az új teret. Ezt Eugenio Beltrami, majd egyszerűbb alakban Henri Poincaré, a matematikus, fizikus és filozófus, mellesleg a jövőbeli francia köztársasági elnök, Raymond Poincaré első unokatestvére adta meg. Henri a kevésbé híres Poincaré, de egyik mondását mindmáig emlegetik1: „matematikusnak születni kell”. A klisé megszületett és Henri népszerű legendája biztosítva volt. Henri 1880-as években végzett munkájában a hiperbolikus tér egy konkrét modelljét definiálta2, ez azonban az akadémiai körökön kívül kevéssé ismeretes.
Amikor Poincaré megalkotta ezt a modellt, akkor az olyan alapfogalmakat, mint az egyenes és a sík, konkrét mennyiségekkel helyettesítette, majd ezek segítségével értelmezte a hiperbolikus geometria axiómáit. Elfogadható ugyanis, hogy lefordítsuk a tér nem definiált fogalmait, mint a görbék vagy akár az élelmiszerek, egészen addig, amíg az axiómákból nyert jelentésük jól definiálható és konzisztens. A nem euklideszi síkot mint egy zebra felszínét modellezhetjük, a szőrtüszőit pontoknak, csíkjait vonalaknak tekinthetjük egészen addig, amíg ezek az axiómák konzisztens fordításához vezetnek. Ha tetszik, felidézhetjük Eukleidész első posztulátumát a zebratérre alkalmazott formájában:

1. Ha adott két tetszőleges szőrtüsző, akkor a csíkszakasz meghúzható úgy, hogy végpontjai a szőrtüszők legyenek.

Ez a posztulátum azonban nem áll fenn a zebratérben: a zebra csíkjai vastagok és csak egy irányban haladnak. Két szőrtüsző, amelyek egy csík mentén ugyan hasonló helyzetben vannak, de mivel oldalirányban kissé el vannak tolódva egymáshoz képest a csík mentén, így nem lehetnek semmiféle csíkdarab végpontjai. Poincaré modelljében azonban nem voltak zebrák. Inkább egy palacsintára emlékeztet.
[bookmark: _ednref143]Poincaré modelljének működése tehát a következő: a végtelen síkot egy véges koronggal helyettesítjük, amely végtelenül vékony és tökéletes kör határolja. A „pontok” olyan dolgok, amiket már Descartes óta pontoknak tekintenek: helyzetek, pozíciók, mint a porcukor szemcséi. Poincaré vonalai „olyan körívek, amelyek a korong határát merőlegesen metszik”3. Annak érdekében, hogy ezeket a vonalakat megkülönböztessük a vonalról alkotott intuitív elképzelésünktől, ezeket a vonalakat „Poincaré-vonalaknak” fogjuk nevezni.
Miután megalkotta ezt a modellt, Poincarénak értelmeznie kellett azoknak a geometriai fogalmaknak a jelentését is, amiket erre alkalmazni kell. Az egyik legfontosabb fogalom a kongruencia (egybevágóság) volt, az alaktartás szörnyű fogalma, amit Eukleidész utasítása szerint úgy ellenőriztünk, hogy az alakokat egymásra fektettük. Mint negyedik „általános fogalom” ez így szerepelt Eukleidésznél:

4.	Az egymással egybevágók egyenlőek egymással.

Amint láttuk, a testeknek az a képessége, hogy a térben torzulásmentesen eltolhatók, csak akkor garantálható, ha a párhuzamossági posztulátum euklideszi alakját tételezzük fel. Így a 4. általános fogalom alkalmazásával a kongruenciára (egybevágóságra) egy tiltás jelenik meg a nem euklideszi geometriában. Poincaré szerint ennek értelmezéséhez a hosszúság- és a szögmérés rendszerének a definíciójára van szükség. Két alak akkor lenne egybevágó, ha oldalaik egyenlőek és a két-két oldaluk közti szög is egyenlő. Ez nyilvánvalónak látszik, nem? No de a dolog nem ilyen egyszerű!
A szögmérés definíciója egyszerű és világos. Poincaré két Poincaré-vonal közti szög definícióját úgy adta meg, hogy az egyenlő a metszéspontjukhoz tartozó érintők közti szöggel. A hossz vagy távolság definíciójáért viszont már keményen meg kellett dolgoznia. Az ember azt várná, hogy ezek meghatározásakor komoly nehézségekbe ütközött, mert egy végtelen síkot kellett egy véges tartományba belezsúfolnia. Idézzük csak fel a 2. posztulátumot:

2. Az egyenes korlátlanul meghosszabbítható.

Nyilvánvaló, hogy a távolság szokásos definícióját alkalmazva ez a posztulátum nem volna fenntartható a korongon. Ám Poincaré úgy definiálta újra a távolságot, hogy amint az Univerzum széléhez közeledünk, a tér összenyomódik, ami a véges területet végtelenné teszi. Ez persze egyszerűnek hangzik, de Poincaré nem tudta önkényesen újra definiálni a távolságot ahhoz, hogy elfogadható legyen, mert az új definíciónak még sok más követelményt is ki kellett elégítenie. Így például két különböző pont közti távolságnak mindig nagyobbnak kell lennie zérusnál. A Poincaré által választott pontos matematikai alakban a két tetszőleges pontot olyan Poincaré-vonallal kellett összekötnie, ami a két pont között a lehető legrövidebb utat teszi meg (az ilyen vonalat geodetikus vonalnak hívjuk), pontosan ugyanúgy, ahogyan az euklideszi térben két pont között a legrövidebb út az egyenes vonal.
Ha megvizsgáljuk az összes geometriai alapfogalmat, ami a hiperbolikus tér definíciójához szükséges, azt találjuk, hogy a Poincaré-modellben mindegyik konzisztens értelmezést kap. Talán a legérdekesebb az lesz, ha a híres párhuzamossági axiómán verifikáljuk ezt az állítást. A párhuzamossági axióma hiperbolikus verziója, amit itt a Poincaré-modellre a Playfair-féle alakban adunk meg, így hangzik:

Ha adott egy Poincaré-vonal és egy pont, amely azon a Poincaré-vonalon kívül fekszik, akkor sok más Poincaré-vonal van, amely ezen a külső ponton áthalad és nem metszi az adott Poincaré-vonalat.

A túlsó oldalon lévő ábra mutatja, hogyan lehetséges ez.
A hiperbolikus tér Poincaré-modellje egy olyan laboratórium, amely lehetővé teszi, hogy néhány szokatlan tételt és tulajdonságot bemutassunk, aminek felfedezésén korábban oly keményen dolgoztak a matematikusok. Tegyük fel, hogy megkísérelünk egy derékszögű négyszöget rajzolni, ami nem is létezik a nem euklideszi térben! Először rajzoljunk egy Poincaré-alapvonalat. Majd az alapvonal ugyanazon oldalán húzzunk két Poincaré-vonaldarabot, amelyek az előbbire merőlegesek. Végül kössük össze ezt a két vonaldarabot egy harmadikkal, ami, miként az alapvonal, merőleges mindkettőre. Ez lehetetlen! A Poincaré-világban nincsenek derékszögű négyszögek!
Mit vitt véghez Poincaré mindezzel? Az ember elképzelheti, amint néhány szemüveges matematikus a Párizsi Egyetem szemináriumán udvariasan megtapsolja „a kis okos” Henri előadását. Talán még meg is hívják az előadás után egy abszintra vagy még inkább egy palacsintára, amelyre vékony sugárban öntik a lekvárt, derékszögű négyszöget rajzolva. De hát miért akar valaki – úgy egy évszázaddal később – könyvet írni erről a dologról, vagy 
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Párhuzamos vonalak hiperbolikus térben és euklideszi térben

pedig miért olvassa ön, az intelligens olvasó, akinek sok más dolga van, ezt a történetet?
Mert most jön a csattanó: a Poincaré-modell nemcsak a hiperbolikus tér egy modellje, hanem ez maga a hiperbolikus tér (igaz, itt csak két dimenzióban). A matematika nyelvén ez azt jelenti, hogy a matematikusok bebizonyították: a hiperbolikus sík minden matematikai leírása izomorf – ez a matematikusok szójárása szerint azt jelenti: ugyanaz. Ha a mi terünk hiperbolikus lenne, akkor pontosan úgy viselkedne, mint a Poincaré-modell (igaz, három dimenzióban).

* * *

[bookmark: _ednref144]Pár évtizeddel a hiperbolikus tér felfedezése után a nem euklideszi terek egy újabb típusára is fény derült: ez az elliptikus tér. Az elliptikus tér az, amit akkor kapunk, ha feltételezzük a párhuzamossági axióma másik sérülését: azt, hogy egyáltalán nem léteznek párhuzamos vonalak (vagyis a sík minden egyenese metszi egymást). Két dimenzióban ezt a tértípust már a görögök, és Gauss is ismerték és különböző összefüggésekben tanulmányozták, de nem fogták fel jelentőségét, mint az elliptikus tér példáját. Erre megvolt a jó okuk: be volt ugyanis bizonyítva, hogy Eukleidész rendszerében, még akkor is, ha megengedjük a párhuzamossági axióma alternatív alakjait is, elliptikus terek nem létezhetnek4. Végső soron azonban nem is az elliptikus terek bizonyultak problematikusnak, hanem maga az euklideszi axiómák struktúrája.
[bookmark: tart22]
18. Az emberi fajnak
nevezett csúszómászókról







[bookmark: _ednref145]Az 1816. évet követő tíz esztendőben1, Gauss bizony jó sok időt töltött otthonától távol, mert a német területek nagyszabású felmérését – ma úgy mondanánk, geodéziai felmérését – irányította. A felmérés célja az volt, hogy megmérjék az egyes városok és egyéb tereptárgyak közti távolságokat, és az adatokat egy térképen ábrázolják. A feladat nem is olyan könnyű, mint amilyennek látszik, méghozzá több ok miatt is.
Az első nehézség, amit Gaussnak le kellett küzdenie, a felmérésben használt műszerek korlátozott pontossága volt. Emiatt az egyenes vonalakat rövidebb metszetekből kellett megszerkeszteni, amibe véletlen mérési hibák csúszhatnak. Márpedig a hibák gyorsan összegeződnek. Gauss ezt a problémát nem úgy oldotta meg, ahogy az egyszeri kutató, mint mondjuk e könyv szerzője tette volna. Először is ez azzal járt volna, hogy az ember állandóan a haját tépi, és esetenként ingerülten szól rá a gyermekeire; másodszor: csak egészen kicsike haladást érne el; majd harmadszor: úgy próbálja megfogalmazni az eredményt, hogy az a lehető legfontosabbnak tűnjön. Ehelyett Gauss felfedezte a modern valószínűségelmélet és a statisztika centrális elvét: a véletlen hibák haranggörbeszerű eloszlást mutatnak az átlag körül.
Miután a „hibaproblémakört” maga mögött tudta, Gauss szembe találta magát azzal a kihívással, hogy kétdimenziós térképet kell készíteni olyan háromdimenziós adatokból, amelyeket egyszerre érint az, hogy a magasságuk esetleg különböző és persze a Föld felszíne görbült. A nehézség abból ered, hogy a földgömb felületének nem ugyanaz a geometriája, mint az euklideszi síknak. Ez matematikai megfelelője annak a dilemmának, amivel minden szülő találkozhat, ha egy gömb alakú labdát egy sík ragasztószalaggal kell becsomagolnia. Ha, mint a szóban forgó szülő, ön úgy próbál úrrá lenni a nehézségen, hogy a ragasztópapírt apró négyzetekre vágja és így illeszti össze ezeket a labda felszínén, nos, akkor ön ugyanúgy oldotta meg a feladatot, mint ahogyan Gauss is tette – a különbségektől persze eltekintve. Ezeket a különbségeket Gauss 1827-ben hozta nyilvánosságra egy dolgozatában. Mára ebből a matematika egész új területe nőtt ki, amit differenciálgeometriának nevezünk.
A differenciálgeometria a görbült felületek elmélete, amelyben a felületeket a Descartes által felfedezett koordináták módszerével írják le, majd az elemzést a differenciálszámítás segítségével végzik el. Ez elsőre úgy hangzik, mintha az elméletet csak szűk korlátok között (a kávéscsészére, a repülőgépek szárnyára vagy akár az ön orrára) lehetne alkalmazni – de nem a Világegyetemünk szerkezetére. Gauss azonban másként gondolta. Először is azt állította, hogy a felületet magát is lehet térnek tekinteni. Vagyis akár a Föld felszínét is azonosnak tekinthetjük magával a teljes térrel, ami hétköznapi céljainkra éppúgy megfelel most is, mint a légi közlekedés térhódítása előtti korokban. Nagyon valószínű, hogy Keats eszében nem ez járt, amikor „az Univerzumról, mint homokszemről” írt, de a költészet valahogy mégis összefér a matematikával.
A másik nagy gondolati áttörést Gauss azzal hajtotta végre, hogy megállapította, egy adott tér görbületét magában a térben lehet tanulmányozni anélkül, hogy hivatkoznánk egy nagyobb térre, amely talán tartalmazza (de az is lehet, hogy nem) a kérdéses teret. Kicsit szakszerűbben: egy görbült felület geometriája anélkül is tanulmányozható, hogy hivatkoznánk egy magasabb dimenziószámú euklideszi térre. Az, hogy egy tér „görbülni” tud, méghozzá anélkül, hogy belegörbülne valamibe, ez egy olyan fogalom volt, amire később Einstein általános relativitáselméletében lett szükség. Végül is, minthogy nem tudunk kilépni a Világegyetemből, hogy lepillantsunk háromdimenziós világunkra, csak az ilyenfajta tétel adhat reményt arra, hogy saját terünk görbületét meghatározzuk.
Hogy megértsük, miként tudnánk kimutatni a görbületet anélkül, hogy beleágyaznánk az egészet egy nagyobb térbe, képzeljük el, hogy Alexei és Nicolai most kétdimenziós élőlények egy olyan civilizációból, amely szigorúan a Föld felszínéhez, mint térhez van kötve. Hogyan szerezhetnének eltérő tapasztalatokat, ha nem számíthatnak légi utakra, nem mászhatnak a Mount Everestre, vagy hogy sajnálatos tény, de a magasugrás világcsúcsa 0 cm?
Vegyük csak szemügyre egy kicsit közelebbről a magasugrási rekordot! Nem csak arról van szó, hogy Alexei nem tud elrugaszkodni a földtől. Számára még az a fogalom sem létezik, hogy „elrugaszkodni a földtől”! Ez azonban még nem ok arra, hogy mi, a háromdimenziós tér lakói magunkat felsőbbrendűeknek tekintsük. Ebben a pillanatban a négydimenziós lények koktélpartiján egyesek szórakozottan „néznek le” ránk és jól mulatnak korlátozottságunkon. Mint csúszó-mászó férgeknek, olyasmiről, hogy ugrálás a négydimenziós térben, nekünk szegény teremtményeknek nincsen fogalmunk.
Azt mondani, hogy Alexei és Nicolai nem mászhat fel a Mount Everestre, szintén kíván némi magyarázatot. Tulajdonképpen ők is felmászhatnak a hegytetőre – elvégre az is a Föld felszíne. De nem lenne fogalmunk a magasságváltozásról. Amint Alexei elhagyná a hegy alját és „sétálna” a csúcs felé, az, amit mi gravitációnak ismerünk, most egy misztikus erőhatásnak tűnne számára, ami visszatolná őt az „alap”, a hegy alja felé, mintha a hegycsúcsnak volna valami rejtélyes taszító tulajdonsága.
A misztikus erőhatással együtt jelenne meg a térgeometria torzulása. Minden olyan háromszög, amely a hegyet magában foglalná, titokzatosan nagy területet zárna körül. Ezt abból tudhatnánk, hogy a hegy felszíne nagyobb, mint az alapjának területe, de Alexei és Nicolai számára ez a tér gyűrődéseként jelenne meg.
Alexei és Nicolai nem tudná elképzelni azt a talajból kiálló rudat sem, amely a külső térből érkező napsugarak hatására vetne árnyékot. A távoli láthatáron eltűnő csónak sem mutatna a vízből kiálló részeket, hajótestet és árbocot. Minden olyan ötlet, amit az ókoriak találtak ki a Föld gömb alakjának kimutatására, megsemmisülne. Csak a térbeli pontok közti távolságviszonyokról lehetne tudomásunk. A harmadik dimenzióból származó utalás nélkül még Eukleidész is arra következtetett volna, hogy a tér nem euklideszi.
Képzeljünk el ebben a világban egy ókori tudóst, akinek a neve
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Háromszögek a földgömbön
(a távolságok az ábrán km-ben vannak megadva)

legyen Nemeukleidész. Akadémiai szobájában ül és éppen levonta azokat a következtetéseket, amiket Eukleidész. De mielőtt publikálná Elemek című művét, ki szeretné próbálni, hogy elmélete alkalmazható-e a falakon kívül is, a tér nagyléptékű geometriájára. Tanítványa, Alexei hoz neki egy térképet a könyvtárból (lásd fent).
A térkép a gaboni Libreville városát mutatja, ami éppen a 0° szélességnél és 9° keleti hosszúságnál van, éppen annál a pontnál, ahol a háromszög derékszöge található. Innen 12 fokot megyünk északra, akkor éppen a nigériai Kano városához érünk (közelítőleg), majd Libreville-től keletre megyünk 24 fokot, ez az ugandai Kampala, s így megvannak a derékszögű háromszög oldalai. Az euklideszi geometria egyik alapvető megállapítása a Pitagorasz-tétel. Nemeukleidész utasítja Alexeit, hogy matematikailag ellenőrizze. Alexei jelenti:

a háromszög derékszög melletti
oldalainak négyzetösszege:	8.917.400 = a2 + b2
az átfogó négyzete:	8.812.586 = c2

Amikor Nemeukleidész meglátja az adatokat, zsörtölődni kezd Alexei felületessége miatt. Ám amikor személyesen elvégzi a számításokat, Nemeukleidész úgy találja, Alexeinek mégis igaza volt. Nemeukleidész ekkor megnyitja az elméleteik második védelmi vonalát – a különbséget mérési hibának tulajdonítja. Ezért elküldi másik segítőjét, Nicolait, vissza a könyvtárba, további adatokat keresni. Nicolai hamarosan visszajön, egy még nagyobb háromszög esetében végzi el a számítást. Ennek csúcsait Libreville, Cagliari (Olaszország) a 39° északi szélességnél, és Lerida (Kolumbia) 71° nyugati hosszúságnál alkotják. Ezt a háromszöget is láthatjuk az előbbi ábrán. Nicolai azt találja, hogy:

a derékszög melletti oldalak
négyzetösszege:	99.063.130 = a2 + b2
az átfogó négyzete:	83.935.757 = c2

Nemeukleidész most sem boldog. Az eltérés most még rosszabbat mutat. Kérdése: hogyan lehetett, hogy kollégája, Nempüthagorasz ekkorát tévedett? Hogyan mérethetett meg tucatnyi derékszögű háromszöget Nemeukleidész, és soha nem észlelt ilyen problémát? Azok ott Alexei esetében csak igen kicsiny háromszögek, ezek pedig óriásiak. Nicolai megjegyzi, hogy az eltérés annál nagyobb, minél nagyobbak a háromszögek. Feltételezi, hogy minden korábban tanulmányozott háromszög kicsiny volt, kis laboratóriumban tanulmányozták – vagy csak éppen egy városka körül, úgyhogy az eltérés észrevétlen maradt.
Nemeukleidész elhatározza, hogy valamilyen alapítványi pénzből elküldi Alexeit és Nicolait egy expedícióra New Yorkba. Onnan, vagyis a 40° 45’ északi szélességről és a 74° 00’ nyugati hosszúságtól indulva, az utasítása szerint Alexeinek a nyugati hosszúság szerint nyugat felé kell mennie 10’-et, amivel durván Newarkba ér. Nicolai pedig 10’-nek megfelelő utat tegyen meg északra (szélességváltoztatással), aminek eredménye, hogy New Milfordba (New Jersey állam) ér. Jó pontossággal ez a három pont is egy derékszögű háromszöget alkot: New Yorktól Newarkig 13,968 km; New Yorktól New Milfordig 18,448 km; New Milfordtól Newarkig 23,136 km.
Nemeukleidész ellenőrzi a Pitagorasz-tételt:

a két befogó négyzetének összege:	a2 + b2 = 535,43
az átfogó négyzete:	c2 = 535,27

Tehát elég kicsiny háromszögek esetében működik. Minthogy a nem euklideszi geometria kezd összeállni a fejében, Nemeukleidész elküldi a tanítványokat egy utolsó expedícióra.
Most Alexei és Nicolai elvitorláznak New Yorkból Madridba, ami New Yorktól csaknem pontosan keletre van. Csak hát nem egyszer kell utazniuk, hanem sok alkalommal, minden egyes alkalommal egy kissé más útvonalon, és minden utazás során pontosan mérniük kell az útvonal hosszát. Kutatómunkájuk célja, mint Kolumbusz esetében is, keresni a legrövidebb utat. Alexei és Nicolai esetében ez a geodetikus vonal, a legrövidebb útvonal keresése. Ez ugyan több évig tartó kutatás, de a végén a publikáció nagy szenzációt fog jelenteni.
[bookmark: _ednref146]New Yorkból Madridba a legrövidebb út az volna, hogy egyenesen keletre kell hajózni? A közös szélességi körön? Nem. Ehelyett azon a különleges görbe vonalon kell haladni, amit az ábra mutat (a 137. oldalon). Először egyenest északnyugatra, majd fokozatosan el kell fordítani a hajó orrát egészen odáig, míg délnyugat felé nem halad. Ez pontosan az az út, amit egy tekegolyó követne, ha akadály nélkül gurulna; vagy amit egyes zseniális madarak2 követnek vándorrepülésük során, mint például az amerikai arany bíbic, vagy a
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sörtéslábú póling. Különben ez volt a kétdimenziós módszere az egyiptomi kötélfeszítőknek is, akik a köteleiket pontról pontra kifeszítették.
Ezt könnyű megérteni, ha elképzeljük a Földet az űrből nézve. Keletre nézni egyenest nem megfelelő, mert amint a földgömb mentén halad, az „észak” és a „kelet” nem rögzített irányok. Amint Madrid felé halad New Yorkból, a keletnek nevezett irány elforog a háromdimenziós térben, miként az északinak nevezett irány is. A legrövidebb út New York és Madrid, vagy bármely két pont között a földgömbön, egy olyan görbén fut, amit a gömb főkörének neveznek. (Ez az a kör a gömbön, amelynek a középpontja egybeesik a Föld középpontjával; ezek a Föld felületére rajzolható legnagyobb körök, innen az elnevezés.) A főkörök a Poincaré-univerzum Poincaré-vonalaival analóg képződmények, olyan görbék, amiket az ember általában vonalaknak hívna, és ezek töltenék be az Eukleidész axiómáiban a vonalak szerepét. A hosszúság vonalai főkörök. Főkör az Egyenlítő is, de ez az egyetlen ilyen állandó szélességi kör (mert a többi állandó szélességi kör középpontja határozottan feljebb vagy lejjebb van a Föld tengelyén).
A látvány a külső térből jócskán eltér egy olyan „földhözragadt” ember nézőpontjából, mint Nemeukleidész. Számára ugyanis nem létezik a „Föld középpontja” fogalom, és amint Gauss kimutatta, lehetséges, hogy nincsen „külső tér” sem. Nicolai és Alexei méréseiből Nemeukleidész arra a következtetésre jutna, hogy az a tér, amiben ő él, egy nem euklideszi tér; nem is hiperbolikus tér, hanem egy olyan, amelyik a földgömb felületének megfelel, szóval: elliptikus tér.
A Nemeukleidész világában minden vonal – a főkörök – metszi egymást. A háromszögekben a szögek összege mindig nagyobb, mint 180° (a hiperbolikus térben pedig mindig kisebb). Például az a háromszög, amit az Egyenlítő és két olyan hosszúsági kör alkot, amelyik az Egyenlítőt mondjuk az Északi-sarkkal köti össze, annak szögeinek összege elérheti a 270°-ot is. A hiperbolikus térhez hasonlóan, ez a tér is euklideszinek tűnhet, ha kicsiny távolságokról van szó, és ez az, ami miatt oly sokáig eltartott, mire a különbséget észrevették. Például a szögek összegében a 180° feletti eltérés egyre kisebb lesz, ahogyan a háromszög méretei csökkennek.
Az elliptikus terek geometriája, amit szférikus geometriának is hívnak, már az ókorban is ismert volt. Tudták a főkörökről, hogy geodetikus vonalak. Azokat a geometriai képleteket, amelyekkel a gömbháromszögek adatait kapcsolják össze, a térképkészítők fedezték fel és alkalmazták. De az elliptikus terek nem illettek bele Eukleidész paradigmájába, és az a felfedezés, hogy a földgömb tulajdonképpen elliptikus tér, Gauss egyik tanítványára, Georg Bernhard Riemannra maradt. Ez a felfedezés már Gauss lehanyatló éveiben történt, de történetesen minden más felfedezésnél jobban előmozdította a görbült terek forradalmát.
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19. Mese a két idegenről









[bookmark: _ednref147]Georg Riemann1 1826-ban született Breselenzben, egy kis faluban, Gauss szülőhelyétől nem messzire. Öt testvére volt. Mintha a sors rendelte volna így, legtöbbjük már fiatalon meghalt. Riemann gyermekként veszítette el édesanyját. Édesapja, a lutheránus lelkész otthon tanította egészen tízéves koráig. Kedvenc tantárgya a történelem volt, kiváltképpen a lengyel nemzeti mozgalmak érdekelték. Ha a szorgalmas kis Georg nem mutatott túlzott érdeklődést a társasági élet iránt, ez nem is csoda. Tényleg betegesen szégyenlős és szerény volt. És persze ragyogóan értelmes. Gauss és Riemann esetéből kiindulva egy összeesküvés-szakértő bízvást azt állíthatná, a XIX. század beköszöntével a németországi Hannover környékén egy felsőbbrendű faj legalább két zseniális gyermekkel áldotta meg ezeket a szegény családokat. Noha Riemannról nem maradtak fenn olyan történetek, mint amilyenek a totyogó zseniről, Gaussról szóltak, ő is túlságosan okos gyermek volt ahhoz, hogy csak egy legyen közülünk.
[bookmark: _ednref148]Amikor Riemann 19 éves volt, a gimnázium igazgatója, bizonyos Schmalfuss úr egy könyvet adott a kezébe, hogy nézze át. Ez Adrien-Marie Legendre, Számelmélet (La théorie des nombres) című munkája volt2. Riemann tulajdonképpen egy kézi súlyzót kapott, amivel részt vehetett volna az akkori súlyemelő-világbajnokságon. Ez a kézi súlyzó a maga 859 oldalával – ráadásul nagy oldalak, apró betűs szedés, tömve elvont elmélettel – valóban sérvokozó anyag lehetett, olyasvalami, amin csak egy bajnok tud úrrá lenni, és akkor is csak hatalmas erőfeszítések árán. Riemann számára a könyv pehelysúlyúnak bizonyult, a lapozgatás sem kívánt megerőltető munkát. Már hat nap múlva visszaadta, valami olyan kommentárt fűzve hozzá, hogy „jó olvasmány volt”. Néhány hónap múlva levizsgáztatták a könyv tartalmából és kiváló osztályzatot kapott. Később aztán maga is nagyban hozzájárult a számelmélet fejlődéséhez.
1846-ban a még csak tizenkilenc éves Riemann beiratkozott a Göttingeni Egyetemre, ahol Gauss is professzor volt. Riemann, mint teológus kezdte tanulmányait – bizonyára azért, hogy imádkozhasson a leigázott lengyelekért –, de hamarosan átváltott arra a szakra, ami tulajdonképpen első szerelme volt, a matematikára. Egy rövid berlini időszak után visszatért Göttingenbe, hogy befejezze disszertációját. Az 1851-ben benyújtott dolgozata többek között a legendás Gausshoz került bírálatra, aki ugyancsak keménykezűen bánt a hallgatókkal.
[bookmark: _ednref149]Gaussra nagy hatást gyakorolt a jelölt munkája, ami elég ritkán fordult elő. Gauss azt írta, hogy Riemann „tevékeny, kreatív és tényleg matematikus elméről … és dicsőségesen termékeny képzelő erőről tett tanúbizonyságot”3. Azt is megjegyezte, hogy ő maga korábban már végzett hasonló kutatásokat, de nem publikálta az eredményeket. (Gauss iratainak posztumusz vizsgálata később kimutatta, hogy megjegyzései igazak voltak.) Riemann persze boldog volt. 1853-ban huszonhét évesen, az egyetemi előadói státushoz vezető út végén járt. Németországban abban az időben egy ilyen akadémiai pozíció nem járt olyan szerény fizetéssel, mint manapság. Egyáltalán nem járt érte fizetés! Riemann számára ez azonban igen kívánatos pozíció volt, a professzori álláshoz vezető lépcső. A tanítványoktól kapott zsebpénzből még így is meg lehetett élni.
Az utolsó próbatétel a bemutatkozó előadás volt. Három témára tett javaslatot, amelyek közül a karnak kellett választania. Az volt a szokás, hogy a kar a jelölt első témáját választotta. Hogy résen legyen, Riemann jól felkészült akár az első, akár a második témára. Gauss viszont a harmadik témát választotta.
E harmadik javaslatként Riemann olyan témát választott, ami őt nagyon érdekelte, de amiről aránylag keveset tudott. Egy álláskereső az interjú témájául – ha a kutatási területe Luxembourg politikája – nem Srí Lanka hüllővilágát javasolja, még akkor sem, ha ez szerepel harmadik tételként a listán. Amikor Gauss, aki abban az időben már súlyos beteg volt és napjai meg voltak számlálva, a harmadik témát választotta, Riemann azt kérdezhette önmagától: „Mire is gondolhattam?”. A téma címe ez volt: „Azokról a hipotézisekről, amelyek a geometria alapjaiul szolgálnak” (Über die Hypothesen, welche der Geometrie zu grunde liegen). Azért választotta ezt, mert tudta, hogy ez tulajdonképpen Gauss egész élete során igencsak a szívéhez közeli téma volt.
Több hetet töltött összeomolva, a falakat bámulva, bénultan a nagy nyomás súlya alatt. Végül tavaszra összeszedte magát és hét hét leforgása alatt elkészült előadásával, amit 1854. június 10-én mutatott be. Szerencsére az interjú dátuma és a téma részletei megőrződtek az utókor számára.
Riemann előadását a differenciálgeometria összefüggéseiben fogalmazta meg, a felület infinitezimális kis tartományainak tulajdonságaira összpontosított inkább, mint a nagy, általános geometriai jellegre. Valójában Riemann sohasem nevezte nevén a nem euklideszi geometriát. Munkájának következtetései azonban nyilvánvalóak voltak: kifejtette, hogyan lehet a gömb felületét kétdimenziós elliptikus térként tárgyalni.
Mint Poincaré, Riemann is megadta a pont, a vonal, a sík kifejezések értelmezését. Síkként a gömb felületét választotta. Ennek pontjai, mint Poincarénál is, a pozíciók, a helyzetek, kartéziánus számpárokkal, vagyis koordinátákkal vannak megadva (lényegében a pont szélessége és hosszúsága). Riemann vonalai a főkörök, a gömb geodetikus vonalai.
Miként Poincaré modelljében, itt is le kell szögezni, hogy Riemann modellje megengedi a posztulátumok konzisztens értelmezését. Elérkezett az idő, hogy eszünkbe idézzük: az elliptikus terek bizonyítottan nem létezhetnek. Riemann modelljéről biztosan kiderült, hogy néhány kisebb gond is van vele. Az egyik ilyen, hogy egy új tértípust kell definiálni a párhuzamossági posztulátum új verziójára alapozva; Riemann terei a többi posztulátum létező verzióival is rendre inkonzisztensek voltak. Vegyük például a 2. posztulátumot. Eukleidész azt írta:

2.	 Minden szakaszt végtelenül ki lehet terjeszteni mindkét irányban.

Vajon a főkörök eleget tesznek-e ennek a gömbön? Riemann előtt a 2. posztulátumot úgy értelmezték, hogy létezniük kell tetszőleges hosszúságú szakaszoknak. De a főkör hosszára korlát áll fenn: nem lehet nagyobb a gömb kerületénél, vagyis 2π-szer a gömb sugarának a hosszánál.
A törvényszegés néha még a matematikában is kifizetődő. Itt Riemann olyat tett, mint a fekete bőrű polgárjogi harcos Rosa Parks, aki 1955-ben megtagadta, hogy átadja a helyét a buszon egy fehér embernek, s ezáltal ha nem is a jogtalant, inkább a jogszerűtlent téve kérdésessé. Riemann azt állította, hogy a 2. posztulátum szükséges, hogy ne lehessenek a vonaldarabok tetszőlegesen hosszúak, de csak azt garantálja, hogy a vonalaknak nincs határa, ami történetesen igaz a főkörök esetén. A matematikában a Legfelsőbb Bíróság a matematikusok közössége, és bizony vakargatták a fejüket ezen a megállapításon. Mik a következményei a fiatal Riemann új törvénymagyarázatának? Konzisztens-e ez a többi törvénnyel? Azzá lehetne-e tenni?
Az a helyzet, hogy az ellentmondások nem szűntek meg a 2. posztulátumnál. Riemann koncepciója a vonalról más problémákhoz is vezetett, amikre nem kínált magyarázatot. Így például: a főkörök megsértik azt a feltevést, hogy két vonal egymást csak egyetlen pontban metszheti. Az egymást mind az Északi-, mind a Déli-sarkon metsző hosszúsági körökhöz hasonlóan, a gömb összes főköre a gömb két átellenes pontjában metszi egymást.
A „közbeesés” fogalmát is nehéz volt értelmezni. Eukleidész a közbeesés fogalmát az 1. axiómára alapozta:

1.	Két ponton át egyenes húzható.

Hogy a két adott pont között egy pontot kijelöljön, Eukleidész egy szakaszt húzott volna a két adott pont közé. Bármely, a két végponttól különböző pont ezen a vonalon felfogható úgy, mint a két adott pont közti pont. Riemann modelljében az a probléma, hogy mindig két út van arra, hogy egy pontpárt a főkörrel összekössünk. Vajon Indonézia az egyenlítői Afrika és az egyenlítői Dél-Amerika közé esik? Ennek eldöntésére húzunk egy vonalat az Egyenlítő mentén, amely a két kontinenst összeköti, és ellenőrizzük, vajon áthalad-e Indonézián. De Riemann modelljében Dél-Amerikából Afrikába utazhatunk akár kelet, akár nyugat felé! Az egyik útvonal áthalad Indonézián, a másik nem.
Ebből a bizonytalanságból fakadóan a gömbön Eukleidész minden bizonyítása, amiben pontokat összekötő vonaldarabokról van szó, rosszul definiálttá válik. Ez aztán néhány fura következményhez vezet. Képzeljünk el egy gömbi világot, amelynek sugara 60 km (ahelyett, hogy a Földet vennénk a 6371 kilométeres egyenlítői sugarával). Egy derűs napon ön előrenézve a saját hátát pillantja meg. Kérdés, hogy az ön háta most ön mögött, vagy ön előtt van? Vagy vegyen egy hulahoppkarikát! A sugara legyen 1 m. Amikor a dereka körül pörgeti, megkérdezi: most benne van? Úgy látszik, igen. Most pedig képzelje azt, hogy a hullahopp tágul. Tágítsa egy versenypálya nagyságúra és legyen 1600 m széles! Ez már hulahoppkarikának nagy, de még mindig kicsi a „bolygó” 60 km-es sugarához képest. Ha ön a közepén áll, még mindig biztonsággal állíthatja, hogy a hulahoppkarikán belül van! Most tágítsa tovább a hulahoppkarikát egészen a 60 km-es sugárig – és ekkor hirtelen már önkényes kijelentésnek érzi, hogy bent áll vagy kint, a külsejében. Tágítsa tovább, vagyis képzelje, hogy a kerülete távolodik öntől – és hirtelen az az érzése támad, hogy a hulahoppkarika valójában összehúzódik. Majdnem úgy fest az egész, mint a kísérlet legelején – egy méter a sugár, de most a középpont valahol a világban van, máshol, mint induláskor. Ön látszólag a külsején van. De hogyan történhetett az, hogy a belsejéből a külsejébe került, csupán növelve a karikát? A közte, mögötte, előtte, kívül és belül fogalmak az átalakulás során elvesztették egyszerűségüket. Ezek a kritika nélküli elliptikus tér ellentmondásai.
[bookmark: _ednref150]Ezeknek a zavaroknak a kiküszöbölésére sok fogalmat kell gondosan újradefiniálni. Szokás szerint, ezt Gauss előre látta, és így írta róla Bolyai Farkasnak 1832-ben: „A teljes kifejtésben a között kifejezésnek tiszta fogalmak alapján való új definíciójára van szükség, amit meg lehet tenni, de amit sehol sem találtam”4. És ezt Riemanntól sem kapta meg. Riemannt ez sem nem hátráltatta, sem nem érdekelte, mert főleg a felületek kis darabjaira összpontosította figyelmét, a globális ellentmondások nem zavarták. És mindezen nyitott kérdések ellenére, Riemann előadását a matematika egyik nagy mesterművének tekintik. Ennek ellenére foton torpedó-szerű hatása csak jóval később kezdte el beragyogni a matematikusok univerzumát. Gauss Riemann előadása után hamarosan elhunyt; Riemann figyelmét a tér nagyléptékű geometriája helyett inkább a lokális szerkezetekre összpontosította, ám ez a munkája nem váltott ki nagy visszhangot élete során.
1857-ben, harmincegy éves korában Riemann végül elnyerte a docensi állást, soványka kis fizetéssel, kb. 300 dollárral – évente. Ebből tartotta el magát Riemann, és három megmaradt leány gyermekét, akik közül a legfiatalabb hamarosan elhunyt. 1859-ben a Gausst követő Dirichlet is elhunyt és a kar hozzájárult ahhoz, hogy Riemann elfoglalhassa megüresedett helyét a tanszéken. Három évvel később, harminchat évesen Riemann újból megnősült. A következő évben kislánya született. Immár elfogadható fizetéssel és a családi élet újrakezdésével Riemann számára a dolgok jobbra fordulni látszottak. De ez nem bizonyult tartósnak. Mellhártya-gyulladást kapott, amely aztán tuberkulózissá vált. A kór nagyon fiatalon, harminckilenc évesen vitte el őt.
Riemann munkája a differenciálgeometriáról Einstein általános relativitáselméletének sarokkövévé vált. Ha Riemann oly oktalan lett volna, hogy az ajánlott kérdések listájába nem veszi fel a geometriát, vagy Gauss nem oly merész, hogy ezt választja, akkor az a matematikai apparátus, amire Einsteinnek szüksége volt a fizika forradalmához, nem létezett volna. Riemann elliptikus terekről szóló munkája hasonlóan nagy hatású lett a matematika világában. Az a szükségszerűség, hogy a párhuzamossági axiómán kívüli posztulátumokat meg kell változtatni, olyan volt, mint a kötélben a szálak szakadása. Hamarosan elszakadt a kötél is. A matematikusok akkor döbbentek csak rá, hogy ezen nemcsak a geometria függött, hanem a matematika egésze!
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20. A hibák kozmetikázása
2000 év után







Riemann 1854-ben tartott előadása csak 1868-ban jelent meg, két esztendővel halála, és egy évvel Baltzer könyvének kiadása után, melyben Bolyai és Lobacsevszkij munkáját népszerűsítette. Riemann munkájának következtetései rámutattak arra, hogy Eukleidész több különböző hibát is vétett: sok olyan feltevést is tett, amit nem említett meg, vagy olyan definíciókat is megkísérelt megfogalmazni, amik nem voltak lehetségesek.
Ma már sok tévedést találunk Eukleidész okfejtésében. Persze könnyű neki felhányni, hogy mesterkélten elválasztja a posztulátumokat az „általános fogalmaktól”. Az az igazság, hogy manapság minden feltevést axiomatizálni szeretnénk, és nem fogadunk el semmit igaznak csupán azért, mert annak látszik a „valóság” vagy a „józan ész” alapján. Ez meglehetősen modern felfogás, ami Gauss győzelmét jelenti Kant felett, és nem lenne fair Eukleidészt kritizálni amiatt, hogy nem tett meg ilyen ugrásokat.
Eukleidész rendszerében a másik szerkezeti probléma az, hogy nem ismerte fel a definiálatlan fogalmakat. Vegyük csak például a tér definícióját: „határtalan hely, ami minden irányban kiterjedt”. Ez most egy értelmes definíció, vagy csak a bizonytalan hely fogalom kiterjesztése a tér tárgyszóra? Ha úgy érezzük, nem értjük a hely szót egészen pontosan, akkor természetesen utána is nézhetünk. A szótárban az áll, hogy „a hely a térnek az a része, amit egy bizonyos tárgy elfoglal”. Ez a két szó, a hely és a tér gyakran egymást definiálja.
Mivel a szótárban minden szót egy másikkal definiálunk, ez megtörténhet esetleg bármelyik másik definícióval is. Az egyetlen mód ennek a körbeokoskodásnak az elkerülésére egy véges nyelvben az lenne, ha a szótárba bevennénk néhány definiálatlan kifejezést. Mára már felismerték, hogy a matematikai rendszerekbe bele kell foglalni bizonyos nem definiált kifejezéseket is, és törekedni kell arra, hogy ezek minimális számban szerepeljenek, másként a rendszernek nem lenne értelme.
[bookmark: _ednref151]A definiálatlan fogalmakat különös gonddal kell kezelni, mert könnyen tévútra vezethet minket, ha a kifejezést úgy próbáljuk meg értelmezni, hogy korábban még nem próbáltuk ki. Még akkor is, ha az a jelentés a fizikai megjelenés alapján nyilvánvalónak tűnik. Szabit éppen ebbe a hibába esett, amikor azt a „nyilvánvaló” tulajdonságot használta, hogy az a görbe, ami mindenütt ugyanolyan távolságra van egy egyenestől, maga is egyenes. Mint láttuk, Eukleidész rendszerében a párhuzamosok posztulátumán kívül nincs semmi, ami ezt garantálná. Amikor definiálatlan kifejezéseket használunk, el kell tekintenünk mindazoktól a járulékos jelentésektől, amiket a szóválasztás von maga után. David Hilbert, a nagy göttingeni matematikus szavait kissé átalakítva1: „Az embernek mindig képesnek kell lennie, hogy pontok, vonalak és körök helyett férfiakat, nőket és söröskorsókat mondjon”.
Egy definiálatlan kifejezés nem marad sokáig jelentés nélkül: a tartalmát a rá vonatkozó posztulátumok és tételek definiálják. Például tegyük fel, ahogy Hilbert is elmerengett azon, hogy a nem definiált pont, vonal és kör kifejezéseket férfiakkal, nőkkel és söröskorsókkal helyettesítjük! Akkor ezek a kifejezések matematikailag Eukleidész első három posztulátumából kaphatnának értelmezést:

1.	Ha adott két férfi, akkor köztük egy nő húzható.
2.	Minden nő korlátlanul meghosszabbítható.
3.	Ha adott egy férfi, akkor egy tetszőleges sugarú söröskorsó húzható úgy, hogy a férfi legyen a centrumban.

Eukleidész más, tisztán logikai természetű tévedéseket is elkövetett amikor indokolatlan lépések felhasználásával jutott az egyes tételek bizonyításához. Így például már a legelső prepozíciójában azt állítja, hogy bármely adott egyenesdarabra egyenlő oldalú háromszög szerkeszthető. Bizonyításában két kört szerkeszt, egyet-egyet az egyenesdarab végpontjaiban, mindegyiket az egyenesdarab hosszával, mint sugárral. Ezután felhasználja a két kör metszéspontját. Bár a körök szerkesztése világosan mutatja ezt a metszéspontot, Eukleidész nem szól semmit formális érveiben arról, hogy mi garantálja ennek a pontnak a létezését. Valójában a rendszeréből hiányzik egy posztulátum, ami a körvonalak folytonosságát biztosítja, vagyis azt garantálná, hogy nincsen köztük hézag. Eukleidész elmulasztotta felismerni, hogy bizonyításaiban gyakran más feltételeket is felhasznál. Például azt, hogy a pontok és a vonalak léteznek, hogy nem minden pont kollineáris, és hogy minden egyenesnek legalább két pontja van.
Egy másik bizonyításában hallgatólagosan felteszi, hogy ha egy egyenesen három pont van, az egyik pont biztosan a másik kettő között van. Sem a posztulátumok, sem pedig a definíciók nem engedik meg ennek bizonyítását. Valójában ez a feltevés igazából az egyenesség követelménye: nem lehet görbe vonal, mert az hurkot alkothat (például kört), és akkor már nem tudnánk egyik pontot sem úgy azonosítani, ami a másik kettő között fekszik.
Eukleidész bizonyításaival szemben felhozott egyes ellenvetések akár szőrszálhasogatásnak is tűnhetnek, de a nyilvánvaló feltevések, amiknek látszólag nincs következménye, olykor nagy elméleti megállapításokkal egyenértékűek. Így például az a feltevés, hogy egy háromszög szögeinek összege 180°, már megengedi annak bizonyítását, hogy az összes háromszög szögeinek összege is 180°, és még azt is lehetővé teszi, hogy a párhuzamossági posztulátumot bizonyítsuk.
[bookmark: _ednref152][bookmark: _ednref153][bookmark: _ednref154]1871-ben Felix Klein porosz matematikus2 kimutatta, hogy az elliptikus tér Riemann-féle szférikus modelljében fellépő látszólagos ellentmondásokat hogyan kell rendbe hozni és eközben Eukleidészt kijavítani. Olyan matematikusok, mint Beltrami és Poincaré hamarosan bemutatták új modelljeiket és új geometriai megközelítéseiket. 1894-ben Giuseppe Peano olasz logikus3 új axiómarendszert javasolt az euklideszi geometria számára. 1899-ben Hilbert4, aki nem tudott Peano munkájáról, közreadta a geometria megalapozásáról szóló felfogásának első változatát, ami azóta is a legelfogadottabb.
[bookmark: _ednref155]Hilbert mindenre elszántan fogott hozzá a geometria alapjainak tisztázásához (és később Einstein általános relativitáselméletének kifejtésében is segített). A megfogalmazást még sokszor átdolgozta 1943-ban bekövetkezett haláláig. Első lépése az volt, hogy Eukleidész fel nem sorolt axiómáit explicit állításokkal helyettesítette. Hilbert művének 1930-ban megjelent hetedik kiadásában nyolc nem definiált kifejezést vezetett be és az Eukleidész-féle tízről húszra emelte az axiómák számát (beleértve az általános fogalmakat is)5. Hilbert axiómáit négy csoportra osztjuk. Ezek között vannak olyan feltevések, amiket Eukleidész nem ismert fel, amint arról már szó volt:

I.-3. axióma: Minden egyenesen legalább két pont van. Legalább három olyan pont van a térben, amelyek közül nem mindegyik fekszik ugyanazon az egyenesen.

II.-3. axióma: Adva van három pont egy egyenesen, közülük csak egy fekszik a másik két pont között.

Hilbert és mások megmutatták, hogy az euklideszi tér minden tulajdonsága következik ezekből az axiómákból.

* * *

A görbült tér forradalmának óriási hatása volt a matematika minden területére. Eukleidésztől kezdve Gauss és Riemann munkáinak posztumusz felfedezéséig a matematika nagyjából pragmatikus, haszonelvű volt. Eukleidész rendszerét olyannak tekintették, ami a fizikai teret írja le. A matematika tehát bizonyos értelemben a fizika egy formája volt. A matematikai elméletek konzisztenciakérdései vitathatóknak tűntek – amire bizonyítékul a fizikai világ szolgált. 1900-ra viszont a matematikusok körében az lett az általánosan elfogadott nézet, hogy az axiómák önkényes megállapítások, és a rájuk épülő rendszer következményeinek feltárása csupán szellemi játék. Hirtelenjében a matematikai tereket absztrakt logikai struktúráknak kezdték tekinteni. A fizikai tér természete különálló problémává lett, ami fizikai, és nem matematikai kérdés.
A matematikusokat már más izgatta: struktúráik logikai konzisztenciájának bizonyítása. A bizonyítás eszméje, ami a számítási eljárások legutóbbi évszázadai során a háttérbe szorult, most ismét uralkodó szerepre tett szert. Következetes-e az euklideszi geometria? A legközvetlenebb módszer egy logikai rendszer konzisztenciájának bizonyítására az, hogy az összes lehetséges tételét bebizonyítjuk és kimutatjuk, hogy egyik tétel sem mond ellent a többinek. Minthogy a lehetséges tételek száma végtelen, ez az intelligens megközelítés csak azok számára jó, akik örökké akarnak élni. Hilbert egy másik eljárást próbált ki. Mint Descartes és Riemann, Hilbert is a tér pontjaihoz rendelt számokat. A kétdimenziós tér esetében például minden pontnak két valós szám felel meg. A pontokat ily módon számokká alakítva Hilbert képes volt valamennyi alapvető geometriai fogalmat és axiómát aritmetikaira lefordítani. Így bármely geometriai tétel bizonyítása a koordináták aritmetikai vagy algebrai manipulációjára fordítható. S minthogy bármely geometriai bizonyítás logikailag következik az axiómákból, az aritmetikai értelmezésnek is logikailag következnie kell az aritmetikai alakba öltöztetett axiómákból. Ha a geometriából valamilyen ellentmondás merülne fel még, annak azonnal meg kell jelennie aritmetikai ellentmondásként is, mert ha az aritmetika következetes, akkor az euklideszi geometria Hilbert-féle megfogalmazása is az (ezt ténylegesen elvégezték a nem euklideszi geometriákra is). Világos, mint a nap?
Bár Hilbert nem bizonyította a geometria abszolút konzisztenciáját (következetességét), azt viszont igen, amit relatív konzisztenciának nevezünk.
Tekintettel arra, hogy végtelen sok lehetséges tétel van, a geometria, az aritmetika, és ebben a tekintetben az egész matematika konzisztenciája már nehezebb kérdés. Hogy hozzáfoghassanak, a matematikusok egy olyan absztrakt elméletet alkottak, ami a tárgyakkal csak a legáltalánosabb szinten foglalkozik, függetlenül azok különleges nüánszaitól vagy kellemetlen tulajdonságaitól. Ez az elmélet, amit valamilyen formában ma a legtöbb általános iskolában is tanítanak, a halmazelmélet.
Még az egyszerű halmazelméletnek is szembe kell néznie olyan zavarba ejtő paradoxonokkal, mint például amit Kurt Grelling és Leonard Nelson hozott nyilvánosságra 1908-ban az Abhandlung der Friesschen Schule című meglehetősen ismeretlen lapban. Grelling és Nelson betűkből álló halmazokat vizsgált. Először is azokat a jelzőket, amelyek maguknak a szavaknak a tulajdonságait jelenítik meg. Például az, hogy „tizennégy betűs”, az pontosan tizennégy betűvel leírható szó (jelző), és a „sok szótagú” jelző is valóban sok szótagú. Ezzel a halmazzal szemben azok a halmazok szerepelnek, amelyekben a szavak nem értelmesek, nem írják le önmagukat. Valamilyen okból az olyan jelzők, mint a „jól megírt”, az „észbontó”, az „egy barát figyelmébe ajánlható” is szóba kerülhet (ami az utolsót illeti: ha van ebben a könyvben egy mondat, amit meg kell fogadni, akkor ez az!). Ezt az utóbbi szóhalmazt heterologikusnak nevezik, talán azért, mert maga a heterologikus szó is több szótagú.
No, ha eddig eljutottunk, akkor jó! Egy jelzőről azt mondjuk, hogy autologikus, ha a jelző által mondott tulajdonság, magára a jelzőre is fennáll, és heterologikus, ha nem. De most itt jön egy fogós kérdés! Vajon a heterologikus egy heterologikus szó? Ha az, akkor saját magára igazat mond, tehát autologikus; ha pedig autologikus, akkor saját magára nem mond igazat, tehát heterologikus. Mindenesetre a „heterologikus” egyszerre heterologikus is meg nem is. A matematikusok ezt paradoxonnak nevezik, a nem matematikusok számára pedig ez a közkedvelt húzd-meg-ereszd-meg játék (az elnevezés is bizonyára matematikusoktól ered, áldassák az ég!)

* * *

1903-ban Bertrand Russell, aki hamarosan Lord Russell lett, annak érdekében, hogy rendbe rakja a területet, szerény könyvében, aminek a címe Principles of Mathematics (A matematika elvei), azt javasolta, hogy az egész matematikát a logikából származtassák. Az 1910 és 1913 között megjelent háromkötetes nagy műben egy oxfordi kollégájával, Alfred North Whiteheaddel közösen meg is kísérelte a feladat végrehajtását, vagy legalábbis rámutatott, hogyan kellene végrehajtani. Mivel ez a kiadás már komolyabb változata volt az 1903-asnak, ennek latin címe lett: Principia Mathematica. Russell és Whitehead azt állították, hogy az egész matematikát sikerült visszavezetniük az alapaxiómák egy egységes rendszerére, amelyből a matematika minden tétele bebizonyítható ugyanúgy, ahogyan Eukleidész tette a geometria esetében. Az ő rendszerükben még az olyan alapvető entitásokat, mint a számokat is, empirikus alkotásoknak tekintették, amelyeket egy mélyebb, alapvetőbb axiomatikus struktúrának kell igazolnia.
[bookmark: _ednref156]Hilbert szkeptikus volt. Mozgósította a matematikusokat, hogy szigorúan ellenőrizzék, sikerült-e Russell és Whitehead célkitűzése. Ez a kérdés végül 1931-ben, Kurt Gödel megrázó tételével oldódott meg6: ő ugyanis azt bizonyította be, hogy egy eléggé bonyolult rendszerben – mint amilyen például a számelmélet – már kell léteznie egy olyan tételnek, amelyről nem lehet eldönteni, hogy igaz vagy hamis állítás. Gödel tételének korolláriuma, hogy léteznie kell egy olyan igaz állításnak, amelyet nem lehet bebizonyítani. Ez lerombolja Russell és Whitehead álmait – nemcsak az a helyzet, hogy nem bizonyították be, hogy a matematika minden tétele a logikából származtatható, de még az is kiderült, hogy ilyet nem lehet megtenni.
A tudósok azóta is lázasan dolgoznak a matematika alapelvein, de a fejlemények Gödel óta nem nagyon változtattak a képen. Még mindig nincsen olyan univerzálisan elfogadott megközelítés, amire Eukleidész tett kísérletet: a matematika axiomatizálása.
Eközben a matematika ereje, sehol sem nyilvánvalóbb, mint az Einstein által újabban felfedezett matematikai tértípusok alkalmazása esetében, amit az általunk lakott tér leírására használunk. Bár a geometria teljesen átalakult, továbbra is olyan ablak maradt, amin keresztültekintve a világ megismerése folyik.








[bookmark: tart25]IV.
EINSTEIN TÖRTÉNETE


Mi okozza a tér görbületét? A térnek egy új dimenziót ad az, hogy a téridő gondolata berobbant a XX. századba és a Szabadalmi Hivatal tisztviselőjét az évszázad hősévé teszi.
[bookmark: tart26]
21. Forradalom a fény
sebességével







Gauss és Riemann kimutatták, hogy a tér görbült is lehet, és megalkották a leírásához szükséges matematikát. A soron következő kérdés most már az, hogy milyen térben is élünk? Vagy mélyebbre hatóan: mi határozza meg a tér alakját?
Az Einstein által 1915-ben adott oly elegáns és pontos választ, tulajdonképpen először Riemann javasolta 1854-ben, igaz, csak nagy vonalakban:

[bookmark: _ednref157]A geometria érvényességének kérdése… azzal a kérdéssel van összefüggésben, hogy milyen a tér belső metrikus (távolsági) viszonya, …a metrikus tulajdonságok alapját rajta kívül kell keresnünk, azokban az összekötő erőkben, amelyek hatnak rá…1

Mi teszi a dolgokat egymástól távolivá vagy egymáshoz közelivé? Riemann jócskán megelőzte korát, hogy meglátásaira konkrét elméletet alkothasson, de még ahhoz is túl korán jött, hogy szavait értékeljék. Tizenhat évvel később egy matematikus mégis felfigyelt erre.
[bookmark: _ednref158]1870. február 21-én William Kingdon Clifford a Cambridge-i Filozófiai Társaság előtt bemutatott dolgozatának a címe a következő volt: „Az anyag térelmélete”. Clifford ekkor huszonöt éves volt, ugyanannyi, mint Einstein, amikor megjelentette első dolgozatát a speciális relativitáselméletről. Clifford a dolgozatában merészen ezt állította2:

Ténylegesen azt állítom, hogy a tér kis környezetei hasonlóak a dombokhoz, amelyek egy átlagosan sík felületen vannak (1); az a tulajdonság, hogy a tér görbült vagy torzult, a tér egyik pontjáról a másikra hullám módjára tevődik át (2); a tér görbületének ez a változása valójában az a jelenség, amit az anyag mozgásának nevezünk (3).

Clifford specifikus következtetései messze túlmentek Riemann konklúzióin. Ez aligha lenne figyelemre méltó, egyvalamitől eltekintve: Cliffordnak igaza volt. A fizikusoknak, akik ezt ma olvassák, egyetlen reakciójuk lehet: „Honnan tudta ezt?” Einstein hasonló következtetésekre csak sokéves óvatos tapogatózás után jutott. Cliffordnak még csak elmélete sem volt. Valahogy ösztönösen érzett rá az ilyen részletes következtetésekre. Őt, Riemannt és Einsteint, az az egyszerű matematikai eszme vezette, hogy ha a tárgyak szabad mozgásukat végezve az euklideszi térben egyenes vonalú pályákon haladnak, akkor nem lehet-e a más típusú mozgásokat a nem euklideszi tér görbületének segítségével leírni? Végül Einstein fizikára (és nem pedig a matematikára) alapozott gondos elemzése vezetett el az elmélet kidolgozásához, ami Cliffordnak nem sikerült.
[bookmark: _ednref159]Clifford lázasan dolgozott elméletén, rendszerint éjjel, mert nappal túlságosan el volt foglalva a tanítással és a Londoni Egyetem Kollégiumának adminisztratív tennivalóival. A fizika mély megértése nélkül azonban, ami Einsteint végül elvezette a speciális relativitáselmélethez és az idő sajátos szerepének a felismeréséhez, Cliffordnak nem sok esélye volt arra, hogy gondolatait működőképes elméletté fejlessze. A matematika előbbre járt a fizikánál – bonyolult helyzet, ami mint majd látni fogjuk, a mai húrelmélet esetében köszön vissza. Clifford végül nem jutott eredményre. 1876-ban, harminchárom évesen állítólag végkimerültségben halt meg3.
Clifford egyik problémája az volt, hogy hirtelenjében egy egyszemélyes parádé szereplőjének érezte magát. A fizika világában az ég kék volt, a nap ragyogott, és kevesen gondolták úgy, hogy érdemes idejüket azzal tölteni, hogy olyan törvények ellen indítsanak támadást, amelyekben nem látszik a romlás legkisebb jele sem. Már több mint 200 éve úgy tűnt, hogy az Univerzum minden eseményét meg lehet magyarázni a newtoni mechanikával, vagyis azzal az elmélettel, ami Isaac Newton elgondolásaira épült. Newton szerint a tér „abszolút”, Isten által létrehozott szerkezet, amire rá lehet fektetni Descartes koordinátáinak hálózatát. A tárgyak pályája egy egyenes vagy más görbe, amit számpárokkal, a koordinátákkal lehet leírni, ezek adják meg a pálya pontjait a térben. Az időnek az a szerepe, hogy „paraméterezze” a pályát, vagyis hogy matematikailag fejezze ki „hol haladunk rajta”. Például, ha Alexei a 42. utcától indulva a Fifth Avenue-n egyenletes ütemben sétál úgy, hogy egy háztömböt halad előre percenként, akkor bármely időpontban a Fifth Avenue és a (42 + az eltelt percek száma)-dik utca sarkán tartózkodik. Ha megadjuk, hány perce sétál, meg tudjuk mondani, hol van most a pályája mentén.
A tér és az idő ilyen értelmezésében Newton törvényei megadják, hogyan és miért mozog egy test, mint pl. Alexei, vagyis megadják a helyzetét egy paraméter, az idő függvényében. (Ez persze feltételezi, hogy Alexei egy lélektelen és öntudatlan „tárgy”, ami csak néha igaz, például amikor az a fránya discman fülhallgatói rajta vannak). Newton szerint Alexei folytatni fogja egyenes vonalú, egyenletes mozgását, hacsak valamilyen külső erő nem hat rá, mint például egy videojáték a sarki kirakatban. Akkor pedig, ha van ilyen vonzó hatás, Newton törvényei megmondják, hogyan fog Alexei pályája eltérni az egyenes vonalú egyenletes mozgástól. Mennyiségileg pontosan megadják, hogyan fog mozogni, ha tudjuk, mekkora a személyes tehetetlensége és mi az erő nagysága és iránya. Ezen egyenletek szerint egy test gyorsulása (ami a sebesség nagyságának és irányának a változása) arányos a rá gyakorolt erővel és fordítva arányos a tömegével. Az erő hatására reagáló test mozgásának leírását kinematikának nevezzük. Hogy a képet teljessé tegyük, ismernünk kell a „dinamikát” is, vagyis azt, hogyan lehet megadni az erő nagyságát és irányát, ha egyszer meg van adva a forrás (a kirakat), a tárgy (Alexei) és ismerjük a köztük lévő távolságot is. Newton csak egyetlen erőtípusra adott meg ilyen törvényt: a gravitációs erőre.
Ha a két egyenletrendszert, az erőtörvényt (a dinamikát) és a mozgástörvényt (a kinematikát) együtt alkalmazzuk, akkor (elvben) ki lehet számítani a test pályáját az idő függvényében. Így meg lehet mondani, milyen pályán mozdul el Alexei a sarki kirakat felé, vagy megadható egy ballisztikus lövedék röppályája is a két kontinens között (sajnos). Newton valóra váltotta Püthagorasz óhaját: olyan matematikai rendszert hozott létre, amely lehetővé teszi a mozgás leírását. S azzal, hogy elmagyarázta, ugyanaz a törvény szabályozza a mozgást a Földön, mint a térben, Newton még valami mást is tett, ami ugyanilyen fontos volt: Newton egyesített két régi és különálló diszciplínát – a fizikát, amelyről azt tartották, hogy elsődlegesen a hétköznapi emberi tapasztalatokkal foglalkozik; és a csillagászatot, ami az égitestek mozgását tárgyalta.

* * *

Ha Newton elképzelése a térről és az időről helyes, akkor könnyű belátni két olyan dolgot, ami nem lehetséges. Először: nem lehet korlátja annak a sebességnek, amivel egy tárgy a másikat megközelíti. Hogy ezt belássuk, tegyük fel, hogy létezik ilyen sebesség, és nevezzük ezt c-nek. Majd tegyük fel, hogy egy tárgy ezzel a sebességgel közeledik felénk. Most (a tudomány kedvéért) köpjünk a tárgyra. Ha ez a dráma bekövetkezik egy olyan megfogható közegben, mint az abszolút tér, akkor könnyű látni, hogy a szóban forgó tárgy gyorsabban közelít a nyálhoz, mint hozzánk. A sebességkorlátozó törvény tehát sérül. Másodszor: a fény terjedési sebessége nem lehet állandó. Pontosabban: a fény különböző megfigyelőkhöz különböző sebességgel kell közelítsen. Ha a fénnyel szemben futunk, a fény gyorsabban közelít, mintha elfutnánk előle.
Ha a tér számára létezik egy objektív struktúra, akkor ez a két igazság magától értetődő. Mégis, ez a két „igazság” – hamis! Ez a speciális relativitáselmélet alapja, az a fűszer, ami hiányzott a görbült terek fizikájának korábbi spekulációiból. Ezt a tényt már sokkal korábban „megfigyelték”, hogysem „értékelték” volna.
[bookmark: tart27]
22. A relativitás másik
Albertje







[bookmark: _ednref160]Néhány évvel azután, hogy a fiatal Riemann oly mélyreható érdeklődést mutatott a lengyel történelem iránt, az akkor porosz uralom alatt álló, lengyelek lakta Poznan városában egy fiatal párnak Albert nevű fia született. Az ember elképzelheti, hogy a lengyel nacionalizmus hősies küzdelmeiről mégiscsak vonzóbb olvasni, mint annak közvetlen hatásait megtapasztalni. A lengyelek hősök voltak – és antihősök is egyben, akik terjedő antiszemitizmusa nagy szerepet játszott abban, hogy később Hitler Lengyelországba telepítette gázkamráit. Akármilyen okból kifolyólag, nagyjából Gauss halálával egy időben, tehát valamikor 1855 körül, Albert családja, Michelsonék1 kivándoroltak New Yorkba, majd San Franciscóban telepedtek le. Az első Nobel-díjas „amerikai” természettudós egy lengyel-porosz zsidó volt, aki csaknem fél évszázaddal a díj alapítása előtt, még hároméves totyogó kisfiúként érkezett az Egyesült Államokba.
1856-ban a Michelson család Murphy’sbe, egy Calaveras megyében lévő bányászvárosba költözött, ami körülbelül félúton van San Francisco és a Tahoe-tó között. Kulturálisan egyre távolabb költözve német-zsidó gyökereiktől, Michelsonék családja végül Nevada egy szárnyait bontogató kisvárosában telepedett le. Az új „city”, akkor még alig nagyobb, mint egy táborozóhely a Mount Davidson lejtőin, 1859-ben alakult. A legenda szerint egy részeg bányász egy üveg whiskyt vágott a sziklához – ez volt a település keresztelője. Így kezdődött az „Old West” egyik legnagyobb városává lett Virginia City története. A bányász, James „Old Virginny” Finney magáról nevezte el a várost. Az az arany és ezüst, amit Mount Davidsonban bányásztak, hamarosan Finney városát a Nyugat egyik vezető ipari központjává tette, mely méretét, valamint a fegyverek, szerencsejátékosok és természetesen mulatók számát tekintve San Franciscóhoz hasonlított. Albert egyik húga The Madigans címmel később egy regényt is írt erről a világról. Albert öccse, Charles, aki Franklin Roosevelt elnöksége idején közreműködött a New Deal megalkotásában, szintén beszámolt erről The Ghost Talks (A szellem beszél) című önéletrajzában. A költözködés után a fiatal Albert csak kevés időt tölthetett családjával. Mivel tehetséges és eszes gyereknek tartották, inkább a rokonoknál maradt San Franciscóban, hogy a Lincoln Grammar School, később pedig a Boy’s High School (Felsőfokú Fiúiskola) növendéke legyen, ez utóbbiban az iskolamesternél kapott teljes ellátást.
[bookmark: _ednref161][bookmark: _ednref162]1869-ben a fiatal Michelson felvételizett az Egyesült Államok Tengerészeti Akadémiájára, az ország másik végében lévő marylandi Annapolisba. Nem sikerült neki, mert a vizsgán sokkal inkább állóképességét, semmint tudását tették próbára. Hazatérte után újra felkerekedett: a tizenhat éves fiú felszállt a néhány hónappal azelőtt befejezett transzkontinentális expresszre, és Washingtonba utazott, hogy meglátogassa Grantet, az Egyesült Államok elnökét. Ezalatt a kongresszus nevadai képviselője kérvényezte, hogy Albert ösztöndíjat kaphasson. Az üzenete így szólt: az ifjú Albert a Virginia City-beli zsidóság kedvence, ha az elnök támogatná őt, az nagymértékben növelné a zsidóságtól kapott szavazatainak számát. Michelson tényleg elment Grant elnökhöz2. Nincs feljegyzésünk arról, hogyan zajlott le a találkozás. A nép száján Grant reputációja nem tér el nagyon Virginia Cityétől: a whisky fontos szerepet játszott benne. Ez persze így nem igaz, legfeljebb élete rövid szakaszára volt jellemző. Ami viszont igaz, csak nem emlegetik elég gyakran, a West Point katonai főiskolán Grant igencsak jeleskedett matematikából3. Szintén nem tudni, hogy aztán az ifjú Albert matematikai tehetsége ihlette-e meg Grantet, vagy csak az történt, hogy az elnök úr a zsidó szavazóközönségnek hozott áldozatot, de végeredményben speciális helyet biztosított Michelsonnak az akadémián, és arra kötelezte őket, hogy abban az esztendőben az új kadétok felvételére megszabott szoros létszámot emeljék meg. Hosszú távon talán a Michelson-Morley-kísérlet lehet Grant elnök működésének legmaradandóbb eredménye.
[bookmark: _ednref163][bookmark: _ednref164]Michelson iskolai bajnok lett a bokszban, és szabályokat semmibe vevő vadnyugati háttere az akadémián egyénisége részévé vált. Tanulmányait tekintve a huszonkilenc tagú osztályban a kilencedik helyen végzett. Ám ez a közepes helyezés semmit nem mutat meg pályafutása valódi dinamikájából: elsőként végzett optikából és akusztikából, a tengerészetből huszonötödik helyen, míg történelemből a legutolsón. Michelson tehetsége és érdeklődése kristálytisztán megmutatkozott. A Tengerészeti Akadémia véleménye szintén teljesen világos volt. Felügyelője, John L. Worden (aki 1862-ben a Monitor hajó parancsnoka volt a Merrimac elleni küzdelemben) ezt mondta Michelsonnak: „Ha kevesebbet törődne ezekkel a tudományos dolgokkal, és többet foglalkozna a tengerészeti ballisztikával, akkor eljöhet még az idő, hogy eleget fog tudni ahhoz, hogy az ország valami hasznát vehesse magának”4. Bár a lövészetre sokkal nagyobb hangsúlyt fektettek, mint a természettudományokra, abban az időben az egész országban Annapolisban folyt a legjobb fizikakurzus. Michelson tankönyve egy francia szerző, bizonyos Adolphe Ganot 1860-as könyvének a fordítása volt. Ebben Ganot leír egy közeget, ami a hiedelem szerint az egész Univerzumot áthatja: „…Egy igen finom, súlytalan és kiválóan rugalmas fluidum, amit éternek neveznek, oszlik el egyenletesen az egész Univerzumban, ami áthatol minden test tömegén, még a legsűrűbb és a legátláthatatlanabb testen is, csakúgy mint a legkönnyebb és legátlátszóbb fajtán”5.
Majd Ganot továbbmegy és az éternek alapvető szerepet tulajdonít a legtöbb, akkoriban kísérletileg tanulmányozott jelenségben, a fény, a hő és az elektromosság körében: „…Az éterrel közölt bizonyos mozgás képes hőjelenség keltérésre, hasonló fajta mozgás, csak nagyobb frekvencia esetén a fényt hozza létre, és meglehet, hogy egy alakjában vagy jellegében különböző mozgás az elektromosság oka”.
[bookmark: _ednref165][bookmark: _ednref166][bookmark: _ednref167]Az éter modern fogalmát Christian Huygens 1678-ban vezette be6. Arisztotelész az ötödik „elem” számára alkotott szakkifejezése eredetileg azt az anyagot jelentette, amiből az egek állnak7. Huygens víziója szerint Isten a teret olyannak teremtette, mint egy nagy akvárium, bolygónk pedig úszkáló játékszer, ami azért került bele, hogy a halak jól szórakozzanak. Csakhogy az éter nem olyan mint a víz, nemcsak körülöttünk, hanem bennünk és rajtunk keresztül is folyik. A fogalom vonzó volt mindenki számára, aki Arisztotelészhez hasonlóan nem tudott megbarátkozni a „semmi”, vagy vákuum fogalmával. Huygens Arisztotelész éter fogalmát alkalmazta, amikor Olaf Rømer dán csillagász felfedezését próbálta megmagyarázni. Nevezetesen azt, hogy a Jupiter egyik holdjáról érkező fény számára idő kell ahhoz, hogy a Földet elérje, nem pillanatszerűen érkezik meg. Az a tény, hogy a fény a fényforrás sebességétől függetlenül látszik mozogni, bizonyíték volt arra, hogy a fény olyan hullámokból áll, amelyek a térben nagyjából úgy terjednek, mint a hang a levegőben. A hanghullámok azonban, a vízhullámokhoz vagy a gumikötélen terjedő hullámokhoz hasonlóan egy közeg (mint pl. levegő, víz vagy kötél) rendezett mozgásaként foghatók fel. Ha a tér üres lenne, gondolták, a hullám nem tudna benne terjedni. Mint Poincaré írta 1900-ban: „Tudjuk, hogy az éterbe vetett hitünk honnan ered. Amikor a fény úton van felénk egy távoli csillagtól … már régen nincs a csillagon és még nincs a Földön. Szükségszerű, hogy valahol valamilyen anyag fenntartsa mozgását”8.
Mint a legtöbb modern elméletnek, Huygens éterelméletének is megvan a jó, a rossz és a csúf oldala. Huygens elméletében a rossz és a csúf az a parányi kis feltevés, hogy az egész Univerzumot és benne mindent ez a rendkívül hígított és mind ez ideig meg nem figyelt gáz jár át. Ez okozta azt, hogy Huygensnek a szőnyeg alá kellett sok mindent söpörnie, mert feltételezését egy mindenütt az Univerzumban jelenlévő anyag létéről nem sikerült összebékíteni az ismert fizikai törvényekkel. Huygens elméletét elvetették amíg élt, és inkább Newton elméletét fogadták el, miszerint a fény részecskékből áll.
Egy 1801-ben elvégezett kísérlet azonban megváltoztatta az uralkodó szemléletet. Mellesleg ez lett a fény tanulmányozásának legfontosabb új eszköze a XIX. században. A kísérleti elrendezés egyszerűnek tűnt, azon kísérletek újabb változata volt, amelyekkel már évszázadok óta vizsgálták a keskeny résen áthaladó fénysugarakat. Csakhogy Thomas Young angol fizikus egyetlen fényforrásból két különböző nyíláson bocsátotta át a fényt, majd egy ernyőn vizsgálta, hogy a két nyaláb hogyan esik egymásra. Amit látott, az a fényes és sötét csíkok váltakozása, az interferenciakép volt. Az interferencia magyarázata rendkívül egyszerű a hullámok segítségével. Az egymást átfedő hullámok bizonyos tartományokban összeadódnak, más tartományokban kioltják egymást, mint az összeütköző vízfodrok esetében hullámhegyek és hullámvölgyek küzdelmét figyelhetjük meg. A fény hullámtermészetének felismerése az éterelmélet reneszánszát jelentette.
[bookmark: _ednref168]Nem arról van szó, hogy Huygens elmélete ellen szóló megállapításokat az elmúlt századok eloszlatták volna. Ehelyett két, egyformán ellenszenves versenyző küzdelme zajlott. A piros sarokban volt a fény, mint közeg nélküli hullámmozgás. Vízhullámok víz nélkül? Nehéz lenne egy ilyen versenyzőnek szurkolni. A kék sarokban volt a fény, mint hullámmozgás egy olyan közegben, amely mindenütt jelen van, de sehol sem mutatható ki. Mint egy folyadék, ami mindenütt jelen van – kötjük az ebet a karóhoz –, de sehol sem lehet látni, ez a küzdő fél sem igazán kívánatos. „Lenni (csak nem hatni semmiképp), vagy nem lenni?” A laikus számára ez persze szőrszálhasogatásnak tűnhet, a kor természettudósai azonban meg voltak győződve, hogy ez a közeg nem más, mint az éter. Hiszen bármi jobb, mint egyszerűen „nem lenni”. Az hogy a fizikusok nem tudták, nem okozott különösebb problémát, vélekedett E. S. Fischer, az Elements of Natural Philosophy (1827, A természetfilozófia elemei) című munkájában9.
[bookmark: _ednref169]Egyedül Augustin-Jean Fresnel francia fizikus nem érezte úgy, hogy az éter természete irreleváns. Az 1821-ben kiadott matematikai értekezésében kimutatta, hogy a hullámok két, alapvetően eltérő módon rezeghetnek: vagy a terjedési irányukban belesimulva rezegnek, mint a hanghullámok, vagy merőlegesen, mint a kötélen terjedő hullámok. Fresnel kimutatta, hogy a fényhullámok minden valószínűség szerint ez utóbbi típusba tartoznak10. Ezek a hullámok viszont megkövetelik a közegtől, hogy rendelkezzék egy bizonyos rugalmassággal – más szóval legyen „elég testes”. Ezért Fresnel az állította, hogy az éter nem gáz, hanem szilárd anyag, ami az egész Univerzumot elfoglalja. Ami csak rossz és csúf volt eddig, az most már csaknem felfoghatatlan is. Mégis, az évszázad végéig ez maradt az elfogadott nézet.
[bookmark: tart28]
23. A tér anyaga









Mi alkotja a teret? Az ennek megértésére tett erőfeszítés minden idők valószínűleg egyik legnagyobb tudományos áttöréséhez vezetett. Mindez leginkább olyan természettudósok intenzív küzdelmének az eredménye, akiknek fogalma sem volt, merre mennek, és azt sem tudták, hogy hova lyukadnak ki. Miként maga a tér is, útjuk telis-tele volt kanyarokkal és kitérőkkel.

* * *

[bookmark: _ednref170]A történet 1865-ben kezdődött, amikor egy alacsony növésű skót fizikus nyilvánosságra hozta A Dynamical Theory of Electromagnetic Field (Az elektromágneses erőtér dinamikai elmélete) című tanulmányát. Ezt követően kiadott egy könyvet is 1873-ban. A Treatise on Electricity and Magnetism (Értekezés az elektromosságról és a mágnességről) címen. A szerző eredetileg a James Clerk nevet kapta a keresztségben1, de hogy egy elhunyt nagybácsitól örökségre számíthasson, édesapja később a Maxwell nevet adta hozzá. Mint kiderült, egy kis pénzzel és ezzel a szokatlan záradékkal a nagybácsi halhatatlanná tette a nevét, legalábbis a fizikusok és tudománytörténészek között.
[bookmark: _ednref171]Az elektromágnesség Maxwell-féle elmélete a mechanikával, a relativitáselmélettel és a kvantumelmélettel együtt a modern fizika sarokpilléreit alkotja. Akik a középiskolában vagy az egyetemi éveik során próbálták az elektromosság és mágnesség, a fény változékony és komplex jelenségkörét megérteni, a vektorkalkulus megtanulása után hirtelen felfedezték, hogy a jelenségek mindegyike benne van néhány ártatlan sorban – amit Alexei „számmondatoknak” nevezne. A pasadenai Kalifornia Műegyetem közelében lévő üzlet kirakatában lógó trikón a Teremtés Könyvéből vett idézet díszelgett: „És mondá az Isten: legyen (itt következett a négy egyenlet). És lőn világosság”. Az egyenletek a Maxwell-egyenletek voltak2. Egy pár betű és néhány különös jel – és a gravitációtól eltekintve ezek az egyenletek megmagyaráztak minden erőt, ami a tudományban akkor ismert volt.
A rádió, a televízió, a radar és a távközlési műholdak például mind-mind ennek a tudásnak a következményei. A Maxwell-elmélet kvantumvariánsa az erőterek kvantumelméletének olyan változata, amit a legalaposabban és legkiterjedtebben ellenőriztek kísérletileg. Alapul szolgál a ma ismert legkisebb anyagi összetevőket leíró „elemi részek standard modellje” számára. A Maxwell-egyenletek gondos elemzése maga után vonja a speciális relativitáselméletet, és azt is, hogy éter pedig nem létezik.
Abban az időben ezekből semmi nem volt ismeretes.
A fizikus hallgatókat ma megismertetik a Maxwell-elmélettel, mint a parciális differenciálegyenletek egy tömör együttesével, ami két vektorváltozójú függvényt határoz meg. Ezekből elvben a vákuumban lejátszódó minden elektromágneses és optikai jelenség levezethető. Ez mind nagyon szép! Az elmélet igazi lényegének feltárásához azonban rögösebb út vezetett. Még doktorandusz koromban, egyszer egy bonyolult elektromágneses sugárzási probléma megoldását kaptam feladatul. Két különböző módszer is adódott, hogy ráérezhessek az erőteljesebb megoldás látszólagos mágikus erejére. A modern tenzorszámítás technikáját alkalmazó elegáns megoldás kevesebb számolást igényelt, mint amit egyetlen oldalra le lehetett írni. A „nyers erő” módszere tizennyolc oldalnyi matematikát vonultatott fel, hogy ugyanahhoz az eredményhez elvezessen. (Az osztályt vezető professzor a végén még pontokat vont le azért, mert hősködtem.) Az utóbbi technika ugyanis közelebb volt Maxwell eredeti elméletéhez, de mégsem volt annyira nehézkes. Maxwell 1865-ös elmélete még 20 differenciálegyenletet vonultatott fel 20 ismeretlen függvénnyel!
[bookmark: _ednref172][bookmark: _ednref173][bookmark: _ednref174]Aligha lehet Maxwellt hibáztatni azért, mert nem alkalmazott egyszerűsítő jelöléseket, hisz azokat akkor még nem fedezték fel vagy nem alkalmazták széles körben. Másrészt viszont Maxwell elmélete nem volt bonyolult vagy bonyolultnak tűnő, csak kevéssé volt megmagyarázva. Minden valószínűség szerint Maxwell aprólékossága – ami lehetővé tette, hogy megértse és egységesítse kora ismeretanyagát, és fejében egy ilyen bonyolultságú elméletté álljon össze – interferált a magyarázó készségével. Mint Hendrich Antoon Lorentz – egyike azoknak, akik az elméletet leegyszerűsítették és értelmezték – a későbbiekben írta3: „Nem mindig egyszerű Maxwell elgondolásait megérteni. Az egységesség hiánya annak tudható be, hogy gondosan feljegyzi fokozatos áttérését a régi eszmékről az új gondolatokra”. Paul Ehrenfest kevésbé kedves szavaival ez „egyfajta intellektuális dzsungel volt”4. Maxwell a kollégáinak elmélete legvelejét adta át, nem pedig pedagógiai magyarázatokat. Nehézkes előadásmódja ellenére Maxwell a világ elektromágneses jelenségeinek a legnagyobb mestere volt! Mi lehetett az ő álláspontja, miből állt az ő feltevése szerint a tér? Éter vagy nem éter? Az Encyclopaedia Britannica 1878. évi 9. kiadásában közölt erről egy cikket5:

„Bármilyen nehézségekkel is kerülünk szembe, miközben az éter mibenlétéről egy konzisztens elméletet dolgozunk ki, nem lehet kétségünk afelől, hogy a csillagközi és a bolygóközi tér nem üres, hanem valamilyen anyagi szubsztancia, vagy test tölti ki, ami bizonyosan a legnagyobb és valószínűleg a legegyenletesebb eloszlású test, amiről csak tudomásunk lehet.”

Még a nagy Maxwell is ragaszkodott az éter fogalmához.
Javára írandó, hogy másokkal ellentétben nem intézte el egyszerű kézlegyintéssel az éter kérdését, mint megfigyelhetetlen szükségszerűséget. Felfedezte az első, és lényegbevágó megfigyelhető következményt. Ha a fényhullámok állandó sebességgel terjednek az éterhez képest, és ha a Föld elliptikus pályán mozog az éterben, akkor az a sebesség, amivel a térben a kibocsátott hullám a Földet megközelíti, változni fog, attól függően, hogy hol tart éppen a Föld a pályáján. Hiszen a Föld különböző irányokban mozog januárban és mondjuk júliusban, amikor éppen pályája átellenes oldalán van. Maxwell 1864. április 23-án megkísérelte annak a meghatározását, hogy a Föld milyen gyorsan mozog az éterben.
Erőfeszítéseit a Proceedings of the Royal Society című tudományos lapnak küldött Experiment to determine whether the Motion of the Earth influences the Refraction of Light (Kísérlet annak meghatározására, hogy vajon a Föld mozgása befolyásolja-e a fény törését) című cikkében foglalta össze. Sajnos ezt a közleményt sohasem jelentették meg, mert a főszerkesztő, G. G. Stokes meggyőzte Maxwellt, hogy megközelítése hibás. Pedig nem volt az, legalábbis elvben. Maxwell sajnos nem érte meg az éterprobléma megoldását. Előrehaladott gyomorrákja ekkor már szinte elviselhetetlen fájdalmakat okozott. 1879-ben levelet írt a tárgyról egy barátjának. Végül is ez a levél vezetett el az éter létezésének kísérleti cáfolatához.
Maxwell levelét halála után közölte a Nature, melynek elolvasása Michelsont egy kísérlet összeállítására ösztönözte. Hogy megérthessük Michelson kísérletét, gondoljuk azt, hogy Nicolai és Alexei a papájukkal együtt a parkban labdáznak. Egy derékszögű háromszög csúcsaiban állnak: Nicolai észak felé, Alexei ugyanolyan távolságra a papától nyugatra, szóval a függőleges és a vízszintes oldal mentén van.
Most pedig képzeljük el, hogy mind a három ember észak felé fut, ugyanakkora sebességgel. Tegyük fel, hogy a papa 10 méterre van mindegyik fiától, és azt is, hogy mindhárman óránként 10 kilométert tesznek meg. A papa üldözi Nicolait, aki fut a labdával, Alexei pedig lépést tart apjával, csak állandó távolságra egy párhuzamos pályán haladva. A papa rápillant órájára és felkiált: „Ideje hazamenni”. Amint a gyerekek meghallják, visszakiáltanak: „Nem!” És most itt a kérdés: Egyszerre fogja-e meghallani fiai hangját?
A válasz: „Nem”! Tekintet nélkül arra, hogy a nemet kiáltó gyerekek milyen gyorsan futnak, kiáltásuk a stacionárius állapotú levegőben ugyanakkora sebességgel terjed, ezt a sebességet jelöljük c-vel. De Nicolai a papa kiabálása elől fut, így a kiáltásnak messzebb kell eljutnia, míg elér hozzá, mert meg kell tennie a 10 métert és még azt a távolságot is, amit Nicolai megtesz azalatt, míg utoléri őt a kiáltás. Nicolai visszakiáltása – másrészt – nem kell, hogy az egész 10 métert megtegye, míg az eléri a papáját, mert a papa feléje fut. Ezért ez a kiáltás csak 10 métert, mínusz a papa által addig megtett utat futja be, ameddig a kiáltást meghallja. Ezt másképpen úgy is mondhatjuk, hogy a papa kiáltása Nicolaihoz a c - 10 km/óra sebességgel közeledik, míg
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Nicolai kiáltása c + 10 km/óra sebességgel közeledik. Ugyanakkor Alexei se nem a papa felé, sem pedig tőle eltávolodva fut, ezért kiáltásuk egymáshoz pontosan c sebességgel ér.
Ennek az elemzésnek az alapján világosan látszik, hogy a hang számára az oda-vissza utazás különböző időtartamok alatt történik meg, de most melyik lesz a gyorsabb, az egyenletes c sebességű, ami az oda-vissza utazás mindkét ágán ugyanolyan gyors; vagy az, amelyik oda lassabb: c - 10 km/óra, vissza pedig gyorsabb: c + 10 km/óra sebességgel halad?
Alexei és Nicolai már ismerik a választ abból a történetből, amit néhányszor már elolvastam nekik (amikor nem akartak aludni menni). A történet tanulsága az, hogy a lassú és állandó nyeri a versenyt. Hogy ezt belássuk, tegyük fel pillanatnyilag, hogy a hang sebessége c = 10,00001 km/óra (így írjuk le tizedes törttel azt, hogy 10 egész meg egy icipici). Ebben az esetben Alexei és papa kiáltásai 10,00001 km/óra sebességgel cserélődnek, vagyis körülbelül 2 másodpercet igényelnek utanként. Nicolai visszakiáltása ennél gyorsabban ér el a papához, c + 10 = 20,00001 km/óra sebességgel, vagyis körülbelül 1 másodpercen belül. De először a papa kiáltása kell, hogy elérje Nicolait. Ez milyen hosszú időt vesz igénybe? A papa kiáltása a távolságot csupán c - 10 = 10,00001 - 10,00000 = 0,00001 km/óra sebességgel teszi meg. Ebben az ütemben a kiáltás mintegy hat hét alatt jut el céljához! Így Alexei nyer. Természetesen a hang sebessége valójában 331,6 m/s. Így hát még célfotóval ellenőrizve is, a verseny döntetlenre áll.
Ha a hangot a fénnyel helyettesítjük, a levegőt pedig az éterrel, a fenti kísérlet Maxwell eszméjének megtestesüléséhez vezet. A papának és a fiúknak nem kell futniuk, egyrészt azért, mert a Föld már amúgy is rohan a térben, a Nap körüli pályáján körülbelül 30 km/s sebességgel halad. (A Föld a saját tengelye körül is forog, ennél azonban sokkal kisebb sebességgel. Abból viszont, hogy a Föld a Nap körül egy adott sebességgel kering, egyáltalán nem következik, hogy az éterben is ezzel a sebességgel mozogna. Mégis úgy látszott, mintha a Föld az éterben valamilyen sebességgel mozogna, amelytől azt várták, hogy az évszaktól függően változik, hiszen a Föld mozgásiránya a térben aszerint változik, hogy hol tart éppen a pályán. Kísérletünk, amit a papa és a gyerekek segítségével végeztünk, meg kellene, hogy mutassa, mekkora a Föld sebessége az éterben, hiszen ha tudjuk, mekkora idővel nyer Alexei, abból meg lehet kapni a c sebesség értékét (és így a Föld éterhez viszonyított sebességét is). A kísérlet egyszerű – leszámítva, hogy a laboratórium nem a valódi világ.
A fény nagyon gyorsan terjed, a Föld pálya menti sebességénél mintegy 10 000-szer gyorsabban. Ez ugyan megfelelően kerek szám az elmélet számára, de a kísérlet céljaira egyenesen maga a lidércnyomás. A szituáció matematikai elemzése azt mondja, hogy a kísérletben lejátszódó kis sebességnél a papa és Alexei, ill. a papa és Nicolai közötti párbeszéd időkülönbsége csak a százalék milliomodrészét teszi ki. Ez azt jelenti, hogy ha a papa, Alexei és Nicolai egy-egy fényévnyi távolságra lennének egymástól, a fényjelek a gyerekektől körülbelül még egyharmad másodpercen belül érnének vissza. Kérdés, hogy a módszer megfelel-e a gyakorlat lehetőségeinek. Hát nem tűnik úgy!
Michelson szerencséjére Armand-Hippolyte-Louis Fizeau francia kutató orvos édesapjától nagy vagyont örökölt, és így Fizeau idejét és pénzét optikai érdeklődése kielégítésére fordíthatta.
[bookmark: _ednref175][bookmark: _ednref176]Fizeau érdeklődését különösen lekötötte egy olyan földi berendezés megtervezése, amellyel meg lehet mérni a fény terjedési sebességét. Ezzel egyébként már Galilei is foglalkozott, de az ő idejében még nem álltak rendelkezésre az ipari forradalom új fejlesztései és XIX. század közepének precíziós eszközei6. Hogy Fizeau elérhesse célját, olyan berendezést épített, amiben a fénysugár megszakítás nélkül 8 km-es utat tehet meg. Ezt a nyolc kilométert bizony sok időbe telne megtenni egy lassú buszon, de a fény gyorsan végére ér, ha 299 335 km/s sebességgel halad! Mégis, 1849-ben Fizeau eredményei7 5%-ra megközelítették azt az értéket, amit ma a fény terjedési sebességeként ismerünk. Fizeau egy 1851-ben elvégzett kísérletsorozattal ellenőrizte, hogy a Föld mozgása során magával viszi-e az étert. Fresnel 1818-ban javasolt elmélete szerint ez fontos volt, mert azt jelenthette, hogy a Föld felszínéhez képest az éter áll, vagy csak egy kicsit mozog. Fizeau 1851-es berendezése bonyolult és mély benyomást keltő volt, és egy fontos újdonságot is tartalmazott: egy finoman ezüstözött fénytörő lencsét, ami a fénysugarat két részre bontotta, amelyek azután különböző utakon haladtak, majd később összetalálkoztak, és újra egyesültek. Michelson kísérletében a vékony fénysugár egy parányi fényforrásból érkezik a lencsére, amelyen a fele áthalad, a másik fele pedig 90°-os szögben visszaverődik. A csúcspontban álló papa szerepét most ez a félig áteresztőre ezüstözött lencse játssza. Alexei és Nicolai helyettesítése normális tükrökkel történik, amelyek egyszerűen a csúcspont felé verik vissza a fényt, ahonnan az érkezett.
Michelson egy állandó és kisméretű fényforrást alkalmazott, hogy egy vékony nyalábot tudjon a fénysugárosztóra juttatni. Minthogy a fény hullámként viselkedik, az újra egyesülés alkalmával az a hullám, amelyik gyorsabban tér vissza, nem lesz egy fázisban a lassabbal. Ez interferenciát fog okozni, az éterbeli sebesség meghatározásakor – lásd előbb – szükséges időkülönbségre számítható át. (Ha ezt az interferencia-effektust nem mérőeljárásként akarjuk használni, a kísérlet úgy is elvégezhető volna, hogy a két pontban fényt villantunk fel és összehasonlítjuk a futási időket.)
Michelson ténylegesen nem is remélhette, hogy berendezésének két karja hullámhossznyi pontossággal egyenlő legyen, vagy hogy hosszúságukat ezzel a pontossággal megmérheti. Továbbá azt sem lehetett meghatározni, hogy berendezése ténylegesen milyen szöget zár be az éter sebességével. Michelson azonban okosan megoldotta ezeket a problémákat azáltal, hogy berendezését 90°-kal elforgatta és megmérte a csíkrendszer eltolódását, amikor a sugarak „felcserélték szerepüket” – ahelyett, hogy inkább a csíkokat magukat vizsgálta volna.
Ha Michelson a bokszkarrier mellett döntött volna, nem kellett volna messzire utaznia, hogy tovább fejlődhessen, de természettudósként egészen más volt a helyzet. 1880-ban engedélyt kapott a Haditengerészettől, hogy átkelhessen az Atlanti-óceánon további tanulmányai érdekében. Az ilyen ösztöndíj akkoriban egészen általánosnak számított, az Egyesült Államok kormánya arra törekedett, hogy katonai erejét a katonai intelligencia csillogtatásával is növelje. Michelson még nem is volt harmincéves, amikor berlini és párizsi tartózkodásai során már továbbfejleszthette interferométer-elgondolását.
A Michelson által javasolt berendezést a korabeli csúcstechnológia szintjén kellett megépíteni: a milliméter ezredrészét kitevő változtatás, a karok hossza közti különbség már tönkre is tehette volna a kísérletet. Ha az egyik kar hőmérséklete csak egyszázad fokkal magasabb, mint a másiké, a mérés nem sikerülhetett volna. Mielőtt elkezdte volna a méréseket, Michelson papírhengerekkel vonta be a karokat, hogy kizárja a hőmérséklet-változtató hatásokat, és olvadó jéggel vette körül a berendezést, hogy a kerületét állandó 0 °C hőmérsékleten tarthassa. Végül is a berendezés olyan érzékeny lett, hogy már azt is ki lehetett mutatni vele, ha valaki 100 méterrel odébb toppantott egyet.
Egy ilyen berendezés persze nagyon költséges. Michelson szerette volna, ha a rézvázat a híres német készülékgyártó, a Schmidt & Haensch cég építi, de ezt az extravaganciát nem engedhette meg magának. Szerencsére egy amerikai feltaláló a segítségére sietett. Alexander Graham Bell pár évvel korábban csinos kis vagyont és nagy hírnevet szerzett a „beszélő telegráf” felfedezésével, vagyis azzal a kis berendezéssel, amit ma telefonnak hívunk. Bell 1880-ban már egy új találmányon, a videofonon dolgozott és szerződésben állt a Schmidt & Haensch céggel. Hitelkerete garancia volt, így Michelson berendezése végül is megépülhetett.
[bookmark: _ednref177][bookmark: _ednref178]Michelson a kísérletet 1881 áprilisában hajtotta végre Potsdamban (Németország). Tulajdonképpen nem talált időkülönbséget a tér különböző tartományain áthaladó nyalábok között. Mit jelent ez? Michelsonnak nem az éterhipotézis kipróbálása, vagy éppen megcáfolása volt a célja, egyszerűen csak meg akarta mérni, mekkora a sebességünk, amivel az éterben haladunk. Amikor nem találta meg a méréssel ezt az adatot, egyáltalán nem következtetett arra, hogy az éter nem létezik, csak azt mondta: valahogyan nem mozgunk benne. Hogyan lehet, hogy a Föld nem mozog az éterben? Az egyik válasz az volt, amit Fresnel mondott: az étert a Föld magával viszi. Ezt – bár nem ilyen pontossággal – Fizeau is megerősítette. Mindenesetre, ha Michelson nem tekintette munkáját az éter léte elleni kihívásnak, más sem tett ilyet. Sir William Thomson (Lord Kelvin), az Egyesült Államokban tett egyik látogatása során, 1884-ben kereken kimondta: „…a fényhordozó éter …az egyetlen olyan szubsztancia, amelyben megbízunk a dinamikában. Az egyetlen dolog, amiben bizonyosak vagyunk, az a fényhordozó éter valódisága és szubsztancialitása.”8 Az alapja ennek az, hogy Maxwell elektromágneses elméletéhez kellenek a hullámok, a hullámok pedig megkívánják a közeget. A legtöbb fizikus figyelmen kívül hagyta, semmibe vette Michelson kísérletét úgy ahogy volt. Később Michelson ezt írta9: „Megpróbáltam ismételten felkelteni tudóstársaim érdeklődését a kísérlet iránt, de sikertelenül. Teljesen elbátortalanított, hogy ez milyen kicsiny figyelmet kapott.”

* * *

[bookmark: _ednref179]Azok közül, akik Michelson kísérletét komolyan vették, az egyik Lorentz, a holland fizikus volt. 1886-ban kérdésessé tette Michelson elméleti elemzését10, kimutatva azt a problémát, amit elsőként André Potier francia fizikus vetett fel 1882-ben. Michelson elemzése, miként a mi fentebbi gondolatmenetünk, valójában egy apró hibát tartalmaz. Tárgyalásunk során feltételeztük, hogy a papa Alexeinek szánt kiáltása (a mi elrendezésünk szerint) horizontálisan terjed attól a pozíciótól és időponttól, amikor a papa kiált, addig a pozícióig és időpontig, amikor Alexei meghallja. Addig az időpontig azonban, amíg a kiáltás eléri Alexeit, egy kicsit mindenki előremozdult. Ez pedig azt jelenti, hogy a papa kiáltása többet utazik, mint 10 távolságegységet, ahogyan feltettük. Ez a picike távolságdarabka egy kis extra időt jelent, ami csökkenti azt az időtartamot, mellyel Nicolai és papa előnybe jutott. Az új analízisben az interferenciasávok eltolódása csak feleakkora, mint amit Michelson eredetileg várt. Lorentz úgy érvelt, hogy ha Michelson a kísérlete során a korrekt elemzést alkalmazta volna, akkor a hiba elegendő lett volna ahhoz, hogy következtetését érvénytelenítse!
[bookmark: _ednref180]Michelson visszatért az Egyesült Államokba, és Clevelandban a Case School professzora lett. Nemsokára Lorentz és Lord Rayleigh szót emeltek a kísérlet finomításáért és megismétléséért. Michelson a szomszédos Western Reserve College-ban tevékenykedő kollégájával, Edward Williams Morley-val kezdett el dolgozni rajta. 1885-ben azonban Michelson idegösszeomlást kapott és elhagyta az iskolát, New Yorkba ment. Morley folytatta a munkát, s bár nemigen számított kollégájára, Michelson a szemeszter végén visszatért. Clevelandban, 1887. július 8-án, majd 9-én, 11-én és 12-én déli 12 órakor közösen végezték el a végső kísérletet, ami azóta minden fizikus hallgató egyetemi tanulmányainak részét képezi. A megismételt kísérlet fogadtatása ugyanolyan langyos volt mint korábban. A negatív eredmény, amit ma oly forradalminak tekintünk, sokaknak nem volt más, mint egy sikertelen próbálkozás a Föld sebességének megmérésére az éterben. Bár Michelson és Morley eredetileg további kísérleteket terveztek, pl. különböző évszakokban, vagyis a földpálya különböző szakaszain, egy idő után azonban ők maguk is elvesztették érdeklődésüket11.
[bookmark: _ednref181]Miként a görbült tér felfedezése, úgy a Michelson-Morley-kísérlet sem okozott robbanásszerű áttörést az elméletek történetében. Olyan volt inkább, mint egy gyutacs, aminek első füstfelhője 1889-ben mutatkozott csak meg – amikor már úgy látszott, a kísérletet régen elfeledték. Egy rövid levél jelent meg az új amerikai szaklapban, a Science-ben. Ez a levél így kezdődött12:

Nagy érdeklődéssel olvastam Michelson és Morley urak csodálatosan érzékeny kísérletéről, amelynek az volt a célja, hogy eldöntse, milyen messzire viszi magával a Föld az étert. Kísérletük eredménye úgy tűnt, szemben áll más kísérletekkel, mert azt mutatja, hogy az étert a levegőben a Föld csak egy értékelhetetlen kis mértékig viszi magával. Szerintem az egyetlen hipotézis, ami ezt az ellentmondást feloldaná az, hogy az anyagi testek hossza megváltozik aszerint, hogy hogyan mozognak az éteren keresztül, vagy arra merőlegesen, mégpedig a sebességük és a fénysebesség arányának négyzetétől függő mennyiséggel…

Mit jelenthet ez? Hogy az anyagi testek hossza megváltozik? A tér, amiben élünk, megváltoztatja az anyagot? A levél két további hosszú mondattal fejeződik be. Az ír fizikus, George Francis FitzGerald annak az elméletnek az egyik alapvető fogalmát írja le benne, amellyel végül meg lehetne magyarázni a Michelson-Morley-kísérletet: nevezetesen a relativitás elméletét.
[bookmark: _ednref182]Körülbelül ugyanabban az időben Lorentz, aki még mindig Michelson méréseit elemezte, ugyanerre a következtetésre jutott. Csakhogy Lorentz, az 1890-es évek vezető elméleti fizikusa az összehúzódás magyarázatára egy olyan konstrukciót próbált ki13, amely az éteren keresztül közvetített molekuláris erőkön alapult. (Akkorra az éter megmentése érdekében tett erőfeszítések során többé már nem tételezték fel, hogy az éterre nem hatnak a fizikai kölcsönhatások.) Fizikai magyarázat nélkül a kontrakció (összehúzódás) egy ad hoc függelék volt, mint Ptolemaiosz epiciklusai. A Lorentz által javasolt megfogalmazási kísérletek nem vezettek sikerre, mert az általa feltételezett erőket nehéz volt összeegyeztetni a newtoni mechanikával.

* * *

[bookmark: _ednref183]Einstein első relativitásról szóló cikkének 1904-es megírásáig, Lorentz és mások több érdekes felfedezést tettek, de nem értékelték a következményeket. Lorentz új elmélete különbséget tett kétfajta idő, a „lokális idő” és az „univerzális idő” között (és valamiért ez utóbbit tekintette a kitüntetett időnek). Arra is rájött, hogy az elektron mozgása során az éternek befolyásolnia kell az elektron tömegének értékét, s ez egy olyan effektus volt, amit Walter Kaufman kísérletileg igazolt is. Poincaré felvetette, hogy a fény sebessége az Univerzumban a határsebesség szerepét tölti be – látszólag ez következett ugyanis a kontrakciós elméletekből. A tér és az idő szubjektív jellegéről ezt írta: „Nincsen abszolút idő; azt mondani, hogy két tartam egyenlő, olyan állítás, aminek önmagában nincsen értelme… nincs közvetlen intuíciónk két, különböző helyen előforduló történés egyidejűségéről…”14 Az időbeli dolgok és az időtlen tér (amelyben ezek léteznek) közötti választóvonal éppen kezdi értelmét veszíteni. Ebből vajon milyen geometria tud kivezetni?
Albert Einsteinnek adatott meg, hogy megalkossa azt az egyszerű elméletet, amely megmagyarázza a térben haladó fény megfigyelt viselkedését. A tér és az idő mindörökre összekapcsolódtak és a nagybácsijuk, a geometria valóban nagyon excentrikussá vált.
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24. Próbaidős, harmadosztályú
műszaki szakértő







Amikor Napóleon 1805-ben Göttingenben ellovagolt Gauss otthona mellett, éppen a döntő fontosságú ulmi ütközetből tért hazafelé. Napóleon Gauss iránt érzett megbecsülése végül is megkímélte Göttingent. Győzelmének helyszíne hamarosan hasonló hírnévre tett szert, mert feltehetőleg a történelem legnagyobb fizikusának, Albert Einsteinnek lett a szülőhelye. Ez 1879-ben történt, Maxwell halálának évében.
[bookmark: _ednref184]Ellentétben Gauss esetével, Einstein nem mutatkozott zsenipalántának1. Későn kezdett beszélni – állítólag csak háromévesen. Gyermekkorában nyugodt és általában visszahúzódó természetű volt. Egészen addig otthon tanították, amíg egy szép napon hisztérikus dühkitörésében hozzávágta a széket tanítójához. Az elemi iskolában bizonyítványa változó volt. Időnként jól teljesítette feladatait, máskor viszont tanárai unott szellemű, sőt talán retardált fejlődésű gyereknek tartották. Sajnos akkoriban, akárcsak manapság, a magolásra fektették a hangsúlyt a legtöbb iskolában, ami Einsteinnek sohasem volt a sajátja. A tanárok többre értékelték, ha egy gyerek arra a kérdésre, hogy merre mutat az iránytű, azt válaszolta, hogy „északra”, mint az ötéves Einstein mérlegelését, hogy ezt milyen láthatatlan erő hatására teszi. Nem mintha a német iskolák nem fejlődtek volna sokat Büttner és Gauss ideje óta! Egy rossz feleletért a büntetés már nem a nádpálca volt. A modernebb pedagógia inkább a körmöst alkalmazta. Einstein lassú válaszai mögött elbújó zsenialitás inkább egy megfélemlített gyerek fájdalmat elkerülő stratégiája volt, aki folyton mérlegelte, majd újra mérlegelte válaszát, mielőtt beszélni kezdett volna.
A szülői értekezleten a kilencéves Albert apja és anyja bizonyára ilyesmit hallhatott: a kis Albert jó matematikából és latinból, ám a többi tárgyból nem üti meg a szintet. Az ember elképzeli a tanító kételyeit és a szülők aggodalmát. Vajon viszi-e valamire az életben ez a negyedikes gyerek? Visszatekintve: tizenhárom éves korára Einstein kivételes képességeket mutatott matematikából. Egy idősebb barátjával és az egyik nagybátyjával már a magasabb szintű matematikát kezdte tanulmányozni. Kant munkáját is olvasta, pontosabban Kant nézeteit a térről és az időről. Az lehet, hogy Kant talán tévedett a matematikai bizonyításban az intuíció szerepéről, de az a véleménye, hogy az idő és a tér a megértésünk produktumai, igencsak érdekelték a tizenéves Einsteint. Bár a humán pszichológia nem játszik benne szerepet, igazából a relativitás elnevezést a tér és az idő mérésének szubjektivitása adja.
1895-re már tudott a Michelson-Morley-kísérletről, Fizeau munkáiról, és Lorentz vizsgálatairól. Bár ebben az időben még elfogadta az éter létezését, de már felfogta, hogy nem számít, milyen gyorsan mozog az ember, a fényhullámot akkor sem érheti utol.
Einstein intellektuális tulajdonságai nem mutatkoztak meg valami könnyedén az iskolai években. Amikor Albert tizenöt éves volt, görög tanára, aki bizonyára nem az oktató mintapéldánya volt, kijelentette az osztály előtt, hogy a fiú reménytelen, mindenki csak az idejét vesztegeti rá, és a legjobb, ha Albert azonnal elhagyja az iskolát. Ezt igen bölcsen németül – és nem görögül – mondta, mert Albert valószínűleg nem értette volna meg. Albert nem azonnal hagyta ott az iskolát, de hamarosan megfogadta a tanár tanácsát. Kapott egy írást a család háziorvosától, hogy idegösszeomlás küszöbén áll, meg egy másikat a matematikatanárától, hogy már mindent tud, hogy matematikából már teljesítette a tanterv követelményeit. Elvitte ezeket a papírokat az iskola vezetőjéhez, aki megengedte, hogy kimaradjon.
Ebben az időben Albert egy konviktusban lakott, mert szülei Olaszországba költöztek. Most már szabad volt, így utánuk mehetett. Az lehet, hogy az iskolából nem jó okkal tették ki, de úgy találta, hogy ez az életforma megfelelő a számára. A fizika jövendő guruja, Newton riválisa a következő hat hónapot Milánó környékén és a környező vidéken töltötte. Amikor állásterveiről kérdezték, azt felelte, hogy a számára megfelelő igazi állás szóba sem jöhet. Amiről álmodozott, az egy filozófiatanári állás lett volna egy kollégiumban. Szerencsétlenségére, az egyetemi filozófiakarok intézetei nem sok olyan munkaerőt kerestek, akik a középiskolát nem végezték el. Mert persze, hogy a középiskolában taníthasson valaki, ahhoz egyetemi oklevél kell. Nem kell mindjárt Einsteinnek lenni ahhoz, hogy rájöjjön az ember, ilyen helyzetben az egyetlen fennmaradó lehetőség: egyszerűen élvezni az életet.
[bookmark: _ednref185]Albert édesapja, Hermann azonban nem engedte, hogy ez történjék. Felismerve fia matematikai tehetségét, egy kicsit zsémbeskedett, egy kicsit hízelgett, majd rábeszélte a fiát2, míg Albert egyet nem értett azzal, hogy térjen vissza az iskolába, és villamosmérnöknek tanuljon. Hermann maga nem volt villamosmérnök, csak elindított két elektromos berendezést forgalmazó vállalkozást (melyek egyébként sikertelenek voltak). Albert az egyik legjobb ilyen főiskolára, a svájci Szövetségi Műszaki Főiskolára (Eidgenössische Technische Hochschule) jelentkezett Zürichben. Mint egyetem, nemzetközi hírnévnek örvendett – és egyike volt azoknak a kevés számú egyetemeknek, ahol a gimnáziumi érettségit nem követelték meg. Ehelyett egyetlen dolgot kellett megtenni: a felvételi vizsgán át kellett menni. Albert nekivágott. És elbukott.
Mint rendesen, Albert a felvételi vizsga matematikai részét jól megoldotta, de mint mindig, most is volt néhány bosszantó egyéb tárgy, amit a tesztlap tartalmazott. Ebben az esetben a francia, a kémia és a biológia húzta le. Minthogy valószínűleg nem tervezte, hogy valaha is franciául ír majd biokémiai cikket, ezért értelmetlennek látszott Albert számára, hogy ezek miatt ne juthasson be a főiskolára. Ez persze mások számára is célszerűtlennek látszott. Albert az iskolai szövetséghez fordult, ahol matematikai tehetsége felkeltette a figyelmet.
[bookmark: _ednref186]A matematikus és fizikus Heinrich Weber, aki az iskola fizikaprofesszora volt, meghívta Albertet, hogy hallgassa előadásait. Albin Herzog igazgató pedig elintézte, hogy egy közeli iskolában még egy évnyi előkészületet végezhessen. A következő évben, most már a gimnáziumi érettségivel a kezében Einsteint felvették a főiskolára anélkül, hogy még egyszer felvételiznie kellett volna. Einstein nem hálálta meg Weber és az igazgató bizalmát. És miért is nem? Az érettségi ugyanattól a hibás pedagógiai filozófiától szenvedett, mint a vizsgák. Ahogyan Einstein írta3: „Az embernek be kellett magolni az egész anyagot a vizsgára, akár szerette a tárgyat, akár nem. Ez a kényszerítő erő olyan riasztó hatással volt rám, hogy miután letettem az utolsó vizsgát, egy évre elment a kedvem bármely tudományos problémától.”
Einstein egy barátja, Marcel Grossmann jegyzeteit tanulmányozva evickélt át a vizsgákon. Grossmann kulcsszerepet töltött be Einstein későbbi matematikai munkásságában. Weber nem volt oda Einstein viselkedéséért, arrogánsnak tartotta őt. Ebben bizonyára az is közrejátszhatott, hogy Einstein Weber előadásait régiesnek tartotta, amit nem érdemes hallgatni. Ellenszenves modora Webert mentorból nemezissé változtatta. Három nappal Einstein záróvizsgája előtt, 1900 nyarán Weber úgy döntött, hogy dűlőre viszi a dolgot: azt követelte Alberttől, hogy írja újra a cikket, amit beadott, mert beadványa nem az előírás szerinti papíron készült. Azok számára, akik 1980 után születtek: a számítógép előtti időkben ezt nem lehetett azzal elintézni, hogy egyszerűen újratöltöd a nyomtatót és kattintasz egyet az egérrel. Ez a kézírásnak nevezett fáradságos munkát jelentette. Mindez persze jelentős mértékben felemésztette Albert maradék, tanulásra fordítható idejét.
Einstein harmadiknak végzett a négy tanuló közül, de átment. Társai egyetemi állásokat kaptak, de Weber, aki rossz véleményt adott róla, Einstein útjában állt. Einstein eleinte helyettes tanársággal próbálkozott, majd magántanítással, egészen 1902. június 23-áig, amikor a Svájci Szabadalmi Hivatalban elfoglalta híressé vált állását. Ragyogó címe „próbaidős, harmadosztályú műszaki szakértő” volt. Amíg a Szabadalmi Hivatalban dolgozott, Einstein elkészítette Ph.D. értekezését a Zürichi Egyetemen. Később erre úgy emlékezett vissza, hogy az értekezését először visszadobták, mert nagyon rövidnek találták. Egyetlen mondatot írt csak hozzá, és újra beadta. Ekkor már elfogadták. Nehéz megmondani, hogy a történet igaz, vagy csak egy rossz álom, amit egy túl sok konyak utáni éjszaka lát az ember, mert nincs olyan indok, amivel alá lehetne támasztani vádjait. Mindenesetre ez eddig a pontig magában foglalja Einstein akadémiai pályafutását.
[bookmark: _ednref187][bookmark: _ednref188]Miután „neveltetését” 1905-ben letudta, Einstein agyát szinte szétvetették a forradalmi gondolatok. Ami ekkor megszületett a fejében, az elég lett volna ahhoz is, hogy három vagy négy Nobel-díjat nyerjen vele, ha azokat valamilyen objektív kritériumok szerint adják ki. Ez a legproduktívabb esztendő volt, amit egy tudós magáénak mondhatott, legalábbis az 1665-1666-os évei óta, amikor Newton édesanyja birtokain dolgozott. Einstein viszont nem pihent nyugodtan a fa alatt ülve, és várva, hogy az almák leessenek – ezt mind azalatt tette, hogy teljes munkaidőben a Szabadalmi Hivatalban dolgozott. Kutatómunkájának eredménye hat cikk volt (ezek közül öt még abban az évben megjelent). Az egyik a doktori értekezésén alapult, geometriai témájú – nem a tér geometriájáról szólt, hanem az anyag geometriájáról. Einstein az értekezését az Annalen der Physik című szaklapban közölte: A molekuláris méretek új meghatározása4 cím alatt. Ebben új elméleti módszert mutatott be a molekulák méretének meghatározására. Ez a munka később a különböző szakterületek változatos arénájában talált alkalmazásra – a homokszemek mozgásától a cementkeverékben, egészen a kazein micellák (a fehérjefonalak) mozgásáig a tehéntejben. Abraham Pais által 1970-es években végzett kutatás5 szerint 1961 és 1975 között ezt a munkát többször idézték, mint az 1912 előtt írott bármelyiket, ideértve Einstein relativitáselméleti dolgozatait is. Einstein írt két tanulmányt a Brown-mozgásról is, 1905-ben. Ez a folyadékban szuszpendált apró szemcsék mozgása, amit először egy skót botanikus, Robert Brown 1827-ben figyelt meg. Einstein elemzése, amit arra a gondolatra alapozott, hogy a részecske mozgását a folyadék molekuláinak véletlenszerű lökdösése okozza, az anyag új molekuláris elméletének a megerősítéséhez vezetett, amely elméletet a francia kísérletező, Jean-Baptiste Perrin alkotott meg. Perrin ezért a munkájáért 1926-ban Nobel-díjat kapott.
Egy másik, 1905-ben írt dolgozatában Einstein magyarázatot adott arra, hogy egyes fémek esetében miért figyeltek meg elektronkibocsátást, amikor a fémet fény világítja meg, ezt az effektust fényelektromos hatásnak nevezik. A fő mozzanat, amit meg kellett magyarázni, az volt, hogy az adott fém esetén létezik egy küszöbfrekvencia, ami alatt az effektus nem jön létre, bármilyen intenzív, erős is az alkalmazott fénysugár. Einstein a Max Planck által bevezetett kvantumfogalmat alkalmazta az energiaküszöb magyarázatára – ha a fény részecskékből állna (később fotonoknak nevezték el ezeket), amelyek energiája a frekvenciától függ, akkor csak bizonyos frekvenciák felett rendelkezhet a foton elég energiával ahhoz, hogy egy elektront kilökjön.
Ebben a dolgozatban Einstein úgy alkalmazta a Planck-féle hatáskvantum koncepcióját, mintha az már egy univerzálisan elfogadott fizikai törvény lenne. Pedig abban az időben még csak egy alig-alig értett elmélete volt a sugárzás és anyag kölcsönhatásának. Ez nem sok mindenkit aggasztott, mert ez a terület még tele volt kérdőjelekkel. Természetesen senki sem merte elképzelni, amit Einstein, hogy a kvantumelmélet a sugárzásra vonatkozhat, és ellentmondani látszik a jól megértett és jól kipróbált Maxwell-elméletnek. Mint Einstein egyéb forradalmi munkáival, eleinte ezzel is csak keveseket lehetett meggyőzni. Lorentz, de még maga Planck is szembeszállt Einstein nézetével. Ma Einstein dolgozatát a kvantumelmélet történetében mérföldkőnek tekintjük, olyan lépésnek, ami Planck hatáskvantum felfedezéséhez mérhető. Ezért Einstein 1921-ben Nobel-díjat kapott. Ennek ellenére két másik, 1905-ös publikációja tette őt – majd egy évszázaddal később – mégiscsak a legismertebbé. Ezek egy tizenegy éves odüsszeia kezdetét jelentették, ami elvezette a természettudósokat a görbült terek különös, új univerzumához, aminek matematikai lehetőségére Gauss és Riemann mutatott rá.
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25. Egy viszonylag
euklideszi megközelítés







[bookmark: _ednref189][bookmark: _ednref190]Az Annalen der Physikben 1905-ben megjelent két cikkében, A mozgó testek elektrodinamikája címmel szeptember 26-án1, és a Függ-e egy test tehetetlensége energiatartalmától? címmel novemberben publikált tanulmányaiban2 Einstein kifejtette első relativitáselméletét, amelyet később speciális relativitáselméletnek neveztek.
[bookmark: _ednref191]Einstein még a gimnáziumi években rábukkant egy Eukleidészről szóló könyvre. Descartes-tal és Gauss-szal ellentétben Einstein így lelkesedett3: „Itt olyan állítások voltak, mint például az, hogy a háromszög három magasságvonala egy pontban metszi egymást, ami – noha egyáltalán nem volt evidens – olyan bizonyossággal volt bizonyítva, hogy az minden kétséget kizárt. Ez a világosság és ez a bizonyosság leírhatatlanul mély benyomást gyakorolt rám”. Elég ironikus dolog, hogy Einstein későbbi elméleteiben a nem euklideszi geometria centrális szerepet játszott. A speciális relativitáselméletben Einstein Eukleidész útját választotta. Elgondolását két alapvető, a térről szóló axiómára alapozta:

1.	Lehetetlen eldönteni, hacsak nem más testekkel való összehasonlítás útján, hogy az ember nyugalomban vagy egyenes vonalú egyenletes mozgásban van.

Einstein első axiómáját, amit általában a speciális relativitás elvének is neveznek – vagy Galilei-féle relativitásnak – elsőként Oresme mondta ki. Ez még Newton elméletében is fennáll. Egy napon nemrégiben Nicolai egy plasztik tűzoltóautón nyargalt a lakásban. Alexei, aki teljesen elmerült egy gyerekeknek szánt horrorregényben, egy széken ült az átjárókonyhában. Amikor elsuhant, Nicolai egy plasztikszekercét tartott ki, amit az általunk vásárolt tűzoltóautó és sisak mellé adtak. Amint elhaladt, Nicolai szekercéje beleütődött Alexei könyvébe, amitől mind a könyv, mind a szekerce leesett a földre, és ez elég volt, hogy kirobbanjon a szokásos vádaskodás és ellenvádaskodás. Alexei azt mondta, hogy a testvére elhaladtában rácsapott, s a könyvet kiverte a kezéből. Nicolai pedig azt állította, hogy ő nyugodtan tartotta a szekercét és Alexei ment neki. A papa, aki jobban szerette, ha nem kell ilyen jogi következményekkel járó kérdésekbe bonyolódni, inkább a helyzet tudományos elemzésébe kezdett.
Newton törvényei azt állítják, hogy ugyanaz történik, akár Nicolai van nyugton és Alexei könyve mozog, akár Alexei van nyugton és Nicolai szekercéje mozog. Ez Einstein első posztulátuma is – nem lehet az egyik esetet megkülönböztetni a másiktól, ezért mindkét gyerek álláspontja egyaránt érvényes. (Ettől mind a ketten elhallgattak.)

2.	A fény terjedési sebessége független a fényforrás mozgásától, és ugyanaz az Univerzum minden megfigyelője számára.

Miként az első, úgy Einstein második axiómája sem volt önmagában véve forradalmi. Mint láttuk, a Maxwell-egyenletek megkövetelik, hogy a fény terjedési sebessége független legyen a forrástól, és ez senkit sem zavart, mert ez a haladó hullámok normális viselkedése. Einstein feltevésében az igazi lényeg abban a mondatban van, hogy „és ugyanaz minden megfigyelő számára”. Mit is jelent ez?
Ha meg tudnánk mondani, hogy mozgunk-e, ez nem jelentene túl sokat: minden megfigyelő egyetértene abban, hogy a fény sebessége egyenlő azzal a sebességgel, amelyikkel megközelíti a „stacionáriusan mozgó” tárgyat. Ez a helyzet a Newton-féle rendszerben, hiszen az abszolút tér vagy az éter olyan abszolút vonatkoztatási rendszert jelent, amelyhez képest a mozgást meg lehet mérni. De ha nem lehet megkülönböztetni az egyenletes mozgást a nyugalmi állapottól, és minden megfigyelő ugyanazt az értéket méri a beeső fény sebességére, akár relatív mozgást végeznek ők maguk, akár nem, akkor pontosan a korábban említett köpési paradoxonnal állunk szemben. Hogyan tud a fényhullám hozzánk és a köpéshez ugyanazzal a sebességgel közeledni?
Hogy megérthessük, hogyan viselkedhet a fény ilyen módon, meg kell vizsgálnunk, mi van a gondolkodásunk hátterében. Tegyük fel, hogy Einstein két axiómáját nem akarjuk kétségbe vonni, és helyesnek fogadjuk el azokat. Milyen más feltevéseket tettünk? Igazán nagy hangsúlyt fektettünk az egyidejűség fogalmára, ezért természetes, hogy megvizsgáljuk ezt. Einstein is pontosan ezt tette.
[bookmark: _ednref192]Tekintsük most azt a helyzetet, ami hasonló ahhoz, ami Einstein 1916-ban megjelent Relativitáselmélet című könyvében4 szerepelt. Einstein szerette a vasúti kocsi hasonlatokat alkalmazni, mert tapasztalatai szerint a valódi világban a mozgó vonat adta a legmeggyőzőbb bizonyítékot arra, hogy lehetetlen megállapítani, egyenes vonalú egyenletes mozgásban veszünk-e részt vagy sem. Bárki, aki manapság utazott vonaton vagy földalattin, bizonyára tapasztalta már, amire Einstein utalt, vagyis azt, hogy nem lehet biztosan eldönteni, hogy az ön kocsija vagy a szomszédos kocsi mozog-e (vagy mindkettő). Példánkban Alexei és Nicolai legyen a metrókocsi átellenes két végében. Ez az első alkalom, hogy egyedül utaznak a metrón. A mama és a papa a peronon állnak és integetnek, remélve, hogy a „Szolgálati járat” felirat, amit az ablakokra ragasztottak, ezt a kocsit aránylag kevés utassal tölti meg. Tegyük fel, hogy a mama és a papa ugyanolyan távol áll egymástól, mint Alexei és Nicolai úgy, hogy kevéssel azután, hogy a kocsi mozogni kezd, a mama pontosan Alexeijel, a papa pontosan Nicolaijal kerül szembe. Mindkettőjüknél fényképezőgép van. A mamánál azért, mert ez a fiai első metrózása, a papánál azért, hogy legyen jó fényképe a rendőrség számára, ha a fiúk nem térnének haza a megbeszélt időre. A testvérek közötti természetes rivalizálás miatt a mama és a papa azt tervezték, hogy felvételeiket pontosan ugyanabban az időpontban fogják készíteni, a mama Alexei, a papa pedig Nicolai mosolygó arcát örökíti meg. Minthogy a fotók egyszerre készülnek, a fiúk közül egyik sem vitathatja, hogy az övé készült előbb. Mindamellett komoly családi viszály fenyeget!
A viszály oka arra az egyszerű kérdésre adott válaszban keresendő, amely kérdést már Einstein is feltett: vajon azt a két eseményt, amit a szülők egyidejűnek ítélnek, a gyerekek is egyidejűnek fogják-e ítélni? Mit jelent, ha azt mondjuk, a két esemény egyidejűleg történt? Ha a két esemény ugyanazon a helyen történik, a válasz triviális: egyidejűek, ha ugyanabban az időpontban történnek (ha azzal az órával mérjük, ami ugyanazon a helyen van). Ez így már a valódi viszonyokba enged betekintést, s látjuk, hogy a válasz nem is olyan egyszerű, ha az események nem ugyanazon a helyen történnek.
Tegyük fel, hogy a fény (vagy bármi más, amivel jelet adhatunk) végtelen sebességgel terjed. Akkor, abban a pillanatban, amikor a vakuk felvillantak, mindkét fénysugár azonnal elérte mind Alexeit, mind Nicolait. A lezajló jelenségek, ebben az esetben a két felvillanás hozzájuk érkezésének időpontját összehasonlítva mindketten egyszerű választ adhatnak az egyidejűség kérdésére. Ha az egyik felvillanást előbb észlelték, akkor az a kép készült előbb. De minthogy a fény nem végtelen sebességgel terjed, ez a módszer most nem alkalmazható. A papának, hisz ő a természettudós, van egy javaslata. Fénydetektorokat állít fel a peronon a mama és saját maga között. Ha a fotókat ugyanabban az időpontban készítették, a vakukból kiinduló felvillanásoknak pontosan középen kell találkozniuk. Nicolai – mert meghallotta a papa javaslatát – maga is megismétli ezt, persze mint saját ötletét (ez egyike a különösen vonzó jellemvonásainak). Alexei pedig elhelyezi a fotódetektorokat a metrókocsiban, amelyben utaznak.
A vonat elindul. A mama és a papa egyeztetik óráikat és elkészítik a felvételeket. Vajon Alexei és Nicolai elégedettek? Nem, mert amikor a fényvillanások találkoznak, a kocsijuk már mozog egy kicsit és a felvillanások nem pontosan a kocsi hosszának felezőpontjában fognak találkozni. A helyzetet a következő oldalon lévő ábra mutatja.
A gyerekek szempontjából mindegyik felvillanás egy esemény, ami a maga világában egy helyen és egy időpontban lép fel, nevezetesen a metró kocsijában, amit ők magukhoz képest jogosan nyugvónak tekintenek. Miként szüleik, ők sem látják semmi okát annak, hogy a felvillanások ne középen találkozzanak. Így amikor a felvillanások Alexeihez közelebb találkoznak, arra a következtetésre jutnak, hogy Nicolai fotója készült előbb. Bár a fotókat a mama és a papa úgy időzítették, hogy egyidejűek legyenek, ez mégsem elég ahhoz, hogy a hozzájuk képest mozgó vonatkoztatási rendszerben is úgy legyen. A papa mérgelődik, hogy
[image: pict12]
Az egyidejűség vizsgálata a metróban

nem intézkedett másképpen – úgy, hogy a felvillanások ne őnála legyenek egyidejűek, hanem a gyerekekhez viszonyítva.
Gyerekek azok, ugye, akik valóban mozognak, míg a szülők vannak a mozdulatlan peronon. Ez azért látszik így, mert úgy gondoljuk, hogy a Föld mozdulatlan, de természetesen ez nem így van. Képzeljünk el egy megfigyelőt a külső térben – a Föld kering a Nap körül, és forog a tengelye körül, igencsak hiábavaló azon kardoskodni, hogy a vonat, vagy a peron tekinthető-e inkább „nyugalomban” lévőnek. Vagy szakítsunk előítéleteinkkel, és képzeljük, hogy a gyerekek és a szülők kint vannak az üres térben. És akkor tessék, igazán nincs „külső körülmény”, amihez képest meg lehetne mondani, hogy ki mozog. Az eredmény ugyanaz – és valóságos: amit a szülők egyidejűnek tartanak, az nem tűnik egyidejűnek a gyerekek számára, és vice versa.
Az egyidejűség abszolút jellegének szertefoszlásából következik a távolság és az idő relativitása. Hogy ezt megértsük, csak azt kell belátni, hogy a távolságméréshez először ki kell jelölni annak a távolságnak a végpontjait, amit meg kell mérnünk, majd oda kell tartani a mérőrudat hozzá. Ha az objektum hozzánk képest nyugalomban van, akkor ez a feladat triviális. Ha pedig mozog, akkor még van egy közbenső lépés. Például megjelölhetnénk a két végpontot, mondjuk egy álló papírdarabon, amint a tárgy elhalad. Akkor – mint az előbb – vehetnénk a mérőrudat és megmérhetnénk a két jel közötti távolságot. De előbb bizonyosak kell legyünk abban, hogy a két végpontot – és most jön az a csúnya szó megint – egyidejűleg jelöltük be. Ha tévedünk, és az egyik jelet a másik után tesszük le, akkor a későbbi végpont egy kis távolsággal többet fog megtenni és így nem kapjuk meg a helyes eredményt. Sajnos, amikor ezt tesszük – amit egyidejű mérésnek érzékelünk –, az a személy, aki együtt mozog a mérendő testtel, mint láttuk az előbb, az nem fog egyetérteni velünk. Az illető azzal fog vádolni bennünket, hogy az egyik jelet később tettük le, és így hibás eredményt kaptunk. Ez azt jelenti, hogy a hosszúság attól a megfigyelőtől függ, aki méri. Ez egy teljesen újfajta geometria.
Gyakran mondják, hogy a relativitáselméletben a mozgó testek a mozgás irányában megrövidülnek. Ez azt jelenti, hogy egy tárgy rövidebbnek látszik egy olyan megfigyelő számára, aki a tárgyat mozgónak tartja, mint egy olyan személynek, akihez képest a tárgy nyugalomban van. Einstein hasonló anomáliákat talált az idő viselkedésével kapcsolatban is. Az egymáshoz képest mozgó megfigyelők nem fognak egyetérteni egymással az időintervallum hosszát illetően, vagyis abban, hogy mennyi idő telt el. Miként a hossz, az időtartam sem bír abszolút jelentéssel.
Azt az időtartamot, amit egy megfigyelő mér két esemény között a saját helyén – ami az ő vonatkoztatási rendszerében egy fix pont a térben – saját időtartamnak nevezzük. Minden olyan megfigyelő, aki (állandó sebességgel) mozog ehhez a megfigyelőhöz képest, azt fogja észlelni, hogy az események között hosszabb időintervallum telik el. Minthogy mi magunk mindig nyugalomban vagyunk magunkhoz képest, nem veszünk tudomást a gyorsulás hatásairól, ezért élettartamunk, amit mi mérünk, mindig rövidebb lesz, mint amekkorának tűnik mások számára. Mások úgy fogják találni, hogy a mi óráink lassabban járnak. Mi viszont sajnos a belső óránk, a velünk utazó óra jelére halunk meg. A speciális relativitáselméletben a fű mindig a másik kertjében zöldebb!
Mit jelent ez a mozgástörvények esetében? A speciális relativitáselmélet szerint a tárgyak még a Newton-féle első törvényt követik: egyenes vonalú egyenletes mozgást végeznek, hacsak egy külső erő nem hat rájuk. A megfigyelők vitatkozhatnak azon, hogy a vonal mekkora hosszúságú darabja egyenes, de azon nem, hogy az egyenes márpedig egyenes. Mégis az a helyzet, hogy ez nem a speciális relativitás szájíze szerint megfogalmazott első törvény; a relativitáselméletben a tér és az idő különbözőképpen keveredik a különböző megfigyelők esetén. A geometria fogalmait úgy kell megalkotni, hogy ne csak a teret, hanem az időt is felölelje.
[bookmark: _ednref193]A térbeli pontok és az előfordulási idők helyett bevezetjük az eseményeket, vagyis a pontokat a tér és az idő négy dimenziójában. Ahelyett, hogy pályáról beszélnénk a térben, világvonalról fogunk beszélni a térben és időben. A távolság helyett az időintervallumot és az események térbeli távolságát kombináló fogalmat vezetjük be. Vonalak helyett pedig a geodetikus vonalakat fogjuk használni, amelyeket most (technikai okokból)5 a két eseményt összekötő leghosszabb vagy legrövidebb világvonalként vezetjük be. Egy tipikus esemény lehet maga az író is, ki itt ül a tér egy kitüntetett pontjában (ami az íróasztala) egy kitüntetett időpontban. Egy tipikus világvonal például az író, amint hosszú-hosszú órákig itt ül az íróasztalánál. Ennek a különleges világvonalnak van egy időkoordinátája, ami változik, vannak térkoordinátái, amik nem változnak. Ilyen előfordulhat a világvonalak esetében. A „pálya”, amit az író befut a térben, meglehetősen unalmas, mert egy rögzített pont a térben, a téridőben viszont az író egy világvonalat ír le, mint egy lift, amely csak függőlegesen változtatja helyét, kelet-nyugati irányban viszont nem. A téridőben a világvonal két pontja közti távolság nem zérus, jóllehet a térben igen, méghozzá azért, mert a pontjait az idő választja el.
Hogy megértsük, miként kell Newton első törvényét újrafogalmazni a relativitás nyelvén, tegyük fel, hogy Alexei órája szerint zérus időponttól egy tárgy mozog Alexeitől Nicolaiig, és megérkezésekor Nicolai óráján egy másodperc telt el (miként valóban megesik, hogy egyes tárgyak így cselekszenek). Mi lesz az objektum pályája, ha nem hat rá külső erő? A relativitáselmélet nyelvén az általunk vizsgált két esemény: (tér = Alexei helye; idő = zérus) és (tér = Nicolai helye; idő = egy). Feltéve, hogy a gyerekek egymáshoz képest álló helyzetben vannak, és hogy óráik szinkronizáltak, a tárgy egyenes vonalon fog repülni valamilyen állandó sebességgel, hogy megtegye az Alexei és Nicolai közti távolságot egy másodperc alatt (az ő óráik szerint). Ez lesz pl. egy szabad test világvonala a speciális relativitáselmélet szerint.
Milyen törvény irányítja a mozgást ezen a világvonalon? Gondoljuk csak meg, mi változna akkor, ha a tárgy nem egyenesen mozogna és egy kitérőt tenne? Ugyanazon idő alatt nagyobb távolságot kellene megtennie, gyorsabban kellene haladnia, hogy a célba érjen, vagyis, hogy elérje időben az eseményt, ami (Nicolai helye az 1 sec időpontban). Amint azt már korábban láttuk, amikor egy tárgy mozog a másikhoz képest, az órája lassabban látszik járni: a tárgy tehát kevesebb, mint egy másodperc alatt érkezik a saját órája szerint.
Az egyenes vonalú és állandó sebességű mozgás a térben egy olyan világvonalat alkot, amelyen egy test órája a két esemény között eltelő maximális időt mutatja. Most már az új geometria szabályai szerint kimondhatjuk Newton első törvényét:

Hacsak nem hat rá külső erő, a test mindig olyan világvonalat fog követni az egyik eseménytől a másikig, hogy a saját óráján leolvasható időtartam (vagyis a saját idő) maximális legyen.

Einstein tudta, hogy elmélete ágyúgolyóként csapódott a modern fizika várába. Bálványozta Newtont, miközben lerombolta egyik legalapvetőbb fogalmát, az abszolút tér és idő feltevését. Einstein a fizikai elmélet két évszázados alapkövét, az éterelméletet is kiforgatta a helyéből. Jóllehet, a speciális relativitáselméletének sok diadala volt (a gyorsan mozgó radioaktív bomlástermékek hosszabb élettartama, a tömeg és az energia egyenértékűsége és átválthatósága), Einstein elég bölcs volt ahhoz, hogy tudja, azok, akik életüket azzal töltötték, hogy fenntartsák és díszítgessék a várkastélyt, nem fogják azt a fickót vállon veregetni és snapsszal kínálni, aki ezt a kastélyt lerombolja. Felkészült hát a támadásra.
Hónapok teltek el, de a támadás csak nem jött. Az Annalen der Physik folyóirat egyik száma érkezett a másik után, és Einstein bombájáról – úgy látszott – a fizika világának nincsen mondanivalója. Végül egyszer csak egy levelet kapott Max Plancktól, aki néhány ponton felvilágosítást kért. Ismét több hónap telt el. Hát ez lett volna az egész? Az ember a teljes lelkét beleönti a természet egy egészen új elméletébe, és mindaz, ami kijön belőle, csak néhány kérdés egy berlini fickótól?
[bookmark: _ednref194]1906. április 6-án, Einsteint előléptették a Szabadalmi Hivatalban: másodosztályú technikai szakértő lett. Hát persze, nagy megbecsülés a Szabadalmi Hivatal részéről – de nem éppen egy Nobel-díj. Azon kezdett töprengeni, hogy – Alexei szavai szerint – nem a Vesztesek Bolygójáról került-e ide. Einstein saját magát „egy tiszteletre méltó szövetségi tintapusztító”-nak tartotta6. A helyzetet tovább rontotta, hogy a huszonhét éves Einstein attól kezdett félni, hogy alkotó napjai meg vannak számlálva. Azon is kezdhetett volna meditálni, hogy mi lenne, ha olyan ismeretlenségben halna meg, mint Bolyai és Lobacsevszkij – de mint csaknem mindenki, ő sem hallott még felőlük.
Amit Einstein nem tudott, az az, hogy a levél, amit kapott, a Max Planck nevű jéghegy csúcsáról érkezett. Az 1905-1906 téli szemeszterében Planck Berlinben Einstein elméletéről tartott előadást. 1906 nyarán elküldte egyik tanítványát, Max von Laue-t, hogy látogassa meg Einsteint a Szabadalmi Hivatalban. Einsteinnek végre sikerült a valódi fizikusok világával kölcsönhatásba lépni.
[bookmark: _ednref195]Amikor Einstein belépett a szobába7, ahol von Laue várakozott, igen szégyellte magát és nem mutatkozott be. Von Laue ránézett, de nem gondolta, hogy ő lenne az, akit keres, nem gondolta volna, hogy egy ilyen semmitmondó külsejű ember lenne a relativitáselmélet szerzője. Einstein kiment. Egy kicsit később visszatért, de még mindig nem tudta összeszedni magát, hogy von Lauét megközelítse. Végül von Laue bemutatkozott. Amint Einstein lakása felé mentek, Einstein megkínálta von Lauét egy szivarral. Von Laue szippantott belőle egyet – olcsó és borzalmas volt. Míg beszélgettek, óvatosan az Aare-folyóba ejtette. Von Laue kétségbeejtő benyomást szerzett abból, amit látott – és amit szívott, de nagyon mély benyomást keltett benne, amit hallott. Mind von Laue, aki 1914-ben majd elnyeri a Nobel-díjat (a röntgensugarak elhajlásának – diffrakciójának – felfedezéséért) és később Max Planck, aki 1918-ban lett Nobel-díjas, Einstein és a relativitáselmélet legfőbb támogatói lettek. Évekkel később, amikor Einsteint a prágai állás elnyerésében támogatta Planck, Kopernikuszhoz hasonlította őt.
Planck támogatása a relativitáselmélet számára meglehetősen ironikus volt, ha azt a nehéz időt nézzük, amikor Einstein korábbi magyarázatát kellett elfogadnia a fényelektromos hatásra, mint egy új interpretációt saját kvantumelméletére. De amikor a relativitáselmélet került szóba, Planck nyílt szellemű és hajlékony volt, és azonnal felismerte, hogy az elmélet helyes. 1906-ban Planck volt az első, aki Einsteinen kívül dolgozatot publikált a relativitáselméletről. Ebben a dolgozatban elsőként alkalmazta a relativitáselméletet a kvantumelméletre. És 1907-ben az első volt, aki egy relativitáselméletről szóló Ph.D.-disszertáció témavezetője lett.
[bookmark: _ednref196]A relativitás zászlaját Einstein korábbi főiskolai tanára, az a Hermann Minkowski vitte, aki akkor már Göttingenben volt. Egyike volt azoknak, akik az első időkben fontos hozzájárulást tettek az elmélethez. Egy szűk körű tudományos vita során bevezette az időt, mint a negyedik dimenziót a geometriába, mint a speciális relativitáselmélet lényeges elemét. Egy 1908-ban tartott előadásában Minkowski ezeket mondta: „Ettől a pillanattól kezdve a tér és az idő önmagukban már nem állják meg a helyüket, ezután csak egyfajta uniójuk, egységük fog fennmaradni független valóságként”8.
[bookmark: _ednref197][bookmark: _ednref198][bookmark: _ednref199]Egy németországi fizikuscsoport részéről megnyilvánuló támogatás ellenére a speciális relativitáselmélet széles körű elfogadása csak lassan következett be. 1907 júliusában Planck azt írta Einsteinnek, hogy a relativitáselmélet hívei „csak szerény kisebbséget alkotnak”9. A többség részéről az elfogadás sohasem mutatkozott meg. Michelson – mint láttuk – sohasem tudott az étertől eltávolodni. Lorentz, bár Einsteinnel kölcsönösen tisztelték egymást10, szintén nem tudott szakítani az éter fogalmával. Poincaré pedig, aki sohasem értette meg a relativitáselméletet11, egészen 1911-ben bekövetkezett haláláig folytatta az ellenállást.
Amíg a fizikusközösség lassan mérlegelte Einstein eszméit, ő maga elkezdett egy második, még nagyobb forradalom előkészítésén dolgozni. Ez egy olyan forradalom, amely megint csak a geometriát állítja a fizika középpontjába, ahonnan kissé eltávolodott, amikor Newton bevezette a differenciálszámítás egyenleteit. Ez olyan forradalom lesz, amelyhez képest Einstein első forradalma még akár könnyedén követhetőnek és elfogadhatónak tűnik.
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[bookmark: _ednref200]Ahogyan Einstein mondta később, 1907 novemberében1: „Ültem egy széken a berni Szabadalmi Hivatalban, amikor hirtelen felmerült bennem a gondolat: amikor egy ember szabadesést végez, nem érzi a saját súlyát”.
Einsteint nem ezekért a gondolatokért kapta a fizetését. Ő azért volt ott a hivatalban, hogy elvesse az örökmozgó gépek ötleteit, elemezze a jobb egérfogó-elgondolásokat, vagy hogy leleplezze azokat, akik a trágyából is gyémántot akarnak csinálni. A munka esetenként még akár érdekes is lehetett, de nem volt nagyon fárasztó. Nyolc óra naponta, heti hat napon át… Mégis, órákon át tudott dolgozni a saját fizikáján. A későbbi években kiderült, hogy be-bevitte jegyzeteit a munkahelyére, és titokban dolgozott rajtuk a hivatalában, majd gyorsan elrejtette íróasztalában, amikor az igazgató közeledett. Herr Einstein, egy slampos alak, mint mi legtöbben. Az igazgató teljesen kikelt magából, amikor 1909-ben Einstein végül is lemondott állásáról, hogy elfogadhasson egy egyetemi kinevezést. Csak nevetett, mert azt hitte, Einstein tréfál. A Brown-mozgást megmagyarázta, a fotont felfedezte, a speciális relativitáselméletet kidolgozta, minden rendben van.
[bookmark: _ednref201]„Amikor egy ember szabadesést végez, nem érzi a saját súlyát”. Ezt Einstein később így említette: „Ez életem legboldogabb gondolata”2. Einstein szomorú, egyedülálló ember lett volna? Tulajdonképpen a magánéletéről nehezen lehetett volna egy hollywoodi tündérmesét írni. Megnősült, elvált, újraházasodott – de összességében a házasélettel kapcsolatban negatív maradt a véleménye. Engedte, hogy elsőszülött gyermekét adoptálják. A legifjabb gyermeke skizofréniás volt és egy pszichiátriai kórházban halt meg. A nácik elűzték szülőföldjéről és soha nem érezte jól magát teljes mértékben abban az országban, amelyik befogadta őt.
Mint Einstein mondta, a felismerés még őt is „meglepte”. Ez volt a valóság megragadásának az a pillanata, ami a legfontosabb eredményekhez vezette. A szabadon eső test viselkedése volt „Einstein almája”, az a mag, amelyből kicsírázott a gravitáció új elmélete, a kozmológia új koncepciója és a fizikai elmélet új megközelítése. Einstein már 1905 óta valami hasonlót keresett, egy olyan új elvet, ami kalauzként szolgálhatná az új, a jobb relativitáselmélet keresésében. Tisztában volt vele, hogy eredeti elmélete még nem teljes. A tér és az idő szubjektivitására utaló gondolataival végső soron a speciális relativitáselmélet csak egy új kinematika volt. Leírta, hogy a testek hogyan viselkednek bizonyos erők hatására, de nem foglalkozott az erőkkel. Természetesen a speciális relativitáselmélet azért született, hogy tökéletesen megfeleljen a Maxwell-elméletnek, így az, hogy az elektromágneses erőkre specializálódott, nem jelentett problémát. A gravitációs erők kérdése egy más történethez vezet.
1905-ben a gravitáció egyetlen elmélete a newtoni volt. S mert Newton is szigorú egyéniség volt, úgy tervezte a gravitációs erők leírását, hogy az tökéletesen beleilleszkedjék a kinematikájába, vagyis a mozgástörvényekbe. Minthogy az új kinematikával a speciális relativitáselmélet lép a Newton-törvények helyére, nem meglepő, hogy Einstein Newton gravitációelméletét nem találta többé megfelelőnek. Newton gravitációelmélete a gravitációs erőről ezt mondja:

A gravitációs vonzás két tömegpont között minden adott időpontban arányos a tömegekkel és fordítottan arányos a két tömeg adott időpontban vett távolságának négyzetével.

Ez valóban így van, s hogy kvantitatívvá tegyük, le is lehet fordítani matematikai kifejezéssé. Sőt a differenciálszámítás eszközeivel el lehet érni, hogy a „tömegpontokról” a kiterjedt tömegekre is áttérhessünk. Be lehet helyettesíteni a mozgástörvénybe, hogy olyan egyenleteket hozzunk létre, amelyek az egymással kölcsönhatásban lévő égitestek mozgását írják le. Vagy ami egy csomó zsenialitás meg izzadságos munka árán Gauss nevét híressé tette, (közelítőleg) meg lehet oldani ezeket az egyenleteket, hogy meg lehessen becsülni az újonnan felfedezett kisbolygó, Gauss esetében a Ceres pályáját. A newtoni gravitációelmélet következményeinek kiértékelése sokkal bonyolultabb volt, mint a fenti egyszerű megállapítás, de a fizikusoknak mégsem volt bajuk azzal, hogy emberévek ezreire rúgó munkát kell fordítaniuk rá.
Newton maga is elégedetlen volt az elméletével, a pillanatszerű erőátvitelt gyanús fogalomnak tartotta. A relativitáselméletben ugyanez egyszerűen vétek, hiszen semmi nem vihető át gyorsabban, mint a fény terjedési sebességével. És van még valami! Tekintsük csak a mondatnak ezt a részét: „egy adott pillanatban”! A relativitáselméletben, mint ahogy láttuk, ez egy szubjektív ítélet. Ha a két tömeg mozog egymáshoz képest, akkor az egyik tömeg számára egyidejűnek tűnő események a másik tömeg számára biztosan különböző időpontokban történnek. És mint Lorentz rámutatott, nem lesz egybehangzó véleményük sem a tömegeikre, sem a távolságukra vonatkozóan!
Einstein tudta, hogy elmélete messze nem teljes, még meg kell találnia a gravitáció olyan leírását, amely konzisztens a speciális relativitáselmélettel. Még valami más is zavarta Einsteint. Nagy hangsúlyt fektetett a speciális relativitáselméletben arra az elvre, hogy egy megfigyelő nyugalomban lévőnek tekintheti magát anélkül, hogy meg kelljen változtatnia a fizikai elméleteit, így például azt, hogy a fény sebessége (vákuumban) egy adott, állandó érték. Ennek minden megfigyelő számára érvényesnek kell lennie. De a speciális relativitáselméletben ez csak az egyenes vonalú egyenletes mozgást végző megfigyelőre volt igaz.
„Mi ez a kitüntetett állapot, amit egyenes vonalú egyenletes mozgásnak neveznek?” – kérdezhetné fogvicsorgatva egy szkeptikus vagy egy logikus. A jól begyakorolt válasz így hangzik: mozgás egyenes vonalon, állandó sebességgel. Igaz, az egyenes vonalon, és egymáshoz képest állandó sebességgel mozgó megfigyelők csoportja egy olyan „öreg fiúk” klubot alkot, amelynek tagjai önelégülten egyetérthetnek kivételes helyzetükkel. De vajon meg tudják-e cáfolni egy kívülálló eretnek vélekedését, aki azt mondja, hogy mozgásuk csupán egymáshoz képest egyenletes, és csak azért, mert a valóságban egyszerre változtatják meg sebességük nagyságát és irányát mindannyian?
Képzeljük el, hogy egy sportstadion tele van fanatikus nézőkkel, akiket a székekhez ragaszt a játék izgalma. Úgy látszik, mintha megfelelnének az egyenletes mozgás kritériumának: pamlagkrumplik, akik chipset majszolva nézik a meccset (egyenletes mozgás zérus sebességgel). Most képzeljük el, hogy van egy másik pamlagkrumpli is, ebben az esetben egy űrhajós, aki az üléséhez szíjazva a tévémonitoron nézi a meccset a Fotel űrállomáson. Az ő számára a stadionbeli fanatikusok mindannyian őrülten keringenek a Föld körül, és ezt aligha nevezné egyenes vonalú mozgásnak. Miféle bíró adna neki igazat, hogy ő van nyugalomban és a nézők forognak? Egy másik megfigyelő esetleg azt állítja, hogy mind az űrhajós, mind a stadion nézői valami észveszejtő mozgásban vesznek részt, ki így, ki úgy?
Ahogyan az lenni szokott, van rá mód, hogy eldöntsük. E könyv szerzője számára ez roppant egyszerű. Ha egyenes vonalú egyenletes mozgásban vagyok, akkor nyugodtan ülök és mérlegelem, hogy milyen szépen írják le Newton törvényei a körülöttem lévő világot, ellenben ha túl nagy gyorsulásoknak vagyok kitéve, akkor arcom elzöldül és hányingerem támad. Ezt az effektust a korai hatvanas években fedeztem fel egy Chevroletben. Az emberi testre a gyorsulás hatása természetesen igen összetett, ám ennek fizikája egyszerű: a gyorsulás különbséget hoz létre. Vegyük a következő gondolatkísérletet, amelyben mondjuk Einstein fia, Hans Albert lesz a kísérleti nyúl. Hans Albert ötéves volt 1907-ben, és ebben a korban a nagyon nem egyenletes mozgások még perverz módon vonzónak tűnnek. Szóval képzeljük el, hogy Hans Albert egy körhintán van, édesapja, dr. Einstein pedig egy merev peronon, ami a hintát körbeveszi.
Hans Albert egy nyalókát tart a kezében. Indul a kísérlet! Ha a körhinta nyugalomban van, az elengedett nyalóka egyszerűen leesik a földre. Ha a hinta forog, a nyalóka elrepül az elengedés pillanatában az érintő irányában. A fiatal gyerekek általában még azt hiszik, hogy körülöttük forog a világ. Tegyük fel, hogy Hans Albert is így vélekedik, miközben – mindkét esetben – azt állítja, hogy ő nyugalomban van. Az utóbbi esetben nem látja, hogy a körhinta éppen mozgásban van. Ellenkezőleg, azt hiszi, hogy a világ forog körülötte. Az öreg Einsteint az ejti gondolkodóba, hogy szemben a korábbi, régi jelenettel, amikor Nicolai szekercéje összeütközött Alexei könyvével, most a két megfigyelő leírásában az események más szabályoknak engedelmeskednek. Hogy ezt belássuk, vizsgáljuk meg, hogyan értelmezik a megfigyelők ezt a helyzetet. A papa – Einstein – egy koordináta-rendszert vezet be, amelyik a Földhöz van rögzítve. Ebben az ő helye változatlan marad, míg Hans Albert körbe forog a körhinta középpontja körül. A nyalóka egy ideig Hans Alberttel együtt utazik, mert erős marka kényszeríti erre a körmozgásra. Abban a pillanatban, amikor Hans Albert elengedi, a nyalóka Newton mozgástörvényeinek engedelmeskedik. Ez azt jelenti, hogy elhagyja a kört és egyenes vonalat követ valamilyen sebességgel, valamilyen irányban, amelyikkel akkor rendelkezett, amikor Hans Albert éppen elengedte szorításából. Sem Newton mozgástörvényeit, sem a speciális relativitáselméletet nem kell módosítani, hogy leírjuk velük a történéseket. Most pedig nézzük a kis Hans Albert szempontjából a dolgokat! Ő is lefekteti koordináta-rendszerét a körhintához rögzítve, ebben az ő helye változatlanul megmarad. A nyalóka egy ideig nyugalomban marad, Hans Albert helyén. De amikor Hans Albert kinyitja tenyerét, a nyalóka hirtelen elrepül. Ez nem a tárgyak szokásos viselkedési módja, sem Newton, sem Einstein fizikájában. Úgy látszik, mintha ezek a törvények elvesztették volna érvényességüket erre az esetre! Annyira, hogy a saját vonatkoztatási rendszerében Hans Albert kísértést érez arra, hogy Newton első törvényét a következő megállapítással helyettesítse:

Egy test, amely nyugalomban van, igyekszik megtartani nyugalmi állapotát, de csak ha erősen kézben tartjuk. Ha viszont elengedjük, akkor minden látható ok nélkül elrepül.

Egy forgómozgást végző megfigyelőnek, mint Hans Albertnek – aki azt állítja magáról, hogy ő nyugalomban van –, meg kell változtatnia a fizika törvényeit ahhoz, hogy leírhassa, miként mozognak a tárgyak az ő világában. Ehhez meg kell változtatni Newton mozgástörvényeit (vagyis a kinematikát). Ha Hans Albert arra törekedne, hogy „megmentse” Newton törvényeit, akkor különböző misztikus „erőket” kell definiálnia, amelyek az Univerzumban mindenre hatnak, és mindent eltávolodásra kényszerítenének a körhinta középpontjától. Minthogy ez egy kicsit úgy hangzik, mint a gravitáció, csak éppen nem vonzó, hanem taszító jellegű, legyen a neve schmavitáció!
Newton tudta, hogy a vonatkoztatási rendszer gyorsuló mozgása a tárgyakra úgy hat, mintha a misztikus schmavitációhoz hasonló erőknek lennének kitéve. Az ilyen erőket fiktív erőknek nevezték, mert nem valamilyen fizikai forrásból (mint pl. töltésből) erednek, és ki is küszöbölhetők, ha az ember az egész szituációt egy másfajta vonatkoztatási rendszerből szemléli, ami egyenes vonalú egyenletes mozgást végez (az ilyen rendszert inerciarendszernek nevezik). Newton elméletében a fiktív erők hiánya szolgáltatta az igazi kritériumot az egyenes vonalú egyenletes mozgásra. Ha nem lépnek fel ilyen fiktív erők, akkor egy test egyenes vonalú egyenletes mozgást végez. Ha fellépnek, akkor gyorsuló mozgást végez. Ez a fajta magyarázat sok fizikust zavart, különösen Einsteint. Hát jó, ebben az értelemben az egyenes vonalú egyenletes mozgás valóban definiálhatónak tűnik fizikailag. De az abszolút tér fix hálózata nélkül van-e egyáltalán több értelme annak, hogy megkülönböztessük a gyorsuló vonatkoztatási rendszereket, mint annak, hogy kijelöljük azt a kiváltságos rendszert, amelyet nyugalomban lévőnek tekintünk?
Képzeljünk el egy testet a térben, amiben nincsen sem anyag, sem energia. Hogyan tegyünk különbséget az egyenes vonalú és a körmozgás között, ha a mozgást nem lehet semmihez sem viszonyítani? Newton erre a kérdésre az abszolút térbe vetett hite alapján válaszolt: még a teljesen üres térben is van olyan fix hálózat, amelyhez képest a mozgás definiálható. Az Isten nem olyan típusú világot alkotott, amelyhez nem mellékelte a battériákat. A Világegyetem „felszerelten” jött létre, nemcsak Eukleidészt, hanem Descartes-ot is tartalmazta. Az akkori idők népszerű alternatív elméletét Ernst Mach osztrák fizikus javasolta: az Univerzum minden anyagának tömegközéppontja jelöli ki azt a pontot, amelyhez minden mozgás viszonyítható. Így aztán – nagyjából – az a mozgás, ami a távoli csillagokhoz képest egyenes vonalú és egyenletes, képviseli az igazi tehetetlenségi mozgást. Einsteinnek azonban megvoltak a saját elgondolásai.
A speciális relativitáselmélettel Einstein sikerrel eltörölte a különbséget a nyugalom és az egyenes vonalú egyenletes mozgás között (amikor is a sebesség nem zérus), az összes tehetetlenségi megfigyelőt ezáltal egyenlő rangra emelte. Most azt kereste, hogyan lehet minden megfigyelőt – azokat is, akik a tehetetlenségi rendszerekhez képest gyorsulva mozognak – egységesen átfogni. Ha sikerrel jár, akkor az új elmélete nem kíván már fiktív erőket, hogy a „nem egyenletes mozgásokat” megmagyarázza, sem pedig nem kell majd a fizikai mozgástörvényeket megváltoztatnia. A pamlagkrumplik a stadionban az asztronauta a Holdon, Hans Albert a hintán és még maga Albert is a fix peronon, mind képesek lesznek az elmélet alkalmazására anélkül, hogy gondolkozniuk kelljen, mi is az igazi inerciarendszer. A filozófiai motiváció már megvolt, Einstein számára már csak az elmélet hiányzott. De hogyan kell ezt megközelíteni? Egy vezérelvre van szükség!
[bookmark: _ednref202]Einstein számára „a legboldogabb gondolat” eredményeként adódó felismerés pont azt hozta, amire szüksége volt. „Ha valaki szabadon esik, akkor nem fogja érezni a súlyát.” Ez volt az első jel, és az iránytű is, amely az új elmélet felé vezető hosszú utat kitűzte. Bővebben megfogalmazva ez a megállapítás az egyenértékűség (ekvivalencia) elvében öltött testet, amely Einstein harmadik axiómájaként ismert3:

Nem lehet megkülönböztetni – hacsak nem a többi testekhez képest –, hogy egy test állandó és homogén gyorsulással mozog, vagy pedig nyugalomban van homogén gravitációs erőtérben.

Más szavakkal: a gravitáció – egy fiktív erő. A schmavitációhoz hasonlóan, az általunk választott vonatkoztatási rendszer teremtményeként lehet felfogni, amit ki is lehet küszöbölni egy másik vonatkoztatási rendszer választásával. Ez a homogén gravitációs erőtérre vonatkozó elv legegyszerűbb alakja, úgy, ahogy Einstein először gondolt rá. Gauss és Riemann munkái nyomán Einstein számára lehetővé vált, hogy tetszőleges gravitációs erőtérre alkalmazza, feltéve, hogy a nem homogén teret infinitezimális (vagyis végtelenül kicsi) homogén erőterekből rakja össze, de ezt nem állította egészen 1912-ig, csak körülbelül ötéves várakozás, gondolkodás után. Ekkor történt meg, hogy nevet is adott a megállapításnak: ez lett az egyenértékűség elve (ekvivalenciaelv).
Lássuk most, mit is gondolt Einstein a homogén erőtér eredeti esetében. Az egyenes vonalú egyenletes mozgást végző vonatkoztatási rendszerek szemléltetésére Newton hajókat használt, Einstein hasonló módon vonatokat, egyes esetekben lifteket. Talán Newton is másképpen nézte volna a gravitációs erőteret, ha már akkor lett volna lift, de ez a közlekedési eszköz csak 1852 után terjedt el, miután Elisha Graves Otis megoldotta azt a műszaki problémát, hogy miként lehet a lift utasainak az életét megmenteni, ha a lift tartókábele elszakad. Einstein általános relativitáselméletének gondolatkísérleteiben az Otis előtti liftekre volt szüksége. Tegyük fel, hogy miközben a liftben utazunk, hirtelen súlytalannak érezzük magunkat! Az egyenértékűség elve csak egyszerű megtestesítése az intuitív megfigyelésnek: ilyen körülmények között nem lehet eldönteni, hogy vajon valaki elvágta a kábelt, vagy csak egyszerűen eltűnt a gravitáció (bár ez utóbbi inkább csak ábrándozásnak minősül). Ha egy környezet szabadon eshet homogén gravitációs erőtérben, akkor a fizikai törvények ugyanazok, mint gravitáció nélküli környezetben. Engedje el kávéját a kezéből, és az csak ott fog imbolyogni, akár a szabad külső térben van ön, akár éppen halálugrást végez szabadesésben a kilencvenegyedik emeletről.
De tegyük fel, hogy belépünk a liftbe egy épület földszintjén. Az ajtók bezárulnak. Becsukjuk a szemünket. Most pedig kinyitjuk. A szokásos súlyunkat érezzük. Mi okozhatja ezt a súlyérzetet, ami lefelé mutat? Lehet, hogy a Föld gravitációs erőtere, vagy talán a Földet hirtelen eltüntették a földön kívüli élőlények és a liftet pedig felfelé vontatják, sebességét másodpercenként 10 m/s értékkel növelve! Ez nem egy spekuláció, amin át kellene látni egy állásinterjú alkalmával, hanem az egyenértékűség elvének az alkalmazása: mindkét jelenet végeredménye ugyanaz. Eressze csak el a kávéscsészéjét és az ugyanúgy fog szétloccsanni mindkét esetben.
A tárgyak a szabadon eső liftben ugyanúgy lebegnek, vagy a gravitációmentes esetben felfelé gyorsuló liftben a tárgyak ugyanúgy fognak szabadon esni – persze csak a Newton-törvények szerint. Nincsen „magától értetődő” új fizika ezekben a jelenetekben. De, mint rendesen, Einstein addig faggatta a szituációt, míg az be nem vallotta rejtett titkait. A titkok, amiket meghallott, különösek voltak – a gravitáció jelenléte megváltoztatja az idő múlását és a tér alakját!
Hogy megtalálja az idő múlására gyakorolt hatást, Einstein a liftben végzett kísérletet elemezte. Ennek alapgondolata ugyanaz volt, mint amelyet a földalattiban alkalmazott. A különböző megfigyelők észleléseit követte nyomon, akik a fényjelek cseréjét és időzítését végezték. Einstein azt tervezte, hogy a speciális relativitáselméletet fogja felhasználni a fizika leírására, de egy problémába ütközött. Minthogy ezek a mostani megfigyelők gyorsulnak, ezért a speciális relativitáselmélet rájuk nem alkalmazható. Így hát egy feltevéssel élt, ami a továbbiakban a végső elmélet sarokkövévé vált. Nevezetesen: eléggé kicsiny térrészben, eléggé rövid időtartamban és elég kicsi gyorsulás esetén a speciális relativitáselmélet kijelentései közelítőleg alkalmazhatóak. Ezen a módon Einstein alkalmazni tudta a speciális relativitás elméletét és az ekvivalenciaelvet infinitezimálisan kis tartományokra, még nem homogén erőterek esetén is.
Képzeljenek csak el egy hosszú űrrakétát, aminek az elején Alexei, a végén pedig Nicolai utazik. Mindkettőnek ugyanolyan órája van. Alexei másodpercenként fényjeleket bocsát ki. Az egyszerűség kedvéért tegyük fel, hogy Alexei és Nicolai mérései szerint az űrhajó egy fényszekundum hosszúságú. (Ez azt jelenti, hogy a fényjel egy másodperc alatt teszi meg az utat Alexei és Nicolai között.) Mit fog Nicolai észlelni?
Minthogy Alexei minden egyes másodpercben egy felvillanást hoz létre, és minden felvillanás ugyanazt a fényszekundumnyi távolságot teszi meg, hogy elérjen, Nicolai minden másodpercben egy felvillanást fog észlelni. Most tegyük fel, hogy a hajtóművek működésbe lépnek és állandó gyorsulást hoznak létre. Mi változik? Az első felvillanás a vártnál egy kicsit korábban ér el Nicolaihoz, mert Nicolai a felvillanás felé mozdult el. Mondjuk 0,1 másodperccel korábban. Az ekvivalencia elve szerint Nicolai és Alexei tagadhatják, hogy az űrhajó mozog, ehelyett azt a „húzóerőt”, amit a gyorsulás miatt éreznek, valamilyen gravitációs erőnek tulajdoníthatják. De ha tagadják a gyorsuló mozgást és az erőt a gravitációs erőtérnek tulajdonítják, akkor természetesen azt is tagadniuk kell, hogy Nicolai felfelé ment, hogy találkozzon a felvillanással. Ehelyett arra a következtetésre jutnak abból, hogy a jel 0,1 szekundummal korábban ért Nicolaihoz, hogy a gravitációs erő Alexei órájának járását megváltoztatta, méghozzá úgy, hogy siessen, és a felvillanást 0,1 szekundummal korábban bocsássa ki.
[bookmark: _ednref203][bookmark: _ednref204]Ha tehát az ekvivalenciaelv kívánságai szerint bármelyik értelmezést is követjük, arra a következtetésre kényszerülünk, hogy egy óra, amit a gravitációs erőtérben magasabbra helyeztek el, gyorsabban fog járni. A Föld gravitációs erőterének betudhatóan Alexei számára az idő – az űrhajó tetején – egy picikével gyorsabban fog telni, mint azt Nicolai órája teszi az űrhajó aljában. Csak egy egészen picikével. A Nap hatalmas gravitációs erőterében, a Nap felszínén gondolt óráknál 150 millió kilométerrel „feljebb” lévő földi órák is csak 2 milliomod résszel járnak lassabban. Mindenesetre a „napbéli lények” egy év alatt csak alig egypercnyi időt nyernek emiatt4! Aligha érné meg a költözködést a klímaváltozás! Ez a módosulás az időben viszont érinti a fény frekvenciáját, hiszen ez a fény rezgéseinek száma másodpercenként. Ez sem nagy jelenség, de mégis ez az egyik, Einstein által előre jelzett effektus (amit gravitációs vöröseltolódásnak neveznek)5. Ennek következtében, ha az ön kedvenc rádióállomása AM (amplitúdómodulált) 1070 (vagyis 1070 kHz), ami a rádióműsort a 110 emeletes (azóta tragikus körülmények között megsemmisült – a ford, megj.) World Trade Center tetejéről közvetítette, a behangolásnál a földi szinten 1070,000 000 000 03 kHz frekvenciára kell állítani. (A hifirajongók szíves figyelmébe!)
[bookmark: _ednref205]Einstein először 1907-ben hozta nyilvánosságra, hogy a gravitáció megváltoztatja az idő múlását. A speciális relativitáselméletből jól tudjuk, hogy az időintervallumok és a térbeli távolságok összekapcsolódnak. Mennyi ideig tartott, míg a próbaidős műszaki szakértő felfogta, hogy a gravitáció jelenléte még a térbeli alakot is megváltoztatja? Öt év – jó lesz emlékeznie erre, ha legközelebb elnéz valamit, amiről azt hiszi, hogy nyilvánvaló. Mint Einstein mondja: „Ha tudnánk, hogy mit csinálunk, akkor azt nem neveznék kutatásnak, ugye?”6.
[bookmark: _ednref206]Einstein ezt a térgyűrő kapcsolatot Prágában dolgozta ki 1912 nyarán. Ekkor már hat éve dolgozott az általános relativitáselméleten. Megint egy hirtelen megvilágosodás következett. Ezt írta7: „A Lorentz-kontrakció miatt, ami egy vonatkoztatási rendszerben fellép, ha az egy inerciarendszerhez képest forog, a merev testek viselkedését megszabó törvények nem felelnek meg az euklideszi geometria szabályainak. Így hát az euklideszi geometriát is el kell hagyni…” Vagy fogalmazzunk így: „ha nem egyenes vonalon mozgunk, az euklideszi geometria torzul”.
Képzeljük el Hans Albertet, aki akkor tízéves, és ismét a forgó körhintán ül. Tegyük fel, hogy a papája a „stacionárius” dobogón áll, a körhinta alakja, úgy látszik, tökéletes kör. Mit mond a speciális relativitáselmélet a térről ebben a helyzetben? (Ez az elemzés az igazat megvallva, nem teljesen egzakt, mert a speciális relativitáselméletet a nem egyenes vonalú egyenletes mozgásra alkalmazza.) Képzeljük azt, hogy minden egyes időpillanatban Hans Albert pillanatnyi helyén keresztül párhuzamos tengelyeket rajzolunk. Az egyik tengely kifelé mutat radiálisan (a körhinta középpontjától kifelé). Ez ebben a pillanatban annak az erőnek az iránya, amit Hans Albert érez. Hans Albert viszont egyáltalán nem ebben az irányban mozog: távolsága a körhinta közepétől nem változik. A másik tengely a körhinta érintője. Egy adott időpontban iránya Hans Albert mozgásának irányába mutat. Mindig merőleges az általa érzett erő irányára.
Most tegyük fel, hogy a papa egy kis horizontális négyzetlappal löki meg Hans Albertet, amelynek egyik oldala a forgó hinta sugarával egyirányú. Megkéri Hans Albertet, hogy figyelje meg és mondja el, milyen alakú ez a lap. Mit fog mondani Hans Albert? Ami a papának négyzet volt, az neki már csak négyszög. Ez a Lorentz-kontrakció hatása. Mivel Hans Albert mindig csak tangenciálisan – érintőlegesen – mozog, sohasem radiálisan, a négyzet két oldala, ami az érintővel párhuzamos, kontrakciót szenved, míg a sugárral párhuzamos oldalak nem! Ha Hans Albert megmérné a hinta kerületét és átmérőjét e hosszak egységében, azt találná, hogy a hányadosuk nem π, Hans Albert tere görbült! A papa arra következtet, hogy az euklideszi geometriát el kell hagyni. Csak az a kérdés, mi jöjjön a helyére?
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27. Az inspirációtól
a verítékes munkáig







Könnyű valamit elvetni, de nehezebb valami újat csinálni. Amire Einsteinnek szüksége volt, ha új fizikát akart kiépíteni, az egy egészen új geometria, amely a tér gyűrtségét, görbeségét képes leírni. Szerencsére, Riemann (és néhány követője) ezt már kidolgozta. És szerencsétlenségre, Einstein nem hallott még Riemannról – egyáltalán nagyon kevesen hallottak. De Einstein Gaussról már hallott.
[bookmark: _ednref207]Einstein emlékezett az infinitezimális (differenciál-) geometriára, amihez a főiskolán volt szerencséje, és foglalkozott a felületek Gauss-féle elméletével. Einstein egyik barátjához, Marcel Grossmannhoz fordult, akinek 1905-ben dedikálta a doktori értekezését. Grossmann addigra már Zürichben volt matematikus, és éppen a geometria területére szakosodott. Amint Einstein meglátta őt, felkiáltott: „Grossmann, segítened kell, mert megőrülök!”1.
[bookmark: _ednref208]Elmagyarázta hát, mire is van szüksége. Grossmann, amint az irodalomban keresgélt, rábukkant Riemann és mások differenciálgeometriai munkáira. Ám ezek titokzatosak, bonyolultak voltak. Grossmann visszaüzent Einsteinnek, igen, ilyen matematika valóban létezik, „de borzalmasan bonyolult, amibe jobb, ha a fizikusok nem bonyolódnak bele”2. Einstein azonban mindenképpen tudni akart róla. Megtalálta végre a szerszámot, amivel elméletét meg lehet fogalmazni. De azt is megállapította, hogy Grossmannak tökéletesen igaza volt.
[bookmark: _ednref209]1912 októberében így írt egy barátjának és fizikus kollégájának, Arnold Sommerfeldnek: „…egész életemben közel sem dolgoztam ilyen keményen, mélységesen áthatott a nagy tisztelet a matematika iránt… de ehhez a problémához képest az eredeti elmélet (a speciális relativitáselmélet) gyerekjáték”3.
[bookmark: _ednref210][bookmark: _ednref211][bookmark: _ednref212]A kutatás további három évig tartott, ezek közül kettőben az együttműködés Grossmann-nal igen szoros volt. A tanulótárs, akinek jegyzetei átsegítették Einsteint az egyetemi vizsgákon, most a tanár szerepét játszotta. Amikor Planck meghallotta, hogy Einstein mire készül, ezt írta: „Mint egy öreg barát, azt kell mondjam, ne tegye, mert először is, nem fog sikerrel járni, másodszor pedig, ha mégis sikerrel jár, senki sem fogja elhinni”4. 1915-ben Einstein újra Berlinben volt, ahova maga Planck hívta. Grossmann csak egy csomó jegyzetet írt, meg kutatási jelentést, majd alig egy évtized alatt súlyosan megbetegedett, multiplex sclerosis támadta meg. Einstein, miután megtanulta azt, amire szüksége volt, egymaga is felépítette az elméletet. 1915. november 25-én5 benyújtotta tanulmányát A gravitáció téregyenletei címen a Porosz Tudományos Akadémiának. Ebben kijelentette: „Végül, az általános relativitáselmélet mint logikai rendszer, zártnak tekinthető”6.
Hogyan írja le a tér természetét az általános relativitáselmélet? Megmutatja, hogy az Univerzumban lévő anyag és energia hogyan módosítja a távolságot. Ha mint halmazt nézzük, a tér egyszerűen csak az elemeinek, a pontoknak a sokasága. A tér struktúrája, amit geometriának nevezünk, a pontok közti, távolságnak nevezett viszonyból ered. A puszta halmaz és a geometria közötti különbség olyan, mint a telefonkönyv (ahol a címek fel vannak sorolva) és a térkép között (ami azok térbeli elrendeződését mutatja). Gauss, miközben a németországi felmérést készítette, felfedezte, hogy a pontpárok közti távolság megadásával a tér geometriáját határozza meg. Riemann pedig kidolgozta azokat a részleteket, amikre Einsteinnek szüksége volt, hogy a fizikát így megfogalmazza.
Az egész két öreg barátunk, Püthagorasz és Nempüthagorasz vitájaként foglalható össze. Idézzük csak fel, hogy az euklideszi világban a Pitagorasz-tétel alkalmazásával kaphatjuk meg két tetszőleges pont közti távolságot. Egyszerűen lefektetünk egy derékszögű koordinátahálózatot. Nevezzük a koordinátatengelyeket Észak-Dél-tengelynek és Kelet-Nyugat-tengelynek. A Pitagorasz-tétel szerint a két pont közti távolság négyzete egyenlő az Észak-Dél irányú távolságuk és a Kelet-Nyugat irányú távolságuk négyzetösszegével.
[bookmark: _ednref213]Mint Nemeukleidész megállapította, görbült térben – mint amilyen a Föld felülete – ez már nem igaz. Ezért Püthagorasz tétele egy új képlettel helyettesítendő, a Nempitagorasz-tétellel. A Nempitagorasz-tételben a távolság négyzetét nem szükségképpen egyenlő mértékben befolyásolja az Észak-Dél irányú vagy a Kelet-Nyugat irányú távolság. Matematikai szempontból ez ugyanis így szól7: (távolság)2 = g11 × (K-Ny irányú távolság)2 + g22 × (É-D irányú távolság)2 + g12 × (K-Ny irányú távolság) × (É-D irányú távolság).
[bookmark: _ednref214]A g tényezők együttesét a tér metrikájának nevezzük (maguk az egyes g tényezők a metrika komponensei). Minthogy a metrika bármely két pont közti távolságot definiálja, ezért a metrika jellemzi a teret. Euklideszi sík, vagyis a derékszögű koordináták használata esetén a metrika komponensei egyszerűen g11 = g22 = 1 és g12 = 0. Ebben az esetben Nempüthagorasz tétele pontosan megegyezik Püthagorasz szokásos tételével. A terek más típusainál a komponensek nem ilyen egyszerűek, és még értékeik is változhatnak pontról pontra. Az általános relativitáselméletben ezeket a gondolatokat általánosítani kell a háromdimenziós térre és a speciális relativitáselmélet mintájára be kell vonni az időt is mint negyedik dimenziót. (Így a négy dimenzióban a metrikának tíz, független komponense van.)8
Einstein 1915-ös dolgozata éppen ezt tartalmazta: egy egyenletet, amely kapcsolatot teremt az anyag térbeli (és időbeli) eloszlása, valamint a négydimenziós téridő metrikája között. Minthogy a metrika a geometriát definiálja, az Einstein-egyenletek a téridő alakját határozzák meg. Einstein elméletében a tömeg hatása nem az, hogy gravitációs erőt fejt ki, hanem az, hogy megváltoztatja a téridő alakját.
Jóllehet a tér és az idő szorosan összekapcsolódnak egymással, ha csak bizonyos körülményekre korlátozódunk, nevezetesen kis sebességekre és gyenge gravitációra, akkor a téridőben a tér és az idő közelítőleg még külön is szemlélhető. Ebben a tartományban lehet elfogadhatóan beszélni külön a térről és így a tér görbültségéről. Einstein elmélete szerint a tér egy tartományában (a térirányokra átlagoltan) a tér görbületét a tartományban jelen lévő anyag tömege határozza meg.
Mint láttuk, a görbület tükröződik abban az összefüggésben, ami megmutatja, hogyan függ egy kör kerülete a sugarától, vagy hogyan függ egy gömb térfogata a sugarától. Ez Einstein egyenleteiben is tükröződik: ha adva van a tér egy gömb alakú tartománya, amiben az anyag egyenletesen oszlik el, akkor a gömb mért sugara kisebb lesz, mint azt várnánk (a térfogatához képest), mégpedig egy szorzóval leírható módon, ami a benne lévő tömeg mennyiségétől függ. Az arányossági tényező rendkívül kicsiny, minden grammnyi tömeg esetén a sugár 2,5 × 10-29 centiméterrel, vagyis 0,000 000 000 000 000 000 000 000 000 025 cm-rel kisebb.
[bookmark: _ednref215]A Föld esetében, feltéve, hogy a sűrűsége állandó, a sugárkülönbség mindössze 1,5 milliméter! A Nap esetén ez fél kilométer!9
[bookmark: _ednref216]A Föld téridő görbültsége igen kicsiny és csak mostanában jutott a gyakorlati alkalmazások szintjéig. (A Global Positioning Satellites – globális helymeghatározó műholdak – például már az általános relativitáselmélet korrekcióit kívánják meg, hogy óráik összehangoltak maradjanak10.) Einstein évekig nem gondolt arra, hogy a fénysugár elgörbülése mérhető lesz valamikor is. És egyszer csak a csillagok felé nézett. A próba elvben egyszerűnek látszik: meg kell nézni, mikor és hol lesz a legközelebbi időpontban teljes napfogyatkozás, és meg kell mérni a Nap mellett látszó csillagok helyét a fogyatkozás alkalmával (azért kell a fogyatkozás, mert, ha a Napot nem takarja el a Hold, a csillagokat nem lehet látni). Tudni kell még a csillagok pozícióját más adatokból is, például mondjuk a hat hónappal korábbi állapotban, amikor a fényük anélkül jutna a szemünkbe, hogy a Nap mellett el kellene haladniuk. A fogyatkozás alkalmával pedig meg kell nézni, hogy ott vannak-e, ahol „kellene” lenniük, vagy pedig egy kicsit „arrébb”.
Ez a „kicsit arrébb” ebben az esetben tényleg igen kicsi volt: mindössze 1 3/4 ívmásodperc, vagy pontosan 0,00049 fok. Már maga Newton is felfedezhette volna ugyanezt az effektust, bár elméletéből kicsit más értéket lehetett volna levezetni. 1915-re viszont Einstein már birtokában volt a téregyenleteknek és kiszámította a legjobb előrejelzést. Az általános relativitáselmélet első valódi próbája most már nem az volt, hogy elgörbül-e a fénysugár, hanem az, hogy mennyire. Einstein bizakodó volt.
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28. A kék haj győz









[bookmark: _ednref217][bookmark: _ednref218][bookmark: _ednref219]Két brit expedíciót is kiküldtek, hogy megfigyeléseket végezzenek az 1919. május 29-én bekövetkező napfogyatkozás során. Arthur Stanley Eddington vezette azt, amelyik végül sikeres volt1, a brazíliai Sobral környékére. Mielőtt elindultak volna, Eddington ezt írta2: „A jelenlegi napfogyatkozási expedíciók először bizonyíthatják, hogy a fénynek súlya van (vagyis, hogy a fényt a gravitáció vonzza a newtoni elemzés szerint); vagy kimutathatják Einstein szokatlan, nem euklideszi elméletének helyességét, vagy egy még messzebbre ható következményhez vezethetnek – ahhoz, hogy nincs fényeltérítés”. Hónapokat vett igénybe a mérési adatok elemzése. Végül november 6-án az eredményt nyilvánosságra hozták3 a Royal Society és a Royal Astronomical Society (Királyi Csillagászati Társaság) ülésén. A The New York Times, ami addig soha nem említette Einstein nevét, úgy érezte, hogy ez olyan hír, amit érdemes lehozni. Bár lehet, hogy félreértelmezte a hír fontosságát, mert golfspecialistáját, Henry Crouchot küldte ki tudósítónak. Crouch nem is volt jelen az ülésen, viszont beszélt Eddingtonnal.
A következő napon a The Times (London) szalagcíme így szólt: „FORRADALOM A FIZIKÁBAN”, majd kisebb betűkkel: „Új elmélet az Univerzumról” és „A newtoni eszméket elvetették”. A The New York Times három nap múlva megjelent számában a főcím így hangzott: „EINSTEIN ELMÉLETE GYŐZÖTT”, de ugyanakkor felvetette, hogy talán csak optikai csalódásról van szó, esetleg Einstein az ötletet H. G. Wells regényéből, Az időgépből lopta. Einstein életkorát is rosszul adták meg, mert „50 körülinek” mondták, pedig csak negyven volt. A nevét legalább helyesen közölték. Szerte a világon Einstein hirtelen ünnepelt lett, sokak számára egy természetfeletti zseni. Egy csillagszemű iskolás lány írt neki, és azt kérdezte, hogy létezik-e egyáltalán. Egy év is alig telt el, mire több mint száz könyv jelent meg a relativitásról. Az előadótermek világszerte zsúfoltságig megteltek az érdeklődőkkel, akik az elmélet népszerű kifejtését kívánták hallani. A Scientific American 5000 dollárt ígért a legjobb 3000 szavas magyarázatért. (Einstein megjegyezte, hogy a barátai közül egyedül ő nem vett részt a versenyben.)
[bookmark: _ednref220]Bár a nagyközönség bálványozta őt, néhány kollégája támadni kezdte. Michelson, aki abban az időben a Chicago Egyetem fizikai intézetének volt a vezetője, elfogadta ugyan Eddington megfigyeléseit, de nem volt hajlandó elismerni, hogy azokkal az elmélet igazolható. „Az Einstein-elmélet téveszme. Egy elmélet, mely szerint az éter nem létezik és a gravitáció nem erő, hanem a térnek a sajátja, csak mint egy őrült szeszély írható le, ami korunk szégyene”4. Nikola Tesla is igyekezett Einsteint nevetségessé tenni, de mint később kiderült, Tesla félt a gömbölyű tárgyaktól.
Egyik nap az ebéd alatt Alexei kifejtette legfrissebb művészi vágyát: kékre kívánja festeni a haját. Ez már a XXI. század, és a gyerekek hamarosan, egy-két évtizeden belül kékre festetik majd a hajukat. De azért nem sokan akarják ezt úgy kilencéves korukban. A következő hétfőn Alexei lett az első az iskolában, akinek a haja beszíneződött a tintájával. Nicolai, a négyéves visszhang úgy került elő, mint aki citromsárgára festette a homloka feletti fürtöket.
Az iskolában erre a reakció körülbelül olyan volt, mint azt várni lehetett. Néhány gyerek mély intellektuális megértést mutatott, és kijelentették, hogy a szín nagyszerű (ezek többnyire Alexei barátai voltak). Egy csomóan nem tudták elviselni, hogy szakított a hagyománnyal, és „áfonyá”-nak csúfolták. A tanára egy pillanatra rámeredt, de nem fűzött hozzá megjegyzést.
A fizika nagyjából olyan, mint a negyedik osztály. A korai XX. század fizikusai számára a nem euklideszi tér a tudomány valami elvont területe volt csak. Valami különlegesség talán, vagy olyan, mint a kék haj, szóval olyasmi, aminek vajmi kevés köze van a dolgok fő áramlatához. Ekkor jött Einstein és azt javasolta, hogy a kék haj a divatos. Az ellenállás – Einstein esetében – egynéhány évtizedig tartott, de fokozatosan eltűnt, ahogyan az idős generáció fokozatosan kihalt, az új pedig bármit elfogadott, ami nem volt olyan, mint a szilárd halmazállapotú és mindent betöltő anyag, amit éternek hívtak.
[bookmark: _ednref221][bookmark: _ednref222]Az antirelativisták utolsó mentsvára Németország volt, az az ország, ahol az első támogatók is megjelentek. Németországban egyszer csak beköszöntött az antiszemiták nagy napja. A Nobel-díj 1905. évi nyertese Lénárd Fülöp (aki magyarországi származású volt – a ford, megj.) és az 1919. évi nyertese, Johannes Stark azokat támogatta, akik a relativitáselméletben egy a világhatalom átvételére szervezett zsidó összeesküvést gyanítottak. 1933-ban Lénárd így írt: „A legfontosabb példát a zsidó körök veszélyes befolyására a természet tanulmányozásában Einstein szolgáltatta a matematikailag összetákolt elméleteivel…”5. 1931-ben megjelent Németországban egy kis könyv: Száz szerző Einstein ellen6. A csoport matematikai elkötelezettségére jellemző módon ebben a kötetben 120 ellenző szerepelt. Közülük csak kevesen voltak jól ismert fizikusok.
[bookmark: _ednref223]Einstein öreg támogatói, Planck és von Laue nem csatlakoztak, ami Stark számára alkalmat adott arra, hogy a Lénárdról elnevezett intézet megnyitóján mondott ünnepi beszédében felháborodásának adjon hangot7:

„…sajnos, (Einstein) barátainak és támogatóinak még mindig van alkalmuk arra, hogy az ő szellemében folytassák munkájukat. Fő segítője, Planck még mindig a Vilmos Császár Intézet igazgatója, elméletének közvetítője és egyben jó barátja, von Laue úr még mindig tanácsadó lehet a berlini Tudományos Akadémián, az elméleti formalista Heisenberg pedig, aki Einstein szellemének szelleme, még mindig ki van tüntetve egy egyetemi megbízatással.”

Heisenberg azzal hálálta meg a nácik kedvességét, hogy főnöke lett a német atombomba-fejlesztésnek. Szerencsére nem tudta a relativitáselméletet annyira jól – így csoportját lekörözte az amerikai hadsereg számára dolgozó fizikusok briliáns csapata, melynek tagjai között ott volt az olasz Enrico Fermi, a magyar Teller Ede és a német Victor Weisskopf. Einstein felülemelkedett a csetepatén, mert sem a komoly kihívásokra, sem az eszeveszett bolondságokra nem válaszolt.
[bookmark: _ednref224]Einstein éppen Pasadenában volt, egy korábban eltervezett két hónapos tartózkodás közepén a Kaliforniai Műszaki Egyetem vendégeként, amikor Hindenburg német államelnök Hitlert kancellárrá nevezte ki. A fasiszta csapatok hamarosan megszállták Einstein berlini lakását és nyári otthonát is. 1933. április elsején a nácik lefoglalták tulajdonát és jutalmat tűztek ki annak, aki őt, mint az állam ellenségét elfogja. Einstein addigra már megint Európában járt, és elhatározta, hogy az Amerikai Egyesült Államokban keres menedéket, Princetonban, az akkor éppen megnyílt Institute for Advanced Studyban. Úgy tűnik, hogy a döntő érv Princeton mellett8 (a Kaliforniai Műszaki Egyetemmel szemben) az volt, hogy itt asszisztense, Walter Mayer is kapott állást. Einstein végül 1933. október 7-én érkezett New Yorkba.
[bookmark: _ednref225]Einstein az ezt követő éveit azzal töltötte, hogy minden erő egységes összefogására alkalmas elméletet dolgozzon ki. Hogy ezt megtehesse, az általános relativitáselméletet Maxwell elektrodinamikájával, majd később az erős és a gyenge nukleáris erőkkel, és legvégül a legfontosabbal, a kvantummechanikával kellett volna összebékítenie. Kevés fizikus hitt igazán ebben az egységesítő programban. A híres osztrák-amerikai fizikus, Wolfgang Pauli ezt úgy hárította el: „Amit Isten szétválasztott, azt ne akarja senki összerakni”9. Maga Einstein így válaszolt: „Engem általában egy kővé vált objektumnak tekintenek, akit az évek vakká és süketté tettek. Ezt a szerepet nem találom olyan ízetlennek, mert jól megfér temperamentumommal”. Mint hamarosan látni fogjuk, Einstein jó nyomon járt, csakhogy több évtizeddel megelőzte a korát.
[bookmark: _ednref226]1955-ben Einstein súlyosan megbetegedett, a diagnózis az aorta kóros tágulata volt a hasüregi területen. Az aorta megsérült, hatalmas fájdalmat és nagy vérveszteséget okozott. A New York Hospital sebész főorvosa megvizsgálta őt Princetonban és műtéti beavatkozást javasolt. Einstein így válaszolt: „Nem hiszek abban, hogy érdemes mesterségesen meghosszabbítani az életet”10. Hans Albert, aki addigra megbecsült kultúrmérnök, a Kalifornia Egyetem professzora lett, megpróbálta édesapja elhatározását megváltoztatni. Einstein azonban a következő nap hajnalban meghalt, 1955. április 18-án 1 óra 15 perckor. Hetvenhat éves volt. Hans Albert szívrohamban halt meg 18 évvel később, 1973-ban.
[bookmark: _ednref227]Visszatekintve az ellenállásra és gyűlöletre, amit le kellett küzdenie, meg az áhítatra és hősimádatra, amit keltett, Einstein hozzájárulását a geometriához leginkább saját prózai leírásával foglalhatjuk össze. A forradalmi jelentőségű munkájáról ezt írta: „Amikor egy vak bogár végigrepül a Föld felszínén, nem tudja, hogy pályája, amin végighaladt, görbe-e vagy sem. Én elég szerencsés voltam, hogy felismertem”11.








[bookmark: tart34]V.
WITTEN TÖRTÉNETE


A XXI. századi fizikában a tér természete meghatározza a természet erőit. A fizikusok az extra dimenziókra kacsintgatnak és arra az eszmére, hogy alapvető szinten a tér és az idő talán nem is létezik.
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29. A különös forradalom









Van-e valamilyen kapcsolat a tér természete és a térben létező dolgokat kormányozó törvények között? Einstein megmutatta, hogy az anyag jelenléte befolyásolja a geometriát azáltal, hogy összegyűri a teret (és az időt). Ez bizony radikálisnak tűnt a maga idejében. De napjaink elméleteiben a tér és az anyag természete sokkal alapvetőbb szinten látszanak összefonódni, mint ahogyan Einstein elképzelte. Igen, az anyag meggörbítheti a teret egy kicsit itt, és – ha az anyag igazán koncentrálódik, akkor – egy nagyobb mértékben ott. A modern fizikában azonban a tér nem elégszik meg azzal, hogy bőségesen bosszút áll az anyagon. A modern elméletek szerint a tér legalapvetőbb tulajdonságai – mint például a dimenzióinak száma – meghatározzák a természet törvényeit, és az Univerzumunkat alkotó anyag és az energia tulajdonságait. A tér, mint az Univerzum tartálya, átlényegül a térré, ami minden lehetőség ura.
A húrelmélet szerint vannak a térnek extra dimenziói, olyan kicsik, hogy egy-egy parányi darabkájukat a jelenlegi kísérletekben még nem lehet megfigyelni (bár közvetve hamarosan talán lehetséges lesz). Bár parányiak, de topológiai tulajdonságaik (vagyis hogy milyen az alakjuk: mondjuk olyan-e, mint a sík, a gömb, a perec vagy akár a lyukas fánk) meghatározzák, hogy mi létezhet bennük (pl. mi magunk). Ha ezeket a „fánkdimenziókat” pereccé tekerjük – akkor, puff, és az elektronok (és így az emberek is) mind kitörlődnek a létezésből. Sőt mi több, a húrelmélet – amit még nem értünk elég mélyen – továbbfejlődött egy másik elméletté, az ún. M-elméletté, amiről még kevesebbet tudunk, de ami – úgy látszik – elvezet bennünket ahhoz a következtetéshez, hogy a tér és az idő ténylegesen nem is léteznek, hanem csak valami sokkal bonyolultabb dolognak a közelítő formái.
Az ön személyiségétől függ, hogy ezen a ponton nevetésben tör ki, vagy epés megjegyzéseket tesz az akadémiai körökről, amelyek csak pocsékolják a nehezen megszerzett adódollárokat. Mint látni fogjuk, sok éven keresztül maguknak a fizikusoknak is ilyen volt a reakciója. Némelyiknek még most is ilyen. Akik viszont ma az elemi részek elméletén dolgoznak, azok számára a húrelmélet és az M-elmélet, ha ma még nem is pontos, de mindenesetre elengedhetetlen. És függetlenül attól, hogy ezek az elméletek, vagy egyes későbbi leszármazottaik valamiféle „végső elmélet” szerepére érdemesülnek-e vagy sem, mind a matematika, mind a fizika arculatát máris megváltoztatták.
[bookmark: _ednref228]A húrelmélet eljövetelével a fizika visszafordult partnere, a matematika felé. Egy olyan absztrakt diszciplína irányába, amely Hilbert óta a szabályokkal, nem pedig a valósággal foglalkozik. A húrelméletet és az M-elméletet eddig nem a fizikai megismerés vágya vagy a kísérleti adatok megmagyarázásának igénye hajtotta, mert ez még hiányzik – hanem a saját matematikai struktúrájuk felfedezése. Nem arról van szó, hogy megjósoljuk új részecskék létezését, hanem hogy örvendjünk a felfedezésnek: az elmélet leírja a létező részecskéket. Vegyük észre, hogy az ilyen felfedezések a tudományos felfedezések szokásos sorrendjét megfordítják: a fizikusok ennek leírására kovácsolták a posztdikció szakkifejezést (a predikció [előrejelzés] mintájára – a ford. megj.). A tudományos módszer különös kicsavarásában az elmélet maga is tárgya lett a gondolatkísérleteknek; az experimentalistákból teoretikusok lettek. Nem véletlen, hogy Edward Witten, az elmélet mai élharcosa nem a Nobel-díjat, hanem a Fields-érmet, a Nobel-díj matematikai megfelelőjét nyerte el. Mert ahogyan a geometria és az anyag kölcsönösen hat egymásra, most mindkettő tanulmányozása is ezt kell, hogy tükrözze. Witten még messzebb megy, azt állítja, hogy a húrelméletnek végső soron a geometria új ágának kell lennie1.
Ez nem tér el a korábbi forradalmaktól, hisz nemcsak a tér eszméjét alakítjuk át, hanem azt a módot is, ahogyan a teret megközelítjük. Ennek a forradalomnak egy fontos szempontból mégis más a története, mint az előbbi forradalmaké: mi még most benne vagyunk és igazából senki sem tudja, hogy mi lesz a kimenetele.
[bookmark: tart36]
30. Tíz dolog, amit
utálok az elméletedben







1981-ben John Schwarz egy ismerős hangot hallott lentről, a folyosóról: „Hé, Schwarz, ma hány dimenzióban jársz?” Ez Feynman volt, Schwarz pedig egy még fel nem fedezett kultikus alak, a fizika elvont világában. Feynman azt gondolta, a húrelmélet csak valami játékszerszerűség lehet. Schwarz pedig egész jól elvolt ezzel. Már hozzászokott ahhoz, hogy nem veszik komolyan.
Abban az évben egy szép napon az egyik doktorandusz bemutatta Schwarzot a tanszék egyik új fiatal tagjának, akit Mlodinownak hívtak. Amikor Schwarz elment, a doktorandusz csak rázta a fejét: „Csak előadó, nem valódi professzor. Itt van már kilenc éve, de még mindig nem véglegesítették”. Majd kuncogva hozzátette: „A bolondos huszonhat dimenziós elméletén dolgozik”. Tulajdonképpen a doktorandusz tévedett az utolsó mondatban. Az elmélet valóban huszonhat dimenzióval kezdődött, de addigra már ez 10-re csökkent. És még így is egy kicsit túl sok maradt a dimenziókból.
Az elmúlt évek során több sorscsapás is érte ezt az elméletet. De mi is lehet ez? A fizikusok szóhasználatában „zavarok” lépnek fel, ha az elméletből olyan előrejelzések következnek, amiknek semmi közük sincs a valósághoz. Negatív valószínűségek. Olyan részecskék, amelyeknek imaginárius a tömegük és gyorsabban mozognak a fénynél. Szóval, pályafutása nagy kárára, Schwarz beleragadt elméletébe.
Alexei kedvence a Tíz dolog, amit utálok benned című középiskolás diákokról szóló film. Ennek végén a hősnő szemben áll osztályával és felolvas nekik egy költeményt arról a tíz dologról, amit gyűlöl a barátjában, de igazából ez a vers arról szól, hogy mennyire szereti a fiút. Könnyű elképzelni, amint John Schwarz éppen a költeményt szavalja: szereti az elméletet, ragaszkodik hozzá, annak ellenére, vagy néha éppen azért, mert olyan megnyerő kis hibái vannak.
Schwarz másokkal ellentétben felismerte az elméletben azt a lényeges matematikai szépséget, ami – úgy érezte – nem lehet a véletlen műve. Az elmélet kidolgozásának nehézsége nem riasztotta el őt. Egy olyan problémát akart megoldani, amibe Einsteinnek éppúgy beletört a bicskája, mint azóta mindenki másnak: össze akarta békíteni a relativitáselméletet a kvantumelmélettel. Nehéz ügy.
A relativitáselmélettel ellentétben az első átfogó kvantumelmélet csak évtizedekkel azután született meg, hogy Planck felfedezte az energiaszintek kvantumjellegét. Ez 1925-27 táján következett be Ervin Schrödinger osztrák, és Werner Heisenberg német fizikus erőfeszítéseit követően. Mindketten megalkották – vagy talán jobb szó: „kitalálták” – elegáns elméleteiket, amelyek megmagyarázták, hogyan kell Newton mozgástörvényeit más egyenletekkel helyettesíteni, amelyek magukban foglalják az előző évtizedek során feltárt kvantumelveket. Két új elmélet jelent meg, a hullámmechanika és a mátrixmechanika. Miként a speciális relativitáselmélet esetében, a kvantumelméletben sem voltak nyilvánvalóak a következmények. Eleinte a két elméletnek nemcsak egymáshoz, hanem a relativitáselmélethez való viszonya is meglehetősen ködös volt. Matematikailag annyira különbözőek voltak, mint felfedezőik.
[bookmark: _ednref229][bookmark: _ednref230]Képzeljük el Heisenberget! Jó német, öltöny és nyakkendő illően összeválogatva, íróasztala példás rendben. Hamarosan azzá válik, amit sokféleképpen írnak le a „tisztán nacionalistától” a „mérsékelt nácibarátig”, neki adatik meg, hogy a fasiszta Németország atombomba-erőfeszítéseit vezesse. A háború után, amikor sokan kifogásolták korábbi magatartását, azt mondogatta védekezésképpen: igen – de a szívem nem igazán volt benne. Heisenberg az új elméletet nagyrészt tapasztalati tényekre építette fel, együtt dolgozva idősebb kollégájával, Max Bornnal és Pascual Jordannal, a későbbi állítólagos rohamosztagossal1. Együtt dolgoztak ki egy elméletet, amely egybefogta az ad hoc fizikai szabályokat és a fizikusok által már körülbelül húsz éve ismert mozzanatokat. Ez egy olyan folyamat volt, amiről Murray Gell-Mann fizikus így ír2: „A kísérleti adatokból rakták össze az egészet. Így meglettek az összegszabályok. Egy alkalommal, míg Born üdülni volt, a többiek újra felfedezték a mátrixok szorzási szabályát. Nem tudták, hogy miről is van szó. Amikor Born hazajött, látva az eredményeket így kiáltott fel: »No de uraim, ez a mátrixelmélet”. A fizikájuk egy olyan matematikai struktúrához vezetett, ami működött.
[bookmark: _ednref231]Képzeljük el Schrödingert, mint a fizika Don Juanját. Egyszer ezt írta: „Soha nem történt meg, hogy ha egy nő egyszer velem aludt, nem akart volna – következésképpen – egész életében velem maradni”3. Itt kell megjegyezzük, hogy nem Schrödinger, hanem Heisenberg volt az, aki előhozakodott a határozatlansági relációval.
[bookmark: _ednref232]Schrödinger közeledése a kvantumelmélethez sokkal inkább matematikai okoskodás és sokkal kevesebb tapasztalati tény támogatásával zajlott le, mint Heisenbergé. Képzeljük el Schrödingert, amint megfontolt tekintetével néz maga elé, van valami a mosolyában és a hajformájában, ami Einsteinre emlékeztet. Gondosan írogat jegyzetfüzetében. Csináljunk valami zajt, mire a jólneveltséggel mit sem törődve egy-egy gyöngyöt tesz a fülébe, hogy megóvja magát a figyelem elterelődésétől. De a csönd nem minden, amire szüksége van tevékenységéhez. Hullámmechanikája nem valami elnyújtott tartózkodás eredménye egy távoli monostorban, hanem, ahogyan Hermann Weyl princetoni matematikus mondta4 „életének egy kései erotikus kitörése”.
Schrödinger először akkor írta le a hullámegyenletet, amikor éppen egy síparadicsomban csalta a Zürichben tartózkodó feleségét. Azt mondják, egy titokzatos nő szerelme tartotta igézetben és betegesen termékeny állapotban egy egész éven keresztül. Az ilyen együttműködést nem szokás elismerni, ezért a cikkeiben nem tűntette fel a társszerzőt, akinek neve örökre elveszettnek látszik.
Bár Schrödingernek voltak a jobb munkafeltételei, egy angol fizikus, Paul Dirac hamarosan bebizonyította, hogy hullámmechanikája és Heisenberg mátrixmechanikája egyenértékűek. Az általuk felfedezett egységes elmélet a semleges kvantummechanika nevet kapta. Dirac kitágította a kvantummechanika határait, hogy beépítse a speciális relativitáselmélet elveit is (és osztozott a kvantummechanikáért 1932-ben és 1933-ban odaítélt Nobel-díjakon). Mindezt nem az általános relativitáselméletért tette, hiszen a két elmélet összekapcsolása lehetetlennek tűnt.
Einstein egészen világosan látta a konfliktust a kvantumelmélet és a relativitáselmélet között. Bár az általános relativitáselmélet sok mindent revideált Newton világról alkotott képében, egyvalamit határozottan fenntartott Newton klasszikus megfogalmazásaiból: a determinizmust. Ha a rendszerről a megfelelő információk adottak, legyen az egy fülcimpa vagy az egész Univerzum, Newton paradigmája szerint elvben ki lehet számítani a jövő eseményeit. A kvantummechanika szerint azonban ezt nem lehet.
Volt valami, amit Einstein gyűlölt a kvantummechanikában, de annyira, hogy inkább az egész elméletet elvetette. Életének utolsó harminc évét azzal töltötte, hogy az általános relativitáselmélet olyan általánosítását kereste, ami a természet minden erőtípusát befogadja és – remélte, hogy idővel képes lesz megmagyarázni a relativitáselmélet és a kvantumelmélet közötti összeférhetetlenséget. Nem sikerült neki. Most, úgy harminc évvel Einstein halála után John Schwarz úgy érezte, megtalálta a választ.
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31. A lét (elviselhetetlenül)
szükségszerű
bizonytalansága





A kvantummechanikában az indeterminizmus forrása a határozatlansági reláció. E reláció szerint a rendszer egyes jellemzőit, amiket a newtoni leírás mennyiségileg pontosan megadott, most nem lehet pontosan meghatározni.
Alexei nagyon lelkes lett a legutóbb, amikor egy régi viccet hallott. Egy apáca, egy lelkész és egy rabbi golfoznak. Ahányszor csak elvétette a döntő ütést, a rabbi mindig felkiáltott: „Az istenit! Elhibáztam!” A hetedik lyuknál a lelkész már nagyon unta a dolgot. A rabbi megígérte, hogy visszafogja magát, de a következő ütésnél megint felkiáltott: „Az istenit! Elhibáztam!” Erre a lelkész figyelmeztette: „Ha legközelebb is szitkozódni fog, az Úristen biztosan agyoncsapja.” A tizennyolcadik lyuknál megint a rabbi ütött, és megint elhibázta és megint szitkozódott. Erre az ég beborult, fújni kezdett a szél és egy hatalmas villám csapott le az égből. Amikor a füst elült, a megrémült lelkész s az ijedt rabbi látni kezdik egymást, amint az apáca csontig égett füstölgő maradványainál állnak. Kisvártatva az égből hallatszik egy mennydörgő hang: „Az istenit! Elhibáztam!”
Alexei azt mondja, hogy a tréfa azért jó, mert az Istent „lekicsinyíti” – ez az ő kifejezése arra, hogy egy hibázó istenséget mutat be, aki emberi módon nyilatkozik meg. A tökéletlen Jóisten vagy Természet fogalma sok fizikust foglalkoztatott a kvantummechanikával kapcsolatban. Éppen a Jóisten ne tudná a pont helyét pontosan megállapítani!?
[bookmark: _ednref233]A természet determinizmusának ez a határa sugalmazta Einstein híres mondását1: „A (kvantummechanika) elmélete sok mindent megmagyaráz, de aligha visz közelebb minket a Jóisten titkaihoz. Mindenesetre meg vagyok győződve arról, hogy Ő nem játszik kockával”. Ha az előbbi viccet ismerte volna – pedig szakállas tréfa – Einstein bizonyára így morgott volna: „A Jóisten oda és akkor tudna villámot bocsátani, amikor és ahova csak akarja”.
Schrödinger másik nemhez fűződő viszonyától eltekintve biztos, hogy az életben mindenütt látunk határozatlanságot. Így aztán az ember kíváncsi, hogy ez az elv, a határozatlansági reláció miért tett szert ilyen kiemelkedő hírnévre. Heisenberg határozatlansági elve a határozatlanság különös típusa. Ebben tükröződik a klasszikus elmélet és a kvantumelmélet közti különbség, ami az emberek és – mondjuk – a Jóisten korlátai közötti különbséghez fogható.
Adjunk fel a gyerekeknek egy találós kérdést! Igaz vagy hamis? Igaz-e, hogy a McDonald’snál a „negyedfontos” hamburger súlya pontosan negyed font? A cinikusok azt felelik, hogy „hamis”, arra alapozva, hogy egy társaság, ami naponta negyvenmillió hamburgert ad el, jó sok húst meg tudna takarítani, ha minden hamburgerből egy picit elvenne. De ne beszéljünk a szisztematikus hibáról: arról, hogy minden negyedfontos hamburger csak 0,24 fontot mérne: ez ugyancsak lehetetlen. Az a lényeg, hogy minden McDonald’s-hamburger egy kicsit különböző súlyú.
A különbség nem csak a ketchupon múlik. Ha elég pontosan mérünk, úgy fogjuk találni, hogy minden hamburgernek különböző a vastagsága, ez a mikroszkopikus szintű sajátosság az egyéni alak. Ahogyan az emberek különbözőek, ugyanúgy nincsen két azonos hamburger sem. Ugyan hány tizedesjegynyi helyet kell fenntartunk arra, hogy a hamburgereket megmérve megkülönböztessük őket súlyuk szerint? Minthogy évente több mint egymilliárdot (109) adnak el, legalább 9 számjegy kell. Igazán nem nagy az esély arra, hogy 0,250000000 fontosnak nevezzük.
Ahogyan minden egyes hamburger különböző, ugyanez a helyzet minden méréssel is. A műveletek, amiket a mérés végrehajtása közben végzünk, a skála mechanikai és fizikai állapota, a környező levegőben lévő áramlások, a Föld helyi szeizmikus tevékenysége, a hőmérséklet, a barometrikus nyomás és a parányi tényezők felsorolhatatlan sokasága még, ez mind egy kicsit más lesz, amikor megismételjük a mérést. Ha elég finoman és határozottan körvonalazzuk a mérést, ez már biztosítja, hogy az ismételt mérések eredménye sohasem lesz azonos.
De ez nem a határozatlansági elv!
Ahol a kvantumfizikai határozatlansági elv tovább megy, az a következő: azt állítja ugyanis, hogy bizonyos komplementerpárt alkotó mennyiségek együttes pontossága korlátozott, vagyis minél pontosabban mérjük a pár egyik tagját, annál pontatlanabbul leszünk csak képesek megmérni a másikat. A kvantumelmélet szerint a komplementermennyiségek értékei ezeken a határpontosságokon túl egyszerűen határozatlanok, és nem egyszerűen az éppen rendelkezésre álló műszerek pontossága miatt!
[bookmark: _ednref234]A fizikusok éveken keresztül próbálták érvelésükkel azt magyarázni, hogy ez nem a természet, hanem az elmélet korlátja. Azt sugalmazták, hogy valahol vannak „rejtett változók”, amelyek meg vannak határozva, csak mi nem tudjuk, hogyan lehet ezeket megmérni. És mint kiderült, létezik egy mérési eljárás, amit végre tudunk hajtani, hogy kiküszöböljük ezeket a rejtett paramétereket. 1964-ben John Bell amerikai fizikus elmagyarázta, hogy ezt hogyan lehet megtenni2. 1982-ben a kísérletet is elvégezték, és ez azt mutatta, hogy a „rejtett paraméterek” feltételezése helytelen! A korlátokat igazából a fizika törvényei róják ránk.
A határozatlansági elv matematikailag kimondja, hogy két komplementer fizikai mennyiség bizonytalanságának szorzata a Planck-állandónak nevezett számmal egyenlő.
A pozíció – a helyadat – a komplementerpár egyik tagja a határozatlansági elvben. Párja az impulzus, ami a tömegtényezőtől eltekintve a képződmény sebességét jelenti. Ez a házassági anyakönyvi kivonat korlátozást ró ki a partnerekre: az egyik hibája nő, amikor a másiké – ennek reciprokaként – csökken. Ez a korlátozás nem ismer kivételt, a házasság igencsak katolikus jellegű, sem hűtlenség, sem válás nem létezik. Ha a pozíció hibahatárát és az impulzus hibahatárát összeszorozzuk, a szorzatként adódó szám nem lehet kisebb, mint Planck állandója.
A Planck-állandó egy iciri-piciri kis szám. Máskülönben már sokkal hamarabb észrevehettük volna a kvantumjelenségeket (ha egyáltalán egy olyan világban mi létezni tudnánk). Itt az iciri piciri szócskapáros 10-27 jelentésű, vagyis a milliárdod rész milliárdod részének milliárdod része, méghozzá egy fizikai mennyiségnek, aminek a mértékegysége erg×s – ez a Planck-állandó. Természetes, hogy a Planck-állandó értéke függ az alkalmazott mértékegységektől. Az erg és a gramm például olyan mértékegység, amivel még a mindennapi életben is találkozhatunk. Képzeljünk el egy 1 grammos pingponglabdát, mely áll az asztal lapján. Ez a labda sokunk számára nyugalomban van, vagyis sebessége nulla. Egy kísérleti fizikus számára a mérés eredményei hibahatárok nélkül nem sokat mondanak. Ahelyett, hogy „az asztallapján álló”, a kutatási jelentésében bizonyára szívesebben írja, hogy „nem mozog gyorsabban, mint egy centiméter per szekundum sebességgel”. A klasszikus fizikában a kérdést hamar le lehet zárni. A kvantummechanikában még ez a meglehetősen szóra sem érdemes pontosság is sokba kerül: határt szab annak a pontosságnak, amivel a pingponglabda helyét kell meghatározni.
Az 1 centiméter per szekundum sebességhatár egy olyan pozícióhatár-pontossághoz vezet, ami iciri-piciri, mint maga a Planck-állandó. A számítás elvégzése után rámutathatunk arra, hogy a pingponglabda helyét 10-27 cm-es pontossággal tudjuk megadni. De mert ez a pontosság nem olyan nagy, felvetődik a kérdés: ki törődik vele? A XIX. századig nem sokan törődtek vele, azaz, hogy pontosabban mondjuk: senki sem figyelt fel rá. De most cseréljük fel a pingponglabdát olyasmivel, mint az elektron. A XIX. század végének fizikusai ezt tették.
Emlékezzünk csak arra a mondatra, hogy „eltekintve a tömeg tényezőjétől” – amit az impulzus definíciójába oly lovagiasan belefoglaltunk. Abban az időben ez nem tűnt különösebben fontosnak, de éppen emiatt oly fontosak a kvantumjelenségek az atomokban – és kevésbé számottevőek a pingponglabdák esetében.
A pingponglabda tömege kb. 1 gramm. Az elektron tömege pedig 10-27 gramm. Nem úgy, mint a pingponglabda esetében, a sebességérték 1 cm/s hibája most az elektron parányi tömege miatt felviszi az impulzusérték hibáját a 10-27g×cm/s értékről az igen lényeges tartományba. Ám ez még nem sokat segít az elektron helyének megmérésében!
Ha, mint a pingponglabdánál az elektron sebességét plusz-mínusz 1 cm/s értékű hibával határoznánk meg, az elektron helyé nem tudnánk 1 cm-es pontosságnál jobban megadni. Ez a határpontosság most már nem iciri-piciri, hanem egészen számottevő. Ilyesmi a pingpongjátékot meglehetősen furcsává tenné, és az atomi skálán pontosan ez a helyzet. Az atomokban az elektronokról azt gondoljuk, hogy valahol, egy 10-8 cm-es tartományon belül vannak, és arra a következtetésre kell jutnunk, hogy ott 108 cm/s sebességgel mozognak, az érték bizonytalansága egyenlő körülbelül a sebesség nagyságával.
A kvantummechanika, ahogyan Heisenberg és Schrödinger megfogalmazta, igen sikeresnek bizonyult az atomfizikai jelenségek leírásában, és a maga idejében a magfizika jelenségei közül is soknak a leírásában jó volt. De ha a határozatlansági elvet a gravitációra alkalmazzuk – ahogyan Einstein elmélete leírja –, akkor ez igencsak furcsa következtetésekhez vezet a tér geometriája tekintetében.
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32. A titánok összecsapása









Az egyik oka annak, hogy Einstein csak csekély támogatást kapott az egységes térelmélet irányában végzett kutatásaihoz, az volt, hogy az általános relativitáselmélet és a kvantummechanika közti ellentét csak akkor válik szembeszökővé, ha az ember olyan kicsiny térrészeket vesz figyelembe, amelyek közvetlen megfigyelése még ma is reménytelennek tűnik. Eukleidész azt mondta, hogy a tér pontok sokaságából épül fel, és a geometriának az elképzelhető legkisebb térrészekre vonatkozó ismeretekből kell felépülnie. Ha pedig az elméletek itt összeütköznek, akkor valami nem stimmel: vagy az egyik, vagy a másik, vagy mindkét elmélet hibás – vagy Eukleidész nézeteivel van a gond.
Azt a tartományt, ahol a problémák fellépnek, gyakran mint ultra-mikroszkopikus tartományt írják le. Azok számára, akik a kvantitatív meghatározást kedvelik, ez 10-33cm távolságot jelent, amit Planck-hossznak neveznek. Azok számára pedig, akik inkább vizuálisak, ez azt jelenti, hogy ha a Planck-hossz emberi petesejt méretű lenne, akkor ehhez képest egy tipikus üveggolyó nagysága elérné az ismert Univerzum méretét. A Planck-hossz tehát valóban nagyon kicsi. Mégis, egy ponthoz hasonlítva, mérete nagyvonalúan meghalad minden mértéket!
Amikor ezen a fejezeten dolgoztam, egyik éjszaka álmomban Einstein és Heisenberg vitája jelent meg előttem. Az egész úgy kezdődött, hogy Nicolai mint Einstein besétált hozzám és megmutatott néhány elméleti elgondolást a jegyzetfüzetéből:

Nicolai mint Einstein: Papa, felfedeztem az általános relativitáselméletet! Anyag jelenlétében a tér görbült, az üres térben viszont a gravitációs tér nulla, így a tér sima. Valójában minden térrész, ami elég kis kiterjedésű, közelítőleg sima.
(Éppen azt akartam mondani, hogy „Milyen szép elmélet, kilógathatom a vázlatot a falra?”, amikor Alexei belép.)
Alexei mint Heisenberg: Sssajnálom, de a gravitációs tér, mint minden erőtér, alá van vetve a határozatlansági elvnek!
Nicolai mint Einstein: Csakugyan?!
Alexei mint Heisenberg: Ezért az üres térben, amíg a térerősség átlagosan zérus, térben és időben valójában ingadozik. És a valóban kicsiny régiókban az ingadozások homogének.
Nicolai mint Einstein (panaszos hangon): De ha a gravitációs tér ingadozik, akkor a tér görbülete is ingadozik, mert az egyenleteim azt mutatják, hogy a görbület az erőtér nagyságával áll kapcsolatban…
Alexei mint Heisenberg (gúnyolódva): Ha-ha! Ez azt jelenti, hogy a kis tartományokban a tér nem tekinthető simának… Valójában, amikor a Planck-hossznál közelebbről nézzük a dolgot, parányi, virtuális fekete lyukak jelennek meg… Hát ez nem valami csinos!
Nicolai mint Einstein: Már mondtam, azt akarom, hogy a tér kis tartományai simák legyenek!
Alexei mint Heisenberg: De hát nem azok!
Nicolai mint Einstein: De igen!
Alexei mint Heisenberg: De nem!
Nicolai mint Einstein: De mégis!

…Az álomban ez egészen addig folytatódott, amíg reszketve fel nem ébredtem. (Ezt annak a jeleként értelmeztem, hogy nem fekhetek le addig, amíg be nem fejezem ezt a fejezetet.)
[bookmark: _ednref235]Ha az ember mind a határozatlansági relációt, mind pedig az általános relativitáselméletet a tér kicsiny tartományaira alkalmazza, akkor ez alapvető ellentmondásokhoz vezet magával a relativitáselmélettel szemben. Mármost kinek van igaza, Heisenbergnek vagy Einsteinnek? Ha Einsteinnek, akkor a kvantumelmélet helytelen. Viszont nem tűnik annak. A kísérletek és az elmélet egyezése jobb, mint egy az egymillióhoz arányú. Toichiro Kinoshita, a Cornell Egyetem fizikusa, a kvantum-elektrodinamika egyik vezető egyénisége szerint ez „a Földön a legjobban kipróbált elmélet, de talán az egész Univerzumban is, attól függően, hogy hány idegen civilizáció létezik”1.
Ha a kvantumelmélet a helyes, akkor a relativitáselmélet nem tökéletes. Persze megvoltak a maga győzelmei. De azért van egy nagy különbség. Az általános relativitáselmélet a makroszkopikus jelenségek megfigyelésével foglalkozott. Például a Nap mellett elhaladó fénysugárral, a Föld körül keringő órákkal. Az általános relativitáselméletet nem próbálták ki az elemi részek kis mérettartományában. Az elemi részek tömegei messze túl kicsik ahhoz, hogy gravitációs hatásuk mérhető lehetne. Ebből az okból kifolyólag a fizikusok inkább a relativitáselmélet érvényességét kérdőjelezik meg, főleg Einstein azon feltevését, hogy a tér kicsiny tartományaiban a gravitációs erőtér sima. Talán az ultra-mikroszkopikus tartomány esetében Einstein elméletét revideálni kellene.
Ha tényleg Planck lenne a nyertese az Einstein-Planck-vitának, és az ultra-mikroszkopikus tartomány metrikája ténylegesen heves ingadozásokat mutatna, akkor felmerül egy másik, mélyebb kérdés is. Milyen az ultra-mikroszkopikus skálán a tér szerkezete? A válasz kulcsa egy ötlet, amin Feynman és mások már régóta rágódnak. Schwarzot is ezzel ugratták, de az ő számára ez nem hiba, hanem csupán szeretett elméletének egy feltűnő vonása. Az ultra-mikroszkopikus tartományban megjelennek más dimenziók, feltekeredve vagy összegabalyodva, és olyan parányiak, hogy – mint a hatáskvantumot 1899-ben – mind ez ideig nem mutatták ki őket. Ezek az általános relativitáselmélet gyógyszerének a fő összetevői. Egy olyan ötlet, amit maga a relativitáselmélet megalkotója is felvetett annak idején, majd évtizedekkel később elvetett.
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33. Üzenet a Kaluza-
Klein-palackban







A halála előtti napon Einstein azt kívánta, hogy vigyék oda hozzá azokat a legutolsó számításait, amelyeket az egységes térelmélettel kapcsolatban végzett. Harminc éven keresztül mindhiába próbálkozott azzal, hogy megváltoztassa általános relativitáselméletét úgy, hogy belefoglalhassa az elektromágneses erők leírását is. Einstein egyik legígéretesebb ötlete vizsgálódásának kezdetén, 1919 egyik reggelén támadt, amikor bontani kezdte aznapi postáját. Az ötlet nem a saját elmeszüleménye volt, hanem egy levélben olvasta, ami a tönkrement matematikustól, Theodor Kaluzától érkezett.
[bookmark: _ednref236]Einstein a levélben egy javaslatot talált arra vonatkozólag, hogy miként lehetne az elektromos teret a gravitációs térrel összeegyeztetni. Az elméletben csak egy kis fura kacskaringó volt. Einstein írt is vissza1: „Az az elgondolás, hogy az egységes térelméletet egy ötdimenziós henger segítségével valósítsuk meg, sohasem fordult meg a fejemben…”. Egy ötdimenziós henger? Miért is gondolna bárki ilyesmire? Senki sem tudja, hogyan jutott ez Kaluza eszébe, de Einstein így folytatta: „Nagyon tetszik nekem az ötlet”. Visszatekintésképpen megállapítjuk, Kaluza jócskán elébe szaladt a kornak és egy kicsit fukar volt a dimenziók számával.
Miként láttuk, az általános relativitáselmélet leírja, hogyan érinti az anyag a teret a metrikán keresztül, amelynek komponensei – a g faktorok – megmondják, hogyan kell a szomszédos pontok közti távolságot kiszámítani a koordinátakülönbségekre alapozva. A g faktorok száma attól függ, hogy hány dimenziós a tér. Így például egy háromdimenziós térben hat ilyen adat van. Sima térben a távolság négyzete egyenlő az (x-különbség)2 meg (y-különbség)2 meg (z-különbség)2 összegével; a gxx, gyy, és gzz, mindegyike egységnyi, a kereszttagokhoz tartozó gxy, gxz, gyz pedig mind nulla, így ezek a tagok nem is szerepelnek a képletben. Az általános relativitáselméletben szereplő négydimenziós nem euklideszi térben tíz független g faktor lép fel (figyelembe véve az olyan egyenlőségeket, mint pl. gxy = gyx stb.), és ezeket az Einstein-egyenletek írják le. Kaluza azzal kezdte, hogy észrevette, ha öt dimenziót használna, akkor maradnának extra g faktorok, amik az extra dimenziónak felelnek meg.
[bookmark: _ednref237]Ezután Kaluza felvetette, hogy ha formálisan kibővítjük az Einstein-féle téregyenleteket öt dimenzióra, vajon milyen egyenleteket kapunk az extra g faktorokra? A válasz igencsak meglepő volt: az elektromágneses tér Maxwell-egyenletei adódtak! Az ötödik dimenzióból hirtelen az elektromágnesség téregyenletei bukkannak fel egy ilyen gravitációelméletben. Einstein ezt írta2: „Igen meglepő az ön elméletének formai egysége!”
Természetesen az extra dimenzió metrikájának fizikai(lag valóságos) elektromágneses térként történő értelmezése még további elméleti kutatást igényel. És mi legyen ezzel a kis trükkel, az ötödik dimenzióval? Kaluza azt állította, hogy ez a hosszát tekintve véges, valójában olyan picike, hogy még csak észre se lehet venni. És nemcsak ez van, írta Kaluza, hanem az is, hogy az új dimenziónak új topológiája van, olyan mint a köré – és nem az egyeneseké – vagyis önmagába záródik, önmagába kunkorodik (és így nincsenek „végei”, mint a véges vonalnak lennének). Képzeljük el, hogy a Fifth Avenue-nak nincsen szélessége, csak egy vonal, a keresztutcák pedig – Kaluza új dimenziójában – egyszerűen csak körök, amelyek érintik a Fifth Avenue-t. Természetesen a keresztutcák egy háztömbszakaszonként jönnek, de az extra dimenzió jelen van az út mentén minden pontban. Így tehát az, hogy új dimenziót adunk a vonal mellé, annak következtében nem fognak körök előbuggyanni a vonalból, hanem a beavatkozás hatása a vonalat csővé alakítja. Mondjuk egy nagyon vékony locsolócsővé.
Kaluza fő elgondolása az volt, hogy a gravitáció és az elektromágnesség valójában egyetlen dolognak a komponensei, csak különbözőképpen nyilvánulnak meg, mert amit mi megfigyelhetünk, az a kicsiny, negyedik térbeli dimenzióban végbemenő mozgás következtében átlagolódik. Einsteinnek voltak további gondolatai is Kaluza elméletével kapcsolatban, de később megváltoztatta véleményét és csak segítette Kaluzát az eredeti elgondolás publikálásában 1921-ben.
1926-ban Oskar Klein, a Michigan Egyetem docense, Kaluzától függetlenül felfedezte ugyanezt az elméletet – néhány továbbfejlesztéssel. Az egyik újdonság az volt, hogy észrevette, az elmélet csak akkor vezet a részecske mozgásegyenletének helyes alakjához, ha a részecske impulzusa bizonyos, meghatározott értékeket vesz fel a misztikus ötödik dimenzióban. Ezek a „megengedett” értékek mind a minimális impulzus többszörösei. Ha feltételezzük, mint Kaluza tette, hogy az ötödik dimenzió önmagába zárul, akkor a minimális impulzusértékből a kvantumelmélet alapján kiszámítható, hogy mekkora lehet az összezárult ötödik dimenzió „hossza”. Ha ez véletlenül mérhető, megfigyelhető, makroszkopikus méretűnek adódna, akkor az elmélet bajban lenne, mert még nem tapasztaltunk ilyen új dimenziót. Ám az eredmény 10-30 cm-nek adódott. Nincsen tehát semmi baj. Az effektust alaposan elrejtették a szemünk elől.
A Kaluza-Klein-elmélet egy utalás volt valamire, valamilyen formai kapcsolatra az elméletek között, nem pedig egy olyan szerkezeti adatra, ami azonnal valami újat ad. A következő néhány évben a fizikusok az elméletből következő új előrejelzések után kutattak, amelyek nagyjából a Klein-féle nyomok mentén tártak volna fel valami továbbit az új dimenzió méretéről. Új érveket dolgoztak ki, amelyek esetleg elvezethetnek az elektron tömegének és töltésének hányadosához. Ez azonban tévhit volt. A nehézségek és az ötödik dimenzió létezésére vonatkozó bizarr előrejelzések miatt a fizikusok hamarosan elvesztették érdeklődésüket a téma iránt. Maga Einstein is csak 1938-ig foglalkozott vele.
[bookmark: _ednref238]Kaluza, aki egy évvel Einstein előtt hunyt el, szintén nem jutott sokkal előbbre. A szárnyára bocsátott elméletből egy fontos tekintetben azonban mégis hasznot húzott. Amikor Einsteinnek írt, harmincnégy éves volt és tíz éve tartotta már el családját mint magántanár Königsbergben. Fizetését legjobban az általa hőn szeretett matematika nyelvén így írhatjuk le: minden szemeszterre annyi márkát kapott, mint 5-ször x-szer y ahol x a tanulók száma az osztályban, y a heti óraszám (természetesen: „aranymárka” – egyenérték alapján). Így aztán egy tízszemélyes osztály oktatása, ha öt órájuk volt vele egy héten, összesen 100 (arany) márkát jelentett évente. 1926-ban Einstein ezeket a körülményeket „schwierig”-nek írta le3, az ő szavai szerint „csak egy kutya tud így élni”. Einstein segítségével Kaluza végül professzor lett Kielben, 1929-ben. 1935-ben Göttingenbe költözött, ahol ott is maradt egészen haláláig, ami 19 évvel később következett be. Az új dimenziók keresésének lehetősége komolyan csak 1970 után merült fel újból.
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34. A húrok születése









Ki tudja, mikor jön az ihlet? És még nehezebb előre tudni, hogy hova fog vezetni. A húrelmélet története egy hegy tetején kezdődik, úgy kb. 300 m magasan a Földközi-tenger szintje fölött, a szicíliai Erice városkában. Az ősi kövekből épült házak között fülledt és szűk utcácskák kanyarognak. Erice már Erice volt akkor is, amikor Thalész barangolt e vidéken. Ma ezt a várost az Ettore Majorana Központ teszi híressé, egy olyan kulturális és tudományos központ, ahol már évtizedek óta tartanak egyhetes „nyári iskolákat” a különböző tudományágak számára. Az Ettore Majorana-kurzusok olyan alkalmak, amelyeken a frissen diplomázott fiatalok és az egyetemi intézmények hallgatói találkozhatnak egy-egy szakterület vezető tudósaival és hallgatnak előadásokat a téma legizgalmasabb tudományos problémáiról.
[bookmark: _ednref239]1967 nyarán az egyik kurzus az elemi részek elméletének egyik megközelítésével, az úgynevezett S-mátrix-elmélettel foglalkozott. Gabriele Veneziano, az izraeli Weizman Intézet fiatal munkatársa is ott ült a hallgatóság soraiban, és érdeklődéssel figyelte Murray Gell-Mann, az intellektuális hős előadását1. Gell-Mann hamarosan ezután Nobel-díjat kapott a kvarkok felfedezéséért, amiket akkor az elemi részek családjának belső szerkezetét alkotó hadronok (amik közé a protonok és a neutronok is tartoznak) összetevőinek hittek. Az inspiráció, amit Veneziano ekkor szerzett, néhány év múlva a húrelmélet elindításához vezette őt. Gell-Mann előadása az S-mátrixnak nevezett matematikai konstrukció reguláris viselkedéséről szólt.
A Heisenberg által felfedezett S-mátrix megközelítést John Wheeler 1937-ben, majd a berkeley-beli fizikus, Geoffrey Chew az 1960-as években vezette be a részecskefizikába. Az S betű a „szórás” megjelölésére szolgál, mert ez az a fő művelet, amelynek segítségével a fizikusok az elemi részeket tanulmányozhatják. Az elemi részeket olykor hatalmas energiákra gyorsítják fel és egymásnak ütköztetik, majd megfigyelik, hogy milyen „maradványok” repülnek szét. Ez olyan, mintha az autókat a szándékosan létrehozott karambolok módszerével vizsgálnánk.
A kis összeütközésekben olykor csak unalmas darabkák deformálódnak, mint például egy sárhányó, de ha versenyautók sebességéről van szó, akkor akár még az ülés mélyen elrejtett csavarjai is szétrepülhetnek a kísérletező szeme láttára. Van azonban egy óriási különbség! A kísérleti fizikában, ha egy Chevy, és egy Ford ütközik össze, attól még akár egy Jaguár alkatrészei is szétrepülhetnek! Mert a gépkocsikkal ellentétben az elemi részek akár át is alakulhatnak egymásba.
Amikor Wheeler kidolgozta az S-mátrix elméletét, a kísérleti adatok már bőségesen rendelkezésre álltak, viszont még nem létezett a részecskék keltésének és bomlásának sikeres kvantumelmélete, még az elektrodinamika keretein belül sem. Az S-mátrix csak egy fekete doboz volt, amibe bele kellett tenni „input” formájában az összeütköző részecskék azonosítóit – pl. impulzusait – és kijöttek „output” formájában az ütközés helyszínéről távozó részek hasonló tulajdonságai.
Hogy az S-mátrixot meg lehessen konstruálni – vagyis a fekete doboz belvilágát fel lehessen építeni –, ahhoz a kölcsönhatás elméletére volt szükség. Ám még egy átfogó elmélet nélkül is el lehet mondani bizonyos dolgokat az S-mátrixról, csupán a természet szimmetriáira és általános elvekre hivatkozva – mint például arra, hogy az eredmény összhangban legyen a relativitáselmélettel. Az S-mátrix-elmélet megközelítésének a keresztje az, hogy meglássuk, meddig lehet eljutni, ha csak ezeket az elveket használjuk fel.
Az ötvenes és a hatvanas években ez a megközelítés még talán szabad vadászterületnek számított. Ericében tartott előadása során Gell-Mann bizonyos szembeszökő szabályosságokról beszélt, amiket dualitások szóval foglalt össze, ezeket a hadronok ütközései során figyelték meg. Veneziano arra gondolt, hogy talán ezek a szabályszerűségek még általánosabb körülmények között is érvényesek. Másfél évre volt szükség, és Veneziano végül valóra váltotta ezt: az S-mátrix összes keresett matematikai tulajdonsága benne foglaltatik egyetlen függvényben, az Euler-féle béta-függvényben!
Veneziano duális rezonancia modell néven is emlegetett elmélete meglepő felfedezés volt. Miért is kellene az S-mátrixnak, ennek a potenciálisan bonyolult képződménynek mégis ilyen egyszerű és kecses alakúnak lennie? Ez volt az első matematikai csoda azok közül, amik időről időre felmerültek a húrelméletben. Szép eredmény, ami meggyőzhette Schwarzot arról, van értelme a keresésnek.
Veneziano eredménye olyan elegáns volt, hogy arra késztette a fizikusokat, hogy kifejezetten egy nem S-mátrix-elméleti kérdést vessenek fel: mik lehetnek az ütközési folyamat részletei, amelyek ezt az S-mátrixot létrehozzák? Mi lehet a fekete doboz belsejében? Ha ezt sikerül kitalálni, akkor meg lehet világítani az összeütköző hadronok belső szerkezetét és persze a hadronok között ható erőt is, amit erős kölcsönhatásnak nevezünk.
1970-ben Yoichiro Nambu a Chicago Egyetemen, Holger Nielsen a Niels Bohr Intézetben és Leonard Susskind – akkor még a Yeshiva Egyetemen – adtak választ erre a kérdésre: az elemi részeket nem pontokként, hanem parányi, rezgő húrokként kell modellezni.
Felfedezünk egy új elméletet vagy kitaláljuk? Vajon a fizikusok zseblámpával a kezükben keresik alkonyatkor a parkban az igazság nyomait, vagy pedig építőkockával játszó gyerekek inkább, akik megpróbálnak magas tornyokat építeni egészen addig, míg össze nem omolnak az építmények? Vagy inkább mindkettő egyszerre – olyan kettősség, mint amiről Gell-Mann beszélt, vagy olyasfajta, mint a részecskék és a hullámok közti kapcsolat?
Vannak kevésbé kedves szavak a feltalálásra, és a felfedezésre is. Ilyen például az összekotyvasztás vagy a belebotlás. Az eredeti húrelmélet – amit bozonhúrelméletnek neveznek – bizonyára összekotyvasztás volt. Mesterkélt volt, volt egy sor irreális vonása is, és nyilván azért rakták össze, hogy egyszerűen reprodukálják vele Veneziano meglátásait. De Nambu és társai ezen túl még bele is botlottak valamibe. Nagyjából abban az értelemben fedezték fel a húrelméletet, ahogy Planck a kvantumelméletet. Planck és Nambu rábukkantak valamire – az energiaszintek kvantáltak lehetnek, illetve a részecskéket húrokként lehet modellezni –, aminek akkor a jelentését és célját még nem lehetett világosan látni és aminek értelmes elméletté fejlesztése még talán éveket vesz igénybe. Találtak valamit, ami a természet új elve lehet, de az is megeshet, hogy egyszerűen csak egy matematikai trükkről van szó. Csak évek erőfeszítései tudják majd eldönteni, melyik a kettő közül. A kvantumelmélet esetében huszonöt év telt el Planck, illetve Heisenberg és Schrödinger között. A húrelmélet már túlfutott ezen az időkorláton.
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35. Részecskék: a fizika
égető problémája







[bookmark: _ednref240]Egy évtizeddel a húrelmélet megjelenése előtt Geoffrey Chew, az 1950-es évek vége és az 1960-as évek egyik legígéretesebb fizikusa, felállt egy konferencián és kijelentette, hogy a térelmélet – az erőterek kvantumelmélete – nem jó. Nem kell, hogy létezzenek elemi részek, mondta Chew. Inkább úgy kellene elképzelnünk, hogy a részecskék egymásból épülnek fel. Azt javasolta, hogy a fizikusok inkább az „egy-részecske-csinálja-az-összest” elméletet keressék, amit akkor, a hidegháború éveiben nukleáris demokráciának nevezett. Ezen túlmenően Chew nem hitt abban a megközelítésben sem, hogy különböző elméleteket kellene kiépíteni, amelyek a különböző erők tulajdonságaira alapulnak és azokhoz illeszkednek. Bízott abban, hogy ha a fizikusok eléggé közelről megvizsgálják az összes lehetséges S-mátrixot, azt fogják találni, hogy közülük csak egy lesz összeegyeztethető az általános fizikai és matematikai elvekkel. Vagyis szilárdan hitt abban, hogy az Univerzum azért olyan, amilyen, mert ez az egyetlen lehetséges módja létezésének1.
[bookmark: _ednref241][bookmark: _ednref242]Ma már tudjuk, hogy Chew feltételei nem elegendőek ahhoz, hogy a fizikát teljes egészében meghatározzák. Witten azt mondja, hogy az S-mátrix elmélete „csak egy megközelítési mód, nem egy elmélet”2. Gell-Mann pedig azt, hogy ezt csak felfújták3. egy pompás elnevezést adtak annak, amit elsőként 1956-ban ő maga mutatott be a Rochester-konferencián, New Yorkban. És mégis, mondja Gell-Mann, „az S-mátrixos megközelítés a helyes eljárás. Még ma is használják a húrelméletben”. Chew-nak jó oka volt, hogy ezeket az esztétikai elveket fenntartsa. A mai ún. standard modell maga sem kifogástalan – minden sikere ellenére. A problémák 1932-ben kezdődtek, amikor két új és egzotikus részecskét fedeztek fel. Az egyik a pozitron, az elektron antirészecskéje. A másik, az atommag egyik új alkotórésze, ami egészen olyan, mint a proton, csak nincs elektromos töltése, ez a neutron. A fizikusok vonakodtak elfogadni eme új részecskék létét. Más magyarázatokat is kiötlöttek. Dirac, akinek az elmélete előre jelezte a pozitront, egészen addig ment a tények előtti meghunyászkodásában, hogy hirtelenjében ezt a részecskét a protonfélék első fajtájának nevezte (mert töltése ugyanakkora volt mint a protoné, csupán a tömege volt kevesebb: egy ezredrésze a protonénak). Különböző erőfeszítések történtek, hogy a neutront, mint egy protonból és egy elektronból álló szorosan összefüggő együttest magyarázzák. De, mint a tizenéves gyermek szülőinek, a fizikusoknak is nehéz volt álláspontjuk mellett kitartani. Így aztán a fizikusok hamarosan nemcsak az új részecskéket fogadták el, hanem az antianyag fogalmát is. Két új erőtípust is bevezettek, az erős kölcsönhatást és a gyenge kölcsönhatást, amelyek oly fontosak az atommag belsejében.
[bookmark: _ednref243][bookmark: _ednref244]Az 1950-es évekre a részecskegyorsítók lehetővé tették az új részecskék tucatjának – a neutrínóknak, a müonoknak, a pionoknak – a tanulmányozását. J. Robert Oppenheimer már azt javasolta4, hogy a Nobel-díjat azok a fizikusok kapják, akik nem fedeztek fel új, „elemi” részecskét. Enrico Fermi pedig megjegyezte5, hogy „ha észben tudnám tartani minden új részecskének a nevét, akkor most botanikus lennék”.
A fizikusok mindezekkel a változásokkal úgy igyekeztek lépést tartani, hogy új elméleteket dolgoztak ki, amiket kvantumtér-elméletnek, vagy erőterek kvantumelméletének neveztek. Ezek feladata, hogy leírják, hogyan keletkeznek és bomlanak el ezek a részecskék. A kvantummechanikát ugyanis eleve arra szánták, hogy azokat a folyamatokat írja le, amelyekben a részecskék kölcsönhatnak, nem pedig azokat, amelyekben keletkeznek, elbomlanak vagy egymásba alakulnak. A kvantumtér-elméletben egy módja van annak, hogy az Univerzumban kölcsönhatások jöjjenek létre, ez az úgynevezett küldönc vagy hírvivő részecskék csereberéje. Amit a fizikában évszázadok óta „erő” névvel illettünk, az most a térelmélet nyelvén csupán egy magasabb szintű leírása annak, hogy a részecskék más részecskékkel részecskéket cserélnek.
Gondoljunk csak két kosárlabda-játékosra, akik az udvaron futnak és egymásnak dobálják a labdát. Ők most a részecskék. Kölcsönhatásuk, ami azt okozza, hogy egymáshoz közelebb vagy távolabb kerülnek, a labda, a küldönc részecske segítségével bonyolódik le. Az elektromágneses jelenségeknél a küldönc részecske a foton. A kvantum-elektrodinamikában a töltött részecskék, mint az elektron és a proton az elektromágneses erőteret a fotonok formájában észlelik. A töltés nélküli részecskék, mint a neutrínó, nem cserélnek fotonokat.
Az első sikeres kvantumtér-elmélet az elektromágneses térre született meg, ezt az 1940-es években dolgozta ki, R. P. Feynman, Julian Schwinger, és Sin-itiro Tomonaga. Az 1970-es években egy új elmélet született, amely egyesítette az elektromágneses erőtér és a gyenge kölcsönhatást közvetítő erőtér elméletét. Hamarosan, a kvantum-elektrodinamika mintájára kitalálták az erős kölcsönhatás elméletét is, amelynek a hírvivő, közvetítő részecskéi a gluonok. Ennek a három erőtérnek az elmélete az, ami együttesen megtestesíti a standard modellt.
A fizikusok csodálatra méltó munkát végeztek – egy botanikus ezt megérti. Az elemi részek osztályozása a standard modellben, jóllehet diadalmas az előrejelző ereje, mégsem szemrevaló. Például az anyag elemi részei – a küldönc, közvetítő részekkel szemben – családokba csoportosíthatók. Minden család négy tagot számlál, egy elektronszerű részecskét, egy neutrínószerű részecskét és két kvarkot. E családok egyike tartalmazza az elektront és a neutrínót, és azt a két kvarkot – amelyek az ismert protont és neutront alkotják. A megfelelő részecskék a másik két családban csak tömegeik nagyságában különböznek ettől – mindegyik „egzotikus” család egyre nehezebb részecskékből áll. A standard modell tükrözi ezt a szerkezetet, de nem ad magyarázatot a családfa felépítésére. Miért van három részecskecsalád és miért vannak négyen egy családban? Miért akkora a tömegük, amekkora? A standard modell nem ad ezekre a kérdésekre magyarázatot.
Az erők nagysága maga is csak egy „input”, egy bemenő adat minden magyarázat nélkül, amit a csatolási állandóknak nevezett számok tartalmaznak. Egy részecskének egy erőhatásra adott válasza olyan mennyiséggel jellemezhető, amit töltésnek nevezünk – az elektromos töltés mintájára. Tipikusan egy-egy adott részecske egynél több töltéstípust is hordozhat, vagyis egynél több típusú erő hatására lehet érzékeny. Ezeket a töltéseket is magyarázatlan bemenő adatként kezeli az elmélet.
[bookmark: _ednref245]Ha Fermi számára problémát jelentett, hogy emlékezzen az elemi részek nevére, a standard modellel csak romlottak a viszonyok. Hogy emlékezzünk egyenleteire, emlékeznünk kell tizenkilenc le nem származtatott paraméter numerikus értékére. Korántsem olyan szép, kerek számokról van szó, amelyekre még Püthagorasz is elégedetten bólintana, hanem olyan barátságtalan számokról, mint például Cabibbo-szög, az értékük pedig olyan, mint 1,166391 × 10-5 (ez a Fermi-féle csatolási állandó, melynek dimenziója GeV-2)6. A Teremtés Könyvében ez áll: „Legyen világosság! És lőn!” A modern fizika szerint a Jóisten gondosan illesztette a finomstruktúra-állandót, hogy az pontosan 1/137,035 997 650 legyen (a nevezőben lehet néhány milliárdodnyi eltérés, plusz vagy mínusz).
Anélkül, hogy a tudományfilozófia területére merészkednénk, meg kell emlékezzünk a „fundamentális elmélet” kifejezésről, ami azt látszik magával vonni, hogy a kutatók tucatjainak kár megélhetésüket azzal keresni, hogy a tizenkilenc „fundamentális” paraméter hét tizedes jegyre pontos értékét meghatározzák. Az ember úgy érzi, mintha a teoretikusok vállát veregetné és megértően kérdezné: „Hallott már valaha is egy Ptolemaiosz nevű emberről?” Hiszen körökre illesztett körökkel (és így tovább) egy kitartó tudós akármilyen adatokat illeszteni képes.
A húrelmélet képviselői tiltakoznak az ellen, hogy ez a modell fundamentális lenne. Azt remélik ugyanis, hogy egy szép napon elméleteikből le fogják tudni vezetni a paramétereket. Az S-mátrix elméletével foglalkozókhoz hasonlóan, és a térelmélet kutatóival ellentétben, nekik az a céljuk, hogy egyetlen bemenő paramétert se kelljen előre megadni, még a szerkezeti jellegűeket sem, így a tér dimenzióinak számát sem. Chew-hoz hasonlóan az ő céljuk is az, hogy megtalálják az általános elvek által teljesen meghatározott elméletet. Abban reménykednek, hogy belőle megérthetik az erők eredetét és nagyságát, a részecskék típusait és tulajdonságait, magát a tér szerkezetét. Elméletükben, mint Chew álmában, egy részecske illesztheti mindegyiket. A különbség csak az, hogy az elméletükben a részecske egy húr.
Ez a húr a „semmiből” készül, mert az anyagi összetételhez olyan finomszerkezet kell, amivel nem rendelkeznek. Mégis minden belőlük épül fel. A 10-33 centiméter hossznál a mi közvetlen tapasztalatunktól ezt egy 1016-os szorzó védi meg. A látómezőnkben irányítottságuk lehetne függőleges, vízszintes vagy átlós. A mai technológia azonban még a legmikroszkopikusabb érzékelés esetén sem képes tesztelni ezt. „Hogy lefelé, felfelé vagy átlósan?… Sajnos, doki, minden, amit csak látok, pontok halmaza”.
Az, hogy a húrokat elrejti parányi kis voltuk, nem kell meglepjen bennünket – végül is, ezek elméleti kijelentések, nem megfigyelt dolgok. De a rejtettségük mértéke túlzottnak tűnik. A különféle becslések szerint az a gyorsító, amelyikkel kísérletileg közvetlenül ki lehetne mutatni valamelyiket, valahol a mi galaxisunk mérete és az egész Univerzum mérete között lehet. A történész, aki 3000-ben kiássa e könyv egy elnyűtt példányát, bizonyára kajánul nevet majd ezen a becslésen, mert addigra talán megtanuljuk, hogy hogyan is kell a húrokat megfigyelni vodka és vermut (éppen helyes arányú) keverése közben. Addig viszont a közvetlen megfigyelés még csak kérdés tárgyát sem képezheti.
A kvantummechanikában a hullámok és a részecskék ugyanannak a jelenségnek duális aspektusai. A kvantumtér-elméletben a részecskének mind az anyaga, mind az energiája különböző kvantált erőterek gerjesztéseként tekintendő. Ez igaz a húrelméletben is, csakhogy itt mindössze egyetlen erőtér szerepel. Minden részecske úgy jelenik meg, mint ennek az egyetlen elemi képződménynek, a húrnak a rezgési állapota.
Képzeljük el egy gitár húrját, amit a megfelelő feszítéssel kell behangolni. A feszített húr által keltett zenei hangot gerjesztési módnak nevezzük a nyugvó húr állapotához képest. Az akusztikában ezeket felharmonikusok néven ismerik. A húrelméletben ezek felelnek meg a különböző részecskéknek.
[bookmark: _ednref246]A püthagoreusok voltak az elsők, akik tanulmányozták a zenei hang matematikai és esztétikai tulajdonságait. Ők fedezték fel, hogy amikor megpendítjük a húrt, akkor a hang magassága, azaz a rezgés frekvenciája fordítottan arányos a húr hosszával. Ez az alapfrekvencia7 annak a rezgési módnak felel meg, amelyben a húr legnagyobb eltávolodása a nyugalmi helyzetétől a húr közepén történik. De a húr rezeghet úgy is, hogy a közepe nem mozdul el, és a legnagyobb eltávolodások a felezőpont és a végpontok között középen vannak. Ez lenne a húr fundamentális vagy alapfrekvenciája. Ha a húrt a közepén lefognánk, ez egy olyan rezgés, amelyben két egyenértékű hullám van a húr hossza mentén, ezért a hullámhossz fele az előbbinek, a rezgésszáma pedig kétszerese az alapfrekvenciának. Ezt a zenében a második harmonikusnak nevezik, és egy oktávval magasabb a hang, mint az alapesetben.
A húr megpendítése kelthet olyan rezgéseket, amelyek a húron három, négy stb. teljes hullámot hoznak létre (tört számú hullám sohasem alakulhat ki, mert ilyenkor a húr végei nem lennének szilárdan lefogva). Ezeket nevezzük felharmonikusoknak. A hegedűn vagy a zongorán például az első hat felharmonikus viszonylag erősebb, mint más hangszerek esetén. Az orgonasíp hangja, másrészt, viszonylag sokkal szegényebb a felharmonikusokban. A felharmonikusok aránya az, ami megadja a hangszerek – és persze – az elemi részek családjának a változatosságát.
A húrelmélet húrjai nincsenek úgy lekötve, mint a gitár húrjai. Ezek tehát lehetnek nyíltak vagy zártak. Felhasadhatnak, újra találkozhatnak, összeépülhetnek, vagy felhasadva két hurkot is alkothatnak. Ahogyan a húr felhasad vagy újra érintkezik, megváltoznak a tulajdonságai – messziről nézve úgy látszik, mintha egy új típusú részecske lenne. A küldönc részecske szerepe abban áll, hogy a téridőben mozgó húrok igazából hogyan hasadnak fel vagy kapcsolódnak össze.
Az egész olyan, mintha az általunk megfigyelt különböző részecskék zenedobozok lennének, tulajdonságaik pedig hangok, amiket hallunk. A zenéjük alapján kategorizálva úgy tűnik, igen sokféle különböző zenedobozosztály van. A húrelmélet szerint a zenedobozok fizikailag mind azonosak, a különbségük nem összetételükben van, hanem abban, hogy a bennük lévő húr hogyan rezeg.
Például a rezgés energiája függ a hullámhossztól és az amplitúdótól. Minél több a csúcsok és a völgyek száma a húr hossza mentén és minél nagyobb a méretük, annál erőteljesebb lesz a rezgés. S mint azt a relativitáselméletből tudjuk, a tömeg és az energia egyenértékű, talán nem meglepő, hogy a fekete dobozon kívülről nézve a nagyobb energiával rezgő húrt nagyobb tömegűnek észleljük.
Ugyanez igaz a többi sajátság, így például a különböző típusú töltések esetében is. És miért is ne! A térelmélet értelmében a részecske tömege nem más, mint a töltés egyik fajtája, ami a gravitációs erőtérhez való csatolódásának jellemzőjéül szolgál. A húrelmélet szerint a természet minden részecskéje, ideértve a küldönc részecskét is, különböző tulajdonságaik spektrumával együtt egyszerűen a húr különböző rezgési módjai.
Az Univerzumban a részecskék nagy változatosságával és komplexitásával találkozunk. Vajon a húrok rezgéseinek tárháza elég gazdag-e ahhoz, hogy átfogja a részecskék különbözőségét? A nem euklideszi világban!
A húrok rezgési módjai, és így annak az előrejelzése, hogy melyik részecske létezik és milyenek a tulajdonságai, nagyrészt azon múlik, hogy mekkora a dimenziószáma annak a világnak, amelyben a húr rezeg és milyenek ott a topológiai viszonyok. A tér és az anyag tulajdonságai között fennálló kapcsolatnak ez az alapja. A húrelmélet szerint a tér szerkezete meghatározza az elemi részek és a természet erőtípusainak fizikai tulajdonságait. A húrelméletben három térdimenzió egyszerűen nem elegendő. Az extra dimenziók pontos geometriája és topológiája az, ami meghatározza az elemi részek és a köztük ható erők elméletét, ez tehát az, amit a húrelmélet képes megmondani.
Egy húr egyetlen dimenzióban mindössze egyetlen módon tud rezegni – csak összehúzódni (vagy kitágulni) képes. Ezt longitudinális rezgésnek nevezzük. Két dimenzióban a húr ugyanilyen módon rezegni is tud, megnyílik a számára egy teljesen újfajta rezgési mód is – ez a transzverzális rezgés, amelyben a rezgés a húr hosszára merőlegesen zajlik. Ezek lényegében azok a rezgések, amiket eddig megbeszéltünk. Három térbeli dimenzió esetén a transzverzális rezgések iránya foroghat, spirálozhat. Magasabb dimenziókban a bonyolultság növekedhet.
A rezgéseket a topológia is befolyásolja. A topológiát elég nehéz definiálni, de a felületek és terek olyan tulajdonságaival foglalkozik, amelyek az alakjukat érintik, de nem a metrikával (távolsági viszonyaival) vagy görbületével függenek össze. Egy szakasz topológiailag különbözik a körtől, mert a vonaldarabnak két vége van, a körnek viszont egy sincs. Ugyanakkor a kör és az ellipszis közti különbség nem érdekli a topológust – az egész csak görbület kérdése. E megkülönböztetésekről való gondolkodás egy módja lehet ez is: bármely két alak, amely egymásba transzformálható nyújtással (vagy zsugorítással, az elszakítás kizárva) a topológus számára ugyanolyannak minősül.
Hogyan érinti a tér topológiája a húrt? Tegyük fel, hogy a húrelmélet csak két extra dimenziót kíván. Minthogy a húrelméletben az extra dimenziók a feltételezés szerint kisméretűek, képzeljük azt, hogy a kétdimenziós tér – egy négyzetlap vagy négyszöglap – olyan mint a sík, csak véges. Ez a tér egy bizonyos topológiai típussal rendelkezik. Most képzeljük azt, hogy ezt a síkot hengerré göngyöljük fel. Bár ezt intuitív módon görbületnek látjuk, geometriailag a henger olyan sima „tér”, mint a sík. Ez azt jelenti, hogy nincsen görbülete: vagyis bármely alakot is rajzolunk a síkra, azt hengerré göngyölítve, a pontjai közti távolságot nem változtatjuk meg! Ám a henger eltér a síktól – topológiailag: a pontok közti kapcsolat természetét illetően. Hiszen egy síkon bármely kör, vagy zárt görbe összehúzható egyetlen pontba anélkül, hogy ki kellene lépni a síkból. Egy henger esetében azonban vannak olyan görbék, amelyeknél ez nem tehető meg – például azok a körök ilyenek, amelyek a henger tengelyét kerülik meg. A húr ilyen típusú rezgő mozgása a hengertérben egy kényszernek van alávetve, ezért természetes, hogy különbözik a síkbeli változatától, és így a húrelmélet szerint egy ilyen univerzumban különböző típusú részecskék és erőhatások fognak ébredni. A henger szoros kapcsolatban áll a tórusszal. Hogy a hengerből tóruszt kapjunk, össze kell kapcsolni a végeit. De ennél még bonyolultabb topológiai szerkezetek is lehetségesek, például az egylyukú tórusz helyett előállítható olyan alakzat is, amelyben több lyuk van. Minden ilyen alakzatban különböző lesz a húr rezgési spektruma. Minél több dimenziót adunk meg, annál bonyolultabbak a lehetséges terek, különösen ha megengedjük, hogy a terek ne legyenek simák. És mindegyik ilyen különböző térben a lehetséges rezgési formák különbözők. A rezgési formák eme gazdagsága az, ami lehetővé teszi, hogy a húrelmélet számot adjon az elemi részek és kölcsönhatásaik változatosságáról – legalábbis elméletben.
[bookmark: _ednref247][bookmark: _ednref248]Szép is lenne, ha azt mondhatnánk, hogy a különböző konzisztenciakövetelmények miatt csak egyetlen tértípus lehetséges a húrelmélet extra dimenziói számára és hogy az elemi részek tulajdonságai, amelyek megfelelnek abban a térben a húrok rezgéseinek, pontosan olyanok, mint amilyeneknek megismertük a természetben azokat. Sajnos ez nem így van! Azért mégis van valami jó hír is! Először is, nem fog tetszőleges számú extra dimenzió működni! Úgy tűnik, hatnak kell lennie (ehhez a kijelentéshez később még visszatérünk), és bizonyos tulajdonságokkal kell rendelkezniük, például fel vannak göngyölve, mint például az extra dimenziók a Kaluza-elméletben. 1985-ben a fizikusok felfedeztek egy olyan térosztályt, amely éppen a kívánt jó tulajdonságokkal rendelkezik. Ezek a Calabi-Yau-terek8 (vagy Calabi-Yau-alakok: mert ezek véges terek). Ki lehet találni, a hatdimenziós Calabi-Yau-terek sokkal bonyolultabbak, mint mondjuk a csokoládétórusz. De van viszont egy közös tulajdonságuk: lyukasak. Valójában több lyuk is lehet bennük, sőt még a lyukak is bonyolult többdimenziós képződmények, de ezek már technikai részletek9. Az a lényeg, hogy minden egyes lyukhoz társítva van egy húrrezgéscsalád. A húrelmélet ily módon előre jelzi, hogy az elemi részek családokat alkotnak. A kísérletileg megfigyelt tényeknek ez az egyik olyan legszembetűnőbb „levezetése”, amelyet a standard modellbe eddig „kézzel” kellett betáplálni, elméleti magyarázat nélkül. Ez a jó hír!
A rossz hír pedig az, hogy a Calabi-Yau-terek ismert típusainak száma több tízezer. A legtöbbnek háromnál több lyuka van, jóllehet az elemi részeknek csak három családja van. S ahhoz, hogy a szükséges számításokat elvégezzék a standard modell által megkívánt tulajdonságokat illetően, például a részecskék tömegét és töltéseit, a fizikusoknak tudniuk kellene, hogy a lehetséges terek közül melyiket alkalmazzák. Mind ez ideig még senkinek sem sikerült megtalálni azt a Calabi-Yau-teret, amely az általunk ismert fizikai világ pontos leírását szolgáltatná, vagyis a standard modellt, mint ahogyan azt sem sikerült még elérni, hogy megtalálják azt az alapvető fizikai elvet, amely indokolná az egyik Calabi-Yau-tér kiválasztását a többi közül. Egyesek szkeptikusak, hogy ez az eljárás valaha is sikerre vezet. Ám a kritikák sokkal kevesebben vannak és sokkal kevésbé bőszek most, mint voltak eleinte, amikor – sok évvel ezelőtt – a húrelmélet területén kutatni a szakmai karrier szempontjából a halál csókját jelentette.
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36. A húrok
problematikája







Amikor Nambu és munkatársai javaslatot tettek a húrelméletre, annak különleges tulajdonságaival kellett szembenézniük. Először is az elmélet csak akkor konzisztens a relativitáselmélettel, ha a barátságtalan
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szorzót nullává lehetett volna tenni. Még egy általános iskolás diák is tudja ennek feltételét: D = 26. Ám az igazi problémák csak itt kezdődnek, mert D ebben az egyenletben a tér dimenzióinak számát jelenti. A figyelem hamarosan Kaluza munkáira terelődött, csakhogy elméletének öt dimenziója nem tűnt elegendőnek.
Voltak más problémák is. Mint fentebb említettük, amikor bizonyos folyamatok előfordulási valószínűségét kiszámították a kvantumelmélet szabályai szerint, negatív számokat kaptak. Az elmélet előre jelezte a tachyon részecskék létezését is, amelyek tömege nem valós szám, s amelyek gyorsabban mozognak a fény sebességénél. (Einstein elmélete nem zárja ki ennek lehetőségét, szigorúan véve csak azt tiltja, hogy a részecske pontosan a fény sebességével mozogjon.) Ráadásul az elmélet még néhány olyan extra részecskét is megjósolt, amit soha nem észleltek.
Ha a helyi meteorológiai előrejelzés azt mondja, hogy mínusz 50 százalék esély van a zivatarra, felfelé hulló esővel és az égből lezúduló békákkal, akkor valószínűleg nem túlzottan bízunk a számítógépes előrejelzésben. A fizikusok is meglehetősen szkeptikusan fogadták ezt a hírt. Tegyük fel, hogy a meteorológiailag előrejelzett hőmérséklet viszont bevált. Az egyezés a bozonhúrok és a hadronviselkedés között elég vonzó volt ahhoz, hogy ne hagyjuk figyelmen kívül.
Ha mindez kellemetlen is volt, a fizikusok hamarosan felismerték, hogy az elméletnek van egy másik hibája is, és ez már tényleg zavaró körülmény volt. A kvantummechanikában a részecskék valamennyien vagy bozonok, vagy fermionok. Technikai szinten a bozon és fermion közötti különbség, az ún. belső szimmetria kérdése, amit a spin nevű tulajdonság jelez. A gyakorlat szintjén ez a különbség abban mutatkozik meg, hogy két fermion nem foglalhatja el ugyanazt a kvantumállapotot. Ez egyébként igen jól jön, amikor az anyag atomjait kell felépíteni. Azt jelenti például, hogy az atomban az elektronok nem foglalhatják mind el a legalacsonyabb energiájú állapotot. Ehelyett a periódusos rendszerben az atomok úgy épülnek fel, hogy az elektronok egymás után töltik fel a lehetséges elektronállapotokat és ezáltal létrehozzák az elemeket, fizikai és kémiai tulajdonságaikkal együtt. A bozonokra ilyen korlátozás nem áll fenn. Az anyag felépítésében a fermionok játszanak fontos szerepet. A küldönc-részecskék, amelyek az erők közvetítésének szerepét látják el, a bozonok. A bozonos húrelméletben viszont minden részecske – no, találjuk ki, micsoda – bozon.
Ez az a probléma a húrelméletben, amit Schwarz először megtámadott. Sikerült meggyőznie mentorát, aki lehetővé tette, hogy az egyetemen maradhasson, ahol a munkáját – ha nem is hitték el, de legalább – meghallgatták.
1971-ben Pierre Ramond a Florida Egyetemen kidolgozta a fermionok húrelméletét, miután felfedezte a szuperszimmetriának nevezett új szimmetriatulajdonságot, amely összekapcsolta a bozonokat és a fermionokat. Ekkor, André Neveu közreműködésével, Schwarz kidolgozott egy spines húrelméletet, amely magában foglalta a fermion és bozon típusú részecskéket, kiküszöbölte a tachyonokat és lecsökkentette a szükséges dimenziók számát huszonhatról tízre. Munkájuk fordulópontnak számított a húrelméletben és Schwarz karrierjében is.
[bookmark: _ednref249]Gell-Mann1, aki abban az időben a genfi CERN-ben (Európai Részecskefizikai Laboratóriumban) dolgozott, erre így reagált: „amint Schwarz cikke megjelent, azonnal állást ajánlottam neki”. Korábban nem is találkoztak. A következő őszön Schwarz Princetonból (ahol éppen nem hosszabbították meg az állását) a Kaliforniai Műegyetemre költözött. Míg Feynman csak egy gyorsan múló csodaszernek tekintette a húrelméletet, addig Gell-Mann osztozott Schwarz hitében: „Ez még jó lesz valamire. Még nem tudom, mire, de valamire bizonyosan”. 1974-ben Gell-Mann egy másik húrelméleti specialistát, Joel Scherket is meghívta az egyetemre látogatóba. Schwarz és Scherk hamarosan meglepő felfedezést tett.
A húrelméletben van egy részecske, amelynek tulajdonságai olyanok, mint a gluoné, az erős kölcsönhatás küldönc részecskéjéé. Van azonban egy küldönc típusú extra részecske is, amelynek látszólag nincs semmi jelentősége. Schwarz és Scherk munkájáig a húr hosszáról azt feltételezték, hogy 10-13 cm, nagyjából a hadron átmérője. Ők viszont úgy találták, ha ehelyett felteszik, hogy ez sokkal kisebb, 10-33 cm (Planck-hossz), akkor az extra küldönc részecske pontosan megegyezik a gravitonnal, a gravitációs erőtér hipotetikus küldönc részecskéjével. A húrelmélet már nemcsak a hadronok elmélete lett, hanem magában foglalta a gravitációt és talán az elektro-gyenge kölcsönhatást is!
Álljunk meg egy pillanatra! Hát nem azt hallottuk eddig, hogy a gravitáció és a kvantummechanika összekeverése káoszhoz és ellentmondásokhoz vezet? Schwarz és Scherk elméletében – mivel a húrok nem dimenzió nélküli pontok, hanem véges hosszúságú objektumok – ezek a problémák az ultramikroszkopikus tartományban nem lépnek fel. Amit találtak, azt egy konzisztens kvantumtér-elméletnek gondolták, amelyből egyrészt le lehet vezetni az Einstein-egyenleteket, másrészt viszont az ultramikroszkopikus szinten pontosan a kívánt módon viselkedik ahhoz, hogy elkerüljék az általános relativitáselmélet és a kvantumelmélet között az összeütközést. Einstein, amikor a relativitáselméletet nyilvánosságra hozta, várta, hogy megtámadják. Schwarz és Scherk azt várta, hogy nagy lesz a lelkesedés.
[bookmark: _ednref250]Bejárták az egész világot és előadásokat tartottak. Az emberek udvariasan tapsoltak, majd elfelejtették a hallottakat. Ha nagyon erősködtek, akkor elmondták véleményüket; azt, hogy nem hisznek benne. Ezeknek az „embereknek” a védelmében megjegyezzük, hogy a felhasznált matematika rendkívül nehéz és bonyolult (volt is, maradt is). „Az embereknek eszük ágában se volt nagy erőfeszítéseket tenni azért, hogy megértsék az elmélet lényegét. Ehhez előbb egy neves személyiség hozzájárulására lenne szükség” – mondta Schwarz2.
[bookmark: _ednref251][bookmark: _ednref252]Gell-Mann megfelelően emblematikus személy lett volna, de ő maga kevés kutatást végzett ezen a területen. Az a néhány cikk, amit Schwarz-cal közösen írt3, ez utóbbi szerint „mindkettőnk legfeledhetőbb tettei voltak”. Nem volt professzori állás Schwarz számára a Kaliforniai Műegyetemen. Szerződéses kutatói állását csak rövid időszakokra hosszabbították meg. „Nem tudtam John számára rendes akadémiai állást szerezni – mondta Gell-Mann. – Az emberek szkeptikusak voltak”4. 1976-ban Scherk és még néhányan kimutatták, hogyan lehet a szuperszimmetriát belefoglalni a húrelméletbe, és végül létrehozni azt az elméletet, amit szuperhúrelméletnek neveznek. Ez egy újabb áttörő elméletnek látszott, azonban úgy tűnt, senkit sem érdekelt. Sokkal nagyobb érdeklődést váltott ki a szupergravitáció elnevezésű elmélet, és még inkább a gravitáció nélküli hagyományos kvantumelmélet, a standard modell. Az elektromágneses erőket a gyenge és az erős nukleáris kölcsönhatással egyesítve a standard modell az egyik győzelmet a másik után aratta, ideértve a gyenge kölcsönhatás küldönc részecskéinek, a W és a Z bozonnak 1983-ban történt kísérleti kimutatását.
A húrelméletben egy hosszú várakozási időszak köszöntött be. Senki sem tudta, hogyan kell praktikus számításokat végezni az elmélet felhasználásával. Az extra dimenziók és más problémák megmaradtak. Időközben Joel Scherk idegösszeomlást kapott. Párizs utcáin vonszolta magát. Különös táviratokat küldözgetett fizikusoknak, például Feynmannak. Az orvosok és kollégái legnagyobb csodálkozására még sikerült, legalább részidőben, munkába is állnia. Aztán hirtelen elvált a feleségétől, aki Angliába ment a gyerekeikkel. 1979-ben öngyilkos lett – a húrelmélet hívei szűk táborának nagy sajnálatára. Az 1980-as évek elején a húrelmélettel kapcsolatban újabb problémák léptek fel. Schwarz a legtöbbek szemében vakvágányra került.
[bookmark: _ednref253]Egyesek megjegyzése szerint annak az embernek az elfecsérelt erőfeszítéseit utánozta, aki doktori munkája tanácsadója volt. Geoffrey Chew ugyanis Schwarzéhoz hasonló céllal huszonöt éven át birkózott az S-mátrix-elmélettel. Az első néhány évben jó társaságban, de az utolsó tizenöt évben tulajdonképpen egyedül, mint Schwarz, esetenként a kigúnyolás céltáblájaként. Végül azután feladta nagy álmát. Pedig visszatekintve Chew erőfeszítései nem voltak hiábavalóak. „Nem világos, hogy nélküle lett volna-e húrelmélet. Mert ez az S-mátrix megközelítésből nőtt ki.” – írta Schwarz5.
[bookmark: _ednref254]Az egyetemen Gell-Mann mindvégig erős pártfogó maradt. Mint mondja: „Engem boldoggá és büszkévé tett az, hogy ők (Schwarz és Scherk) köztünk voltak6. Igazán szívmelengető érzés volt. Jó szimatom volt. Korábban sokat dolgoztam a természetvédelemben a Harmadik Világban. Lényegében itt az egyetemen is egy rezervátumot tartottam fenn a veszélyeztetett fajok számára.” 1984-ben Schwarz újabb áttörést ért el, ez alkalommal Michael Greennel (akkoriban a londoni Quenn Mary College munkatársával) együtt. Azt találták, hogy a húrelméletben bizonyos nem óhajtott tagok, amelyek anomáliákhoz vezettek volna, csodálatos módon kiejtik egymást. Az eredményt egy rövid tréfás jelenetben mutatták be az Aspenben még azon a nyáron rendezett műhelykonferencián, a Hotel Jeroméban. Azzal végződött a mutatvány, hogy Schwarzot fehér ruhába öltözött emberek vitték le a színpadról, miközben ő azt kiabálta, hogy megtalálta a „minden elméletét”. A jelenet kesernyés humora jól tükrözte várakozásait: ez az eredmény is szertefoszlik majd az ismeretlenségbe.
Ám ez alkalommal, mielőtt még Schwarz és Green befejezték volna eredményük leírását, egy Edward Witten nevű kolléga jelentkezett telefonon. Elmondta, hogy hallott a konferencián elhangzott beszámolójukról. Schwarz örült annak, hogy van új érdeklődő a munkájuk iránt. Csakhogy Witten nem egyszerűen egy az ügynek megnyert másik kutató volt, hanem a legnagyobb hatású fizikus és matematikus a világon. Néhány hónap alatt Witten (akkor Princetonban, jelenleg a Kaliforniai Műegyetemen Schwarz-cal) és munkatársai egy sor új eredményt értek el, így például azon Calabi-Yau-terek azonosítását, amelyek jó eséllyel pályáznak a felgöngyölt dimenziókra. És ez már elég volt ahhoz, hogy a fizikusok százait győzze meg és állítsa munkába a húrelmélet érdekében. Schwarz végre megkapta a támogatást, amire oly nagy szüksége volt.
[bookmark: _ednref255]Schwarz iránt hirtelen heves érdeklődés mutatkozott más nagy egyetemekről, amelyek igyekeztek kivetni lasszójukat az újonnan híressé vált jelentős tudósra. Gell-Mann is eldöntötte végre, hogy végleges állást szerez neki. Ez azonban még ekkor sem ment egyszerűen. Az egyik igazgató ezt így kommentálta7: „Nem tudjuk, hogy ez az ember találta-e fel a szeletelt kenyeret, de ha ez így is történt, az emberek azt fogják mondani, hogy ez itt a mi egyetemünkön történt, ezért nem kell okvetlenül itt tartanunk”. Tizenkét és fél év után Schwarz végül elnyerte az állást, ami még mindig sokkal gyorsabban ment, mint Kaluza esetében.
[bookmark: _ednref256]Manapság Schwarz dolgozatát, amit Green közreműködésével írt, „az első szuperhúr-forradalom” megtestesítőjének tekintik. Witten szerint8: „John Schwarz nélkül a húrelmélet nagy valószínűséggel eltűnt volna, és legfeljebb valamikor a huszonegyedik században fedezték volna újra fel”. A stafétabotot átadták. Egy évtizeddel később már Witten volt domináns helyzetben, hogy megszabja a maga forradalmát a húrelméletben.
[bookmark: tart43]
37. Az elmélet,
amit korábban
a húrokról neveztek el





[bookmark: _ednref257][bookmark: _ednref258][bookmark: _ednref259]Az 1990-es évekre a húrelmélet népszerűsége meglehetősen lecsökkent. Néhány évvel korábban a Los Angeles Times odáig merészkedett1, hogy helyt adjon egy kritikus véleményének, aki szerint a húrelméleti szakembereket talán „az egyetemek fizetik, hogy megrontsák a befolyásolható fiatal tanulókat”. (Remélhetőleg mostanában a Los Angeles Times megmarad a helyi jelentőségű ügyek, mondjuk a Warren Beatty és Anette Bening közti viszony tárgyalásánál.) Megvolt a jó oka annak, hogy ez az izgatottság lehiggadjon. Andrew Strominger húrelméleti szakember így panaszkodott2: „Van néhány nagy probléma”. Ezek egy része abból eredt, hogy nem voltak szikrázó új meglátások, amiket az elméletből kiolvastak volna. Volt viszont egy újabb zavaró tényező – egy olyan, ami éppoly rosszul hatott, mint a többiek a régi szép napokban. Úgy látszott, hogy öt különböző húrelmélet létezik. Nem öt különböző Calabi-Yau-jelölt – mert ha ezekből csak öt lett volna, az kifejezetten jó hír lenne –, hanem öt alapvetően különböző szerkezetű elmélet. Hogy Strominger kijelentését kissé átalakítsuk3, nem esztétikus, ha öt különböző, unikális természetelméletünk van. A terméketlen időszak tíz évig tartott, amit Schwarznak valahogy át kellett vészelnie. De most igen sok útitársa volt az ígéret földje felé haladásban, és egy próféta is vezette.
[bookmark: _ednref260]A fizikában minden generációnak megvan a domináló alakja. A húrelmélet előtti évtizedekben ilyen személyiség volt Gell-Mann és Feynman. Az utóbbi néhány évtizedben pedig itt van Edward Witten. Brian Greene, a Columbia Egyetemről ezt mondja4: „Bármivel is foglalkoztam eddig, ha az intellektuális nyomokat keresem, azt látom, hogy azok Witten lábaihoz vezetnek”. Először Wittenről a késő hetvenes években hallottam, mint felsőbb éves fizikus a Brandeis Egyetemen, ahol felettem járt néhány évvel. Egynéhány professzorom megjegyzése kísért: »Ön kiváló, de ön mégsem Ed Witten!« Kíváncsi lettem volna, hogy ugyanezek a professzorok mondják-e feleségeiknek, hogy »Jó vagy, de a régi barátnőm, az aztán igazán nagyon jó«. Amikor ezt végiggondoltam, rájöttem, hogy tulajdonképpen ki is nézem belőlük. De lássuk inkább ki is ez a zseni.
Witten fő tanszaknak a történelmet választotta, az egyik olyan tantárgyat, amiről mi, fizikusjelöltek úgy gondoltuk, hogy intellektuális mélységét csak rengeteg olvasással lehet elérni. S ami még rosszabb, egyetlen fizikai kurzust sem választott. Minden látszat szerint a fizika, amiben oly reménytelenül túlragyogott engem, csupán hobbi volt ennek az Einsteinnek a számára.
[bookmark: _ednref261]Boldogan fedeztem fel, hogy Witten a McGovern-kampányban dolgozott 1972-ben, ami azt jelentette, hogy bár talán dicséretes módon Nixon-ellenes volt, reménytelenül belemerült »az ember használja ki jól az idejét« mozgalomba. Aztán, ha már ilyen zseni volt, hogyan lehet az, hogy George McGovern nem nyerte meg a választásokat? McGovern viszont nyert Massachusettsben – az egyetlen államban az Egyesült Államok tagállamai közül. Ez talán mégis Witten munkájának köszönhető? Egynéhány éve megtudtam, hogy nem. McGovern, akit visszavonulásakor egy riporter elkapott és megtudakolta véleményét »a világ legintelligensebb emberéről«, azt válaszolta, hogy nem is emlékszik Wittenre. Aztán egyet is értett a megállapítással, mondván: »Nos, elég intelligens volt, hogy McGovernre szavazzon 1972-ben, és én mindenkit e kritérium alapján ítélek meg«5.
A Brandeis Egyetem után Witten a doktori fokozatot Princetonban szerezte meg. Sohasem végzett fizikakurzust, így nem volt kvalifikációja a bejutáshoz. Kiderült viszont, hogy a Princeton speciális felvételi programot hirdetett olyan fiatalok számára, akikből várhatóan a világ legzseniálisabb tudósai lesznek. Amikor végül találkoztattam Wittennel, magam is lediplomáztam már a Berkeleyn, ahová minden részletre kiterjedő, alapos felvételi vizsga alapján kerültem be.
Witten magas, nyakigláb fickó, fekete hajjal, fekete plasztikkeretű szemüveggel. Elmélyült, de azért elég kedves, és olyan halk szavú, hogy az ember hegyezheti a fülét, ha ki akarja találni, mit is mond. (És ennek általában meg is van az értelme.) Azon a napon hirtelen megállt mondanivalója közben, bizonyára azért, mert végig kellett gondolnia valamilyen mély gondolatot. De olyan sokáig volt csöndben, hogy az emberek már tapsolni kezdtek, mint a tudatlanok egy Beethoven-koncerten, akik összetévesztik a tétel végét a fináléval. Witten ekkor azt mondta nekünk – kissé bosszúsan –, hogy az ő szimfóniája még nem ért véget.
[bookmark: _ednref262][bookmark: _ednref263]Ma Wittent gyakran hasonlítják Einsteinhez. Ennek sok oka lehet, de vezető szerepet játszhat benne az, hogy akik az összehasonlítást megteszik, nem hallottak még sok fizikusról. Ez igazából Einstein legendás személyiségének a szidalmazása – mert már klisévé vált, mindenki volt már valaminek az Einsteinje. Hát ezt kapja az ember, ha a fizikusok Cadillacje lesz. Vannak – persze – felületes hasonlóságok Einstein és Witten között. Mindketten zsidók, mindketten éveket töltöttek a princetoni Institute for Advanced Studyban, és mindketten kimutatták erős érdekeltségüket Izrael iránt, és vonzalmukat a békemozgalmak irányában. Például a tizenkét éves Witten szerkesztőhöz írt levelét, amelyben ellenzi a vietnami háborút, leközölte a Baltimore Sun című újság6, és szerepelt a békemozgalom tagjai között is Izraelben7.
Ha már összehasonlítást kell tenni, akkor viszont a munkában Witten sokkal inkább olyan, mint Gauss, nem pedig olyan mint Einstein. Nem függ öreg barátoktól, hogy elmagyarázzák neki a modern geometriát, Witten újra felfedezi azt magának. És mint Gauss esetében, munkája nagy jelentőségű a modern matematika számára. Ez olyan valami, ami Einsteinre például nem igaz. És ekkor itt van a fricska – Witten (és mindenki más) közeledése a húrelmélethez, és most az M-elmélethez, elsősorban matematikai meglátásokból adódik, nem fizikaiakból, mint Einstein esetében. Nem választással, hanem történeti véletlen útján eshetett meg, hogy az elméletbe belebotlott. Az új fizikai elvet, ami a dolgok mélyében van, ami Witten számára a „legboldogabb gondolat”, ha létezik egyáltalán, akkor még fel kell fedezni.
[bookmark: _ednref264]1995 márciusában Edward Witten egy húrelméleti konferencián tartott előadást a Dél-karolinai Egyetemen. Már tizenegy év telt el Schwarz szuperhúr-forradalma óta, és sokak számára a húrelmélet lassan kimerülőben volt. Witten előadása mindent megváltoztatott. Amit megmagyarázott, az egy másik csoda volt: mind az öt különböző húrelmélet – mint állította – csupán különböző közelítési alakja ugyanannak a nagyobb elméletnek, amit M-elméletnek nevezünk. A hallgatóság soraiban ülő fizikusokat mind elképesztette ez a bejelentés. Nathan Seiberget a Rutgers Egyetemről8, aki a következő előadó volt, például annyira lenyűgözte Witten előadása, hogy ezt mormogta: „Jobban tenném, ha elmennék traktorosnak”.
[bookmark: _ednref265]Witten nagy áttörését ma a második húrelméleti forradalomként ismerjük. Az M-elmélet szerint a húrok nem a fundamentális részecske megtestesítői9, hanem csak példák az általánosabb objektumokra, amiket bránoknak nevezünk (a membrán rövidített alakja). A bránok magasabb dimenziójú verziói a húrnak, a húr ugyanis egy egydimenziós objektum. A szappanbuborék például egy két-brán. Az M-elmélet szerint a fizika törvényei ezeknek a komplexebb mennyiségeknek a bonyolultabb vibrációitól függenek. Ráadásul van egy extra felgöngyölt dimenzió is, amivel a dimenziók száma tizenegy, nem pedig tíz. Ám a legkülönösebb dolog az, hogy az M-elméletben a tér és az idő – valamilyen alapvető értelemben – nem létezik.
Úgy látszik, az M-elméletnek megvan az a tulajdonsága, hogy amit mi térnek és időnek, vagyis a húrok vagy a bránok koordinátáinak észlelünk, az valójában olyan matematikai elrendezés, amit mátrixként ismerünk. Amikor a húrok messze vannak egymástól (de a hétköznapi élet szempontjából azért még mindig közel) a mátrixok csak közelítő értelemben hasonlítanak a koordinátákhoz – mert ebben az esetben az elrendezés diagonális (átlóban fekvő) elemei egyenlők lesznek egymással, az extra-diagonális (a főátlón kívüli) elemek pedig zérushoz tartanak. Ez a legmélyrehatóbb változás az euklideszi térfogalom kialakulása óta.
[bookmark: _ednref266][bookmark: _ednref267][bookmark: _ednref268]Witten azt szokta mondani10, hogy az M az M-elméletben „a misztérium, a mágia vagy a mátrix, a három kedvenc szavam kezdőbetűjéből származik”. A későbbiek folyamán hozzátette11 a murky (ködös, homályos) jelzőt, ami bizonyára nem a kedvenc szava. Az M-elméletet még nehezebb megérteni, mint a húrelméletet. Azt senki sem tudja, hogy milyen egyenletek származnak belőle, és persze még kevesebbet lehet tudni azok közelítő megoldásairól. Valójában egyáltalán nem sokat tudunk róluk, kivéve azt, hogy – úgy látszik – létezik egy nagyobb, tágabb elmélet, amelynek a húrelmélet öt különböző típusa mind különböző megközelítési formája. Mégis az M-elmélet eszméi ahhoz az igencsak meglepő kijelentéshez vezettek, hogy a húrelméletben még van valami: egy kijelentés, aminek köze van a fekete lyukak fizikájához12.
A fekete lyukak jelenségkörét az általános relativitáselmélet vezette be. A meghatározásukban lényeges elem, hogy feketék (ami egy fizikus számára azt jelenti, hogy sem a fény, sem más sugárzás nem menekülhet el). 1974-ben Steven Hawking elvetette ezt a rossz választ! Ha az ember a kvantummechanika törvényeit vizsgálja, arra a következtetésre kényszerül, hogy a fekete lyukak nem igazán feketék. Ez azért van, mert a határozatlansági elv folytán az üres tér sem igazán üres, hanem tele van részecske-antirészecskepárokkal, amelyek egészen rövidke időtartamig léteznek, mielőtt még szétsugárzódnának és a feledésbe merülnének. Hawking szerint – igencsak bonyolult számítások után –, amikor ez megtörténik a térben éppen a fekete lyuk külső határán, a fekete lyuk el tudja nyelni a pár egyik felét, miközben a másikat kilövi a külső térbe, amit aztán sugárzásként észlelünk. Ezért aztán a fekete lyukak halványan parázslanak. Ez azt is jelenti, hogy a hőmérsékletük nem zérus, pontosan ugyanúgy, ahogy a szén izzása egy bizonyos hőmennyiség jelenlétét mutatja. Sajnos, a tipikus fekete lyuk hőmérséklete kisebb lenne, mint egymilliomod fok, ami túl alacsony ahhoz, hogy a csillagászok megfigyeljék. De a fizikusok számára az a felismerés, hogy a fekete lyukaknak egyáltalán van hőmérsékletük, már igazán meglepő következtetésekhez vezetett. Ha a fekete lyuknak van hőmérséklete, akkor entrópiája is van. És valóban, a fekete lyukak entrópiája hatalmas nagy mennyiség – ha kiírnánk számmal, az hosszabb lenne, mint ez a sor a könyvben.
Az entrópia a rendszer rendezetlenségének mértéke. Ha az ember tudja a rendszer belső szerkezetét, kiszámíthatja az entrópiáját úgy, hogy megszámlálja azokat a lehetséges állapotokat, amelyekben a rendszer lehet. Minél több a lehetséges állapotok száma, annál nagyobb az entrópiája. Ha például Alexei hálószobájában rendetlenség van, akkor sok állapot áll rendelkezésre: a hörcsögök itt lehetnek, a piszkos ruhadarabok ott, a régi, kiolvasott képregények meg valahol másutt, vagy pedig mindezek a tételek átrendezhetők, amivel egy különböző „állapotot” lehet létrehozni. Minél több a kacat a szobában, annál több állapot lehetséges (szemben a népszerű tévhittel, a nagy entrópiának semmi köze sincs a rendhez vagy a rendetlenséghez: csak a rendszer elrendezéseinek lehetséges száma lényeges). De ha a szoba üres lenne, csak egy lehetséges állapota lenne – nem volna mit átrendezni – és így az entrópia zérus lenne. Hawking előtt a fekete lyukakat úgy képzelték el, hogy nincs belső szerkezetük, valami olyanok, mint egy üres szoba. Most viszont úgy tűnik, mintha inkább Alexei szokásos szobájára hasonlítanának. Ha Hawking megkérdezett volna engem, én bizony megerősíthettem volna, mindig is mondtam Alexeinek, hogy olyan a szobája, mint egy fekete lyuk.
A fizikusok két évtizedig törték a fejüket Hawking eredményén. A relativitáselmélet és a kvantummechanika különálló elméleteit összekombinálni ravasz üzlet. Hol vannak a fekete lyuknak mindazon állapotai, amelyekre ez az entrópia vonatkozik? Ezt senki sem tudja. Aztán 1996-ban Andrew Strominger és Cumrun Vafa nyilvánosságra hozott egy látványos számítást: az M-elmélet eszméit alkalmazva kimutatták, hogy ki lehet dolgozni bizonyos (elméleti) feketelyuk-típusokat a bránokból. Ezeknek a fekete lyukaknak az állapotai bránállapotok, amiket meg lehet számlálni. Az entrópia, amit így számítottak ki, megegyezett azzal, amit Hawking egy egészen más módszerrel jelzett előre.
[bookmark: _ednref269][bookmark: _ednref270][bookmark: _ednref271]Mindez meglepő bizonyítéka volt annak, hogy az M-elmélet valamit helyesen csinál – de ez még így is csak egy posztdikció. Amire az elméletnek szüksége van – és azok a bosszantó kísérleti fizikusok mindig csak erre emlékeztetnek –, az valami megerősítés a valóság világából. Az M-elmélet mellett szóló kísérleti bizonyítékokat jelenleg két területről remélhetünk. Az egyik az, hogy a következő évtizedekben felfedezhetik a szuperszimmetrikus részecskéket. Ez megtörténhet a CERN új Nagy Hadron Ütköztető berendezésében13. A másik kísérlet az eltérések keresése lesz a gravitációs törvényben14. A Newton-elmélet szerint – és ezen a skálán Einstein elmélete szerint is – két laboratóriumi méretű tárgy egymást olyan erővel vonzza, amely fordítottan arányos a köztük lévő távolság négyzetével – vagyis megfelezve a távolságot, négyszeres lesz az erő. Az extra dimenziók természetétől függően azonban az M-elméletben lehetséges, hogy amint a testek egymást rendkívüli mértékben megközelítik, a vonzásuk sokkal gyorsabban fog növekedni. Bár a fizikusok a más típusú erőket már egészen a 10-17cm nagyságrendig tesztelték, mind ez ideig a gravitációs erő viselkedését csak kb. 1 cm-nél nagyobb távolságokon sikerült ellenőrizni. A kutatók a Stanford Egyetemen és a boulderi Colorado Egyetemen most is végeznek „asztali” kísérleteket a gravitáció kis távolságú kipróbálására15.
[bookmark: _ednref272]Schwarz nem izgul, mert azt mondja: „Hiszek abban, hogy megtaláltuk azt a matematikai struktúrát, amely konzisztensen összekombinálja a kvantummechanikát és az általános relativitáselméletet. Ezért, bár hiszem, hogy a szuperszimmetriát előbb vagy utóbb meg fogják találni, én nem vetném el ezt az elméletet még akkor sem, ha a szuperszimmetriáról kiderülne, hogy nem létezik”16.
A természet rejtett rend szerint fejlődik. A matematika ezt leleplezi. Vajon az M-elmélet lesz-e a jövő fizikai kurzusainak tankönyve, vagy csak egy lábjegyzet lesz a tudománytörténeti előadások során, amelyhez majd azt írják: „zsákutca”? Vajon Schwarz hasonlít-e Oresme-re, és Witten Descartes-ra, vagy pedig mindkettőjüknek a nem létező éterből csak egy reménytelen mechanikai elméletet megalkotó Lorentz szerepe jutott – ezt még nem lehet tudni. Mint fiatal tudós, Schwarz csak azt tudta, hogy ez az elmélet túl szép ahhoz, hogy ne legyen jó semmire. Ma a kutatók egész generációja néz a természetre és látja benne Schwarz húrjait. Nehéz lenne a világot megint a régi módon szemlélni!
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Gyerekkorunkban kirakós rejtvényekkel játszottunk, majd felnőtté válva rájöttünk, hogy mi is egy ilyenben élünk. Ez a rejtvény nem az egyénnek, hanem az egész emberiségnek van feladva. Vannak-e egyáltalán természettörvények? És hogyan jut az ember ahhoz, hogy megtudjon róluk valamit. A természettörvény a helyi szabályok zagyvaléka vagy létezik egység az Univerzumban? Az emberi agy számára – amely szürke kis foltjával túl gyakran botlik bele oly „egyszerű” dolgokba, mint a szerelem és a béke, vagy egy jó rizottó elkészítése – a kozmosz mérete és bonyolultságának mértéke minden képzeletet meghaladó felfoghatatlan dolog. Mégis, most már több mint száz generáció óta rakosgatjuk össze a darabkákat.
Mint emberi lények, természetesen a rendet és értelmet keressük a körülöttünk lévő világban. Ehhez az eszközeinket az ókori görögöktől örököltük, akik nemcsak az egzakt matematikai gondolkodást hagyták ránk, hanem megtanítottak minket a természet szépségére is. Megelégedettséggel tapasztalták a Nap, a Föld, és a bolygópályák kerekségét, mert számukra a kör és a gömb volt az alakok legtökéletesebbje. A középkor után Eukleidész Elemek című művének újjászületésével, valamint a kísérleti módszer megszületésével azt találtuk, a rend túlnyúlik a „melyek a természet törvényei” kérdésén és boncolgatni kezdi a „természeti törvények miértjét”. A kísérletek a XVII. században azt mutatták, hogy minden test ugyanúgy esik szabadon tekintet nélkül összetételére, nagyságára, vagy súlyára, vagy pedig arra, hogy Galilei ejtegeti-e azokat, vagy kísérletező társa, Robert Hooke. A megfigyelések azóta megerősítették, hogy ugyanazok a törvények szabályozzák a Föld vonzását Newton almájára, mint amelyek alkalmasak a Hold és Föld, vagy távoli bolygók saját csillaguk körüli mozgásának leírására. S ezek a törvények változatlanok maradtak az idő kezdete óta. Milyen erő készteti az Univerzumot arra, hogy minden dolog bizonyos speciális törvényeket kövessen? És miért nem változnak a törvények az időben, vagy helyről helyre az évek milliárdjai és kilométerek trilliói során? Nem csoda, hogy egyes emberek Istenben találták meg a választ. A görög geométerek indították el a tudomány folyamatát és a matematika volt az eszközük. A görögök óta a matematika volt a természettudomány szíve, és a geometria a matematikáé.
Eukleidész ablakán keresztül nézve sok mindent felfedeztünk, amiről el se tudta volna képzelni, hogy ezek hová vezethetnek el minket. Megismerni a csillagokat, elképzelni az atomokat és lassacskán megérteni azt, hogy ezek a rejtvénydarabkák hogyan illeszthetők össze a nagy kozmikustervben: fajunk számára ez egy speciális élvezet, talán a legnagyobb gyönyörűség. Mai tudásunk az Univerzumról oly hatalmas távolságokat fog át, amelyeket személyesen sohasem utazhatunk be – és olyan kicsiket is, amiket nem is láthatunk. Olyan időben és térben szemlélődünk, amit óra nem mérhet és eszköz ki nem mutathat; olyan erőkről beszélünk, amiket nem tudunk érezni. Azt találtuk, hogy a változatosságban – és még a látszólagos káoszban is – az egyszerűség és a rend uralkodik. A természet szépsége túltesz a gazella kecsességén és a rózsa eleganciáján, egészen a legmesszebb lévő galaxisig vagy a létezés legparányibb repedéséig. Ha a jelenlegi elméletek helyesnek bizonyulnak, lassan eljuthatunk a tér nagy lényegbeli megragadásához, az anyag és az energia, a tér és az idő, az infinitezimális és a végtelen közjátékának a megértéséhez.
A fizika törvényeinek megértése vajon maga az igazság, vagy csupán egyetlen a sok lehetőség közül? Vajon ez az Univerzum tükörképe, vagy csak a fajunk egyedeinek ösztönös látásmódja? Az egyik csoda az, hogy a fizikai törvényben léteznek szabályszerűségek, a másik az, hogy ezeket meg tudjuk különböztetni, de a legnagyobb csoda mindenekfelett az lenne, ha elméletünk az abszolút igazságot képviselné, mind alak, mind tartalom szerint. A geometria és a történelem egy különleges irányba hajtott bennünket. A párhuzamossági posztulátumot nem lehetett bebizonyítani Eukleidész rendszerében, így a görbült tér 2000 éven keresztül várt a sorára, kikerülhetetlenül. A relativitáselmélet és a kvantummechanika teljesen független és filozófiailag ellentmondó elméletek voltak, mégis a húrelméletben létezni látszik egy harmadik, a kettőtől vadul különböző elmélet, amiből mindkettőt le lehet vezetni. Elgondolkodtató, hogy ha a Hawking által a relativitáselméletből és a kvantumelméletből kevert koktél meg tudja jósolni a fekete lyukak entrópiáját, és Strominger számításai a húrelmélet felhasználásával egyeznek, akkor talán ez a kapcsolat valamilyen mélyebb igazság létére utal?
A mélyebb igazság irányában folyik a kutatás. Eukleidész és az őt követő zsenik, Descartes, Gauss, Einstein és – majd az idő megmondja – Witten, továbbá mindazok, akik eredményeire támaszkodhattak, nagy hálára köteleznek bennünket. Ők élvezték a felfedezés örömét. Mi, a többiek, ugyanakkora élvezetben részesültünk: a megértés örömében.
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Köszönet… Alexeinek és Nicolainak, mert feláldozták idejüket azokon a napokon, amikor csak tehették, hogy elkészíthessem ezt a könyvet (bár tudom, hogy a veszteség inkább az enyém, mintsem az övéké); Heathernek, hogy mindig velük volt, amikor én nem lehettem jelen; Susan Ginsbergnek, mert ő volt a városban a legjobb ügynököm, de – legfőképpen – azért, mert hitt bennem; kiadómnak, Stephen Morrow-nak, mert segített tekintetem fokuszálásában, egészen a legparányibb javaslatig, és hogy összefésülte, amit (véletlenül) nyújtani tudtam; Steve Arcellának, az illusztrálások előteremtésében nyújtott gondos és csodálatos munkájáért; Mark Hillerynek, Fred Rose-nak, Matt Costellónak és Marilyn Burnsnek feláldozott idejükért, kritikájukért, javaslataikért – ha nem is szükségképpen ilyen sorrendben; Brian Greene-nek, Stanley Desernek, Jerome Gauntlettnek, Bill Hollynak, Thordur Jonssonnak, Randy Rogelnek, Stephen Schnetzernek, John Schwarznak, Erhard Seilernek, Alan Waldmannak és Edward Wittennek, hogy elolvasták a kézirat egy részét vagy egészét; Lauren Thomasnak, mert segített a régi francia szövegek lefordításában; Geoffrey Chewnak, Stanley Desernek, Jerome Gauntlettnek, Murray Gell-Mann-nak, Brian Greene-nek, John Schwarznak, Helen Tucknak, Gabriele Venezianónak és Edward Wittennek, mert beleegyeztek meginterjúvolásukba; és a Minetta Tavernnek Greenwich Village-ben, hogy csodálatos helyet adtak a találkozók és az írás számára. Végül szeretném köszönetem kifejezni két intézménynek: a New York Public Librarynak, mert nem kielégítő ellátásuk ellenére még a legsötétebb kívánságaimat is ki tudták elégíteni a könyvek terén, és a Dover Publications cégének, mert reprintelte és így megóvta, ha nem is a sötétségtől, de az eltűnéstől mindenképpen azt a rengeteg csodálatos régi könyvet a fizikáról, matematikáról és a természettudomány történetéről.
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2. Az adózás geometriája

1.	Yeats utalt „The Dawn” (A hajnal) című költeményében a babilóniaiaknak a tudás iránti közömbösségére. A költemény így kezdődik:
„Oly tudatlan volnék, mint a hajnal, amely lenézett arra az öreg királynőre, miközben az a melltűjével egy várost mért fel, vagy a kifáradt emberekre, akik pedáns Babilonjukból a gondtalanul pályájukon száguldó bolygókat nézték, miközben a csillagok kihunytak, amikor a Hold jön, s elővették tábláikat és összeadták a számokat…”

2.	Michael R. Williams A History of Computing Technology (A számítástechnika története), (Englewood Cliffs, N. Jersey: Prentice-Hall, 1985), 39-40. old.

3.	Lásd Williams id. művének 1. fejezetét, a számolás és az aritmetika eredetéről.

4.	A „kettő” megjelölésére használt szóról lásd ugyanott a 3. old.

5.	R. G. W. Anderson The British Museum (London, British Museum Press, 1997) 16. old.

6.	Pierre Montet Eternal Egypt (Az örök Egyiptom). Fordította Doreen Weightman (New York: New American Library, 1964), 1-8. old.

7.	Alfred Hooper: Makers of Mathematics (A matematika alkotói) (New York: Random House, 1948), 32. old.

8.	Georges Jean: Writing: The Story of Alphabets and Scripts (Írás: az ábécék és az írás története), fordította Jenny Oates (New York: Harry N. Abrams, 1992) 27. old.

9.	Hérodotosz írja, hogy az adózás problémája elősegítette az egyiptomi geometria kialakulását. Lásd: W. K. C. Guthrie: A History of Greek Philosophy (Cambridge, UK: University Press, 1971) 34-35. old. és Herbert Turnbull: The Great Mathematicians (Nagy matematikusok) (New York: University Press, 1961) 1. old.

10.	Rosalie David: Handbook to Life in Ancient Egypt (Élet az ókori Egyiptomban – kézikönyv) (New York: Facts on File, 1998) 96. old.

11.	Ez és még más érdekes tény található James Putnam – Jeremy Pemberton: Amazing Facts About Ancient Egypt (Érdekes tények az ókori Egyiptomról) (London-New York: Thames and Hudson, 1995) 46. old.

12.	A babilóniai és a sumér matematika bővebb tárgyalását lásd Edna E. Kramer: The Nature and Growth of Modern Mathematics (A modern matematika természete és fejlődése) (Princeton: New Jersey: Princeton University Press, 1981) 2-12. old.

13.	Az egyiptomi és a babilóniai matematika összehasonlítása ügyében lásd Morris Kline: Mathematical Thought from Ancient to Modern Times (A matematikai gondolkodás az ókortól a modern időkig) (New York: Oxford University Press, 1972) 11-22. old. Lásd még H. L. Resnikoff – R. O. Wells Jr.: Mathematics in Civilization (A matematika a civilizációban) (New York: Dover Publications, 1973) 69-89. old.

14.	Resnikoff és Wells, 69. old.

15.	Kline, 11. old.

16.	„The First Mathematicians” (March 2000), (Az első matematikusok), megtalálható a http:www.members.aol.com/bbvarsl/first.html címen. Egy hasonló, de bonyolultabb retorikai probléma található: Kline, 9. old.

17.	Kline, 259. old.


3. A hét bölcs között

1.	Thalész életének és munkásságának tárgyalása megtalálható pl. Sir Thomas Heath: History of Greek Mathematics (A görög matematika története) (New York: Dover Publications, 1981), 118-149. old., Jonathan Barnes: Presocratic Philosophers (Preszokratikus filozófusok) (London: Routledge & Kegan Paul, 1982) 1-16. old., George Johnston Allman: Greek Geometry from Thales to Euclid (A görög geometria Thalésztől Eukleidészig) (Dublin, 1889) 7-17. old.; G. S. Kirk – J. E. Raven: The Presocratic Philosophers (A preszokratikus filozófusok) (Cambridge, U. K.: University Press 1957) 74-98. old.; Hooper, 27-38. old.; Guthrie, 39-71. old.

2.	Hogy Milétosz miről volt híres, lásd Reay Tannahill: Sex in History (Szex a történelemben) (Scarborough House, 1992) 98-99. old.

3.	Richard Hibler: Life and Learning in Ancient Athens (Az élet és a tanulás az ókori Athénben) (Lanham, MD: University Press of America, 1988) 21. old.

4.	Hooper, 37. old.

5.	Erwin Schrödinger: Nature and the Greeks (A természet és a görögök) (Cambridge, Cambridge University Press, 1996) 81. old.

6.	Hooper, 33. old.

7.	Lásd Guthrie 55-80. old. Peter Gorman: Pythagoras, A Life (Püthagorasz – egy életrajz) (London: Routledge & Kegan Paul, 1979) 32. old.

8.	Milétosz életéről sok érdekesség megtudható Adelaide Dunham könyvéből: The History of Miletus (Milétosz története) (London: University of London Press, 1915).

9.	A történelmi képet illetően lásd: Gorman, 40. old.


4. A Titkos Társaság

1.	Püthagorasz legalaposabb elemző életrajzát lásd Gorman művében, ahol a források is megtalálhatók, továbbá: Leslie Ralph: Pythagoras (London: Krikos, 1961).

2.	Donald Johanson – Blake Edgar: From Lucy to Language (Lucytól a nyelvig) (New York, Simon and Schuster, 1996) 106-107. old.

3.	Jane Muir, Of Men and Numbers (Emberekről és számokról) (New York: Dodd, Mead & Co., 1961) 6. old.

4.	Gorman, 108. old.

5.	Gorman, 19. old.

6.	Gorman, 110. old.

7.	Gorman, 111. old.

8.	Ugyanott.

9.	Gorman, 123. old.

10.	A négyzet átlójának matematikai bizonyítása: Legyen c az átló hossza, és kezdjük azzal, hogy c kifejezhető egy tört, mondjuk m/n alakban (vagyis m és n olyanok, hogy nincs már közös osztójuk, így kiváltképpen egyszerre nem párosak). A bizonyítás három lépésben történik. Először: megjegyezzük, hogy a c2 = 2 azt jelenti, m2 = 2n2. Szavakban: m2 páros szám. Minthogy a páratlan számok négyzete páratlan, ez azt jelenti, hogy m maga is páros kell legyen. Másodszor: minthogy m és n egyszerre nem lehetnek mindketten párosak, az n páratlan kell legyen. Harmadszor: tekintsük az m2 = 2n2 egyenletet egy másik szemszögből. Ha m páros, akkor írhatjuk, hogy m = 2q. Ha most behelyettesítjük m-et az m2 = 2n2 egyenletbe, akkor azt kapjuk, hogy 4q2 = 2n2, ami ugyanaz, mint 2q2 = n2. Ez pedig azt jelenti, hogy n2 és ebből kifolyólag n is páros.
Azzal kezdtük, hogy ha c felírható, mint m/n, ahol n páratlan, márpedig n páros. Ez pedig ellentmondás, tehát az eredeti feltevés, hogy c = m/n alakban írható, szükségképpen hamis állítás volt. Az ilyen típusú bizonyítás – ahol feltesszük a tagadását annak, amit éppen be akarunk bizonyítani, majd bebizonyítjuk, hogy ez a tagadás ellentmondáshoz vezet – reductio ad absurdum (a lehetetlenre való visszavezetés) nevet kapta. Ez a püthagoreus felfedezések egyike, ami mind a mai napig igen hasznos a matematikában.

11.	Muir, 12-13. old.

12.	Kramer, 577. old.

13.	Gorman, 192-193. old.



5. Eukleidész manifesztuma

1.	Spinoza, a XVII. század fontos filozófus alakja, egyik könyvét, az Etikát Eukleidész Elemek című művének mintájára írta. Definíciókból és axiómákból indult ki, amikből aztán szigorúan következtetett tételekre. Az Etika megtalálható a weben is, pl. a Middle Tennessee University honlapján: Baruch Spinoza: Ethics (Etika), angolra fordította R. H. M. Elwes (1883), MTSU Philosophy WebWorks Hypertext Edition (1997), http://www.frank. mtsu.edu/~rbombard/RB/spinoza/ethica-front.html. Lásd még Bertrand Russell, A History of Western Philosophy (A nyugati filozófia története) (New York: Simon & Schuster, 1945) 572. old. (Magyarul: Spinoza: Etika, Akadémiai Kiadó, Bp., 1968, továbbá: Benedictus de Spinoza: Etika, Szemere Samu fordítását átdolgozta, bevezetővel, magyarázatokkal és jegyzetekkel ellátta és a mutatót írta Boros Gábor, Osiris, Budapest, 2001.) – Abraham Lincoln jogász korszakában tanulmányozta az Elemeket, hogy fejlessze logikai készségét: lásd Hooper, 44. old. – Kant úgy gondolta, hogy az euklideszi geometria az emberi agyban mint egy huzalhálózat van jelen, lásd Russell, 714. old.

2.	Heath, 354-355. old.

3.	Kline, 89-99., 157-158. old.

4.	Az Elemek története: Heath, 356-70. old., lásd még: Hooper, 44-48. old. 1926-ban még Heath személyesen kiegészítette az Elemeket művének új kiadásakor: Sir Thomas Heath: The Thirteen Books of Euclid’s Elements (New York: Dover Publications, 1956).

5.	Kline, 1205. old.

6.	Bayes tétele: „Zsákbamacska” dilemmát Monty Hall problémának is nevezik a show amerikai vezetője, Monty Hall után. A legjobb módszer a helyes döntés bemutatására megrajzolni a fadiagramot, ami az egymást követő lehetséges választásokat illusztrálja. Ezt a módszert alkalmazzák arra, hogy a Bayes-tételt bemutassák. Lásd John Freund: Mathematical Statistics (Matematikai statisztika) (Englewood, Cliffs, New Jersey: Prentice-Hall, 1971) 57-63. old.

7.	Ez egy Paul Curry által felfedezett trükk, Martin Gardner: Entertaining Mathematical Puzzles (Szórakoztató matematikai rejtvények) (New York: Dover Publications, 1961) 43. old.

8.	A perihéliumproblémáról lásd John Earman – Michael Janssen – John D. Norton (editors): The Attraction of Gravitation: New Studies in the History of General Relativity (A gravitációs vonzás: Új tanulmányok az általános relativitáselméletről) (Boston: The Center of Einstein Studies, 1993) 129-149. old. Egy jó, bár rövid tárgyalás található: Abraham Pais: Subtle is the Lord (Körmönfont az Úristen) (Oxford: Oxford University Press, 1982) 22, 253-255. old. A Leverrier-idézet a 254. oldalon található, a „csúcspont” a 22. oldalon. A geometriai helyzet jó diszkussziója található Ressnikoff és Wells, 334-336. old.

9.	Euclid’s Elements (Eukleidész: Elemek) kommentárokkal megtalálható Heath könyvében, 354-421. old. Három jó és modernebb diszkusszió megjelent Kline: Mathematical Thought (Matematikai gondolkodás) 56-88. old.; Jeremy Gray: Ideas of Space (Elgondolások a térről) (Oxford: Clarendon Press, 1989) 26-41. old.; Marvin Greenberg: Euclidean and Non-Euclidean Geometries (Euklideszi és nem euklideszi geometriák) (San Francisco: W. H. Freeman & Co., 1-113. old.

10.	Kline, 59. old.


6. Egy szép nő, egy könyvtár – és a civilizáció vége

1.	H. G. Wells: The Outline of History (A világtörténet alapvonalai) (New York: Garden City Books, 1949) 345-375. Magyarul: (Budapest, Genius Könyvkiadó, 1925) – Időrend szempontjából: lásd Jerome Burne, ed., Chronicle of the World (A világ krónikája) (London: Longman Chronicle, 1989) 144-147. old.

2.	Russell, 220. old.

3.	Az athéniak kölcsönadták III. Ptolemaiosznak Euripidész, Aiszkülosz és Szophoklész kéziratait. Jóllehet az eredetiket megtartotta, de III. Ptolemaiosz kegyes volt az általa készíttetett másolatokat visszaküldeni. A görögök nem lehettek túlságosan meglepve. Cserébe jelentős kárpótlást kértek (és kaptak is), amit az uralkodó felajánlott. Lásd Will Durant: The Life of Greece (Élet az ókori Görögországban) (New York: Simon & Schuster, 1966) 601. old.

4.	Számításainak geometriáját magyarázza Morris Kline: Mathematics and the Physical World (Matematika és a fizikai világ) (New York: Dover Publications) 6-7. old.

5.	A történet több különböző változatban is létezik. Egyesekben Eratoszthenész megjegyzi, hogy a kútba lenézve nincsen árnyék, a Syene távolságát pedig utazók jelentései alapján határozza meg. Az itt közölt változat Carl Sagannál található: Carl Sagan: Cosmos (New York: Ballantine Books, 1981) 6-7. old.

6.	Kline: Mathematical Thought…, 106. old.

7.	Morris Kline: Mathematics in Western Culture (Matematika a nyugati kultúrában) (London: Oxford University Press, 1953) 66. old.

8.	Kline, Mathematical Thought…, 158-159. old.

9.	Ptolemaiosz tevékenységének összefoglalását megtaláljuk John Noble Wilford: The Mapmakers (A térképkészítők) című munkájában (New York: Vintage Books, 1981) 25-33. old.

10.	Kline: Mathematics in Western Culture, 86. old.

11.	Kline: Mathematical Thought…, 201. old.

12.	Kline: Mathematics in Western Thought, 89. old.

13.	Hüpatia története megtalálható Maria Dzielska művében: Hüpatia of Alexandria (Alexandriai Hüpatia). Angolra fordította: F. Lyra (Cambridge, Ma.: Harvard University Press, 1995). Lásd még: Kramer, 61-65. old., Russell, 367-369. old.

14.	Edward Gibbon: The Decline and Fall of the Roman Empire (A Római Birodalom hanyatlása és bukása) (London, 1898) 109-110. old.

15.	Dzielska, 84. old.

16.	Ugyanott, 90. old.

17.	Ugyanott, 93-94. old.

18.	Resnikoff és Wells, 4-13. old.

19.	David Lindberg, ed.: Science in the Middle Ages (Tudomány a középkorban) (Chicago: University of Chicago Press, 1978) 149. old.


7. Forradalom a hely ismeretében

1.	William Gondin: Advanced Algebra and Calculus Made Simple (Felsőbb algebra és a differenciálszámítás egyszerűen) (New York: Doubleday & Co., 1959) 11. old.


8. A földrajzi szélesség és hosszúság eredete

1.	Két kiváló beszámoló van a térképkészítés történetéről, az egyik Wilford, a másik Norman Thrower műve: Maps and Civilization (A térképek és a civilizáció) (Chicago: University of Chicago Press, 1996).

2.	Resnikoff és Wells: 86-89. old.

3.	Dava Sobel: Longitude (New York: Penguin Books, 1995) 59. old.

4.	Wilford, 220-221. old.


9. A léha rómaiak öröksége

1.	Morris Bishop, The Middle Ages (A középkor) (Boston: Houghton Mifflin, 1987) 22-30. old.

2.	Jean, 86-87. old.

3.	Jean Gimpel: The Medieval Machine (A középkori gépezet) (New York: Penguin Books, 1976) 182. old.

4.	Bishop, 194-195. old.

5.	Robert S. Gottfried: The Black Death (A fekete halál) (New York: The Free Press, 1983) 24-29. old.

6.	Ugyanott, 53. old.

7.	A középkori egyetemről és az egyetemi életről, lásd Bishop, 240-244. old. Mildred Prica Bjerken: Medieval Paris (A középkori Párizs) (Metuchen, New Jersey: Scarecrow Press, 1973) 59-73. old.

8.	Bishop, 145-146. old.

9.	Ugyanott 70-71. old.

10.	Gimpel, 147-170. old. Bishop, 133-134. old.

11.	Wilford, 41-48. old.; Thrower, 41-45. old.

12.	Russell, 463-475. old. Abelardról lásd még Jacques LeGoff, Intellectuals in the Middle Ages (Értelmiségiek a középkorban), ford. Teresa Lavander Fagan (Oxford: Blackwell, 1993) 35-41. old.

13.	Jeannine Quillet: Autour de Nicole Oresme (Nicole Oresme-ről) (Paris: Librairel Philosophique J. Vrin, 1990) 10-15. old.


10. A grafikonok diszkrét bája

1.	Reay Tannahill, Food in History (Az élelmiszer a történelemben) (New York: Stein & Day, 1973) 281. old.

2.	A disztribúciók elmélete. A matematikai hajlamú olvasók számára kitűnő klasszikus mű egyetemista színvonalon: M. J. Lighthill: Introduction to Fourier Analysis and Generalized Functions (Bevezetés a Fourier-analizisbe és az általánosított függvények elméletébe) (Cambridge: U. K. University Press 1958).

3.	Oresme grafikonokra vonatkozó munkájáról lásd: Lindberg, 237-241.; Marshall Clagett: Studies in Medieval Physics and Mathematics (Tanulmányok a középkori fizika és matematika köréből) (London: Variorum Reprints, 1979) 286-295.; Stephano Caroti, ed.: Studies in Medieval Philosophy (Tanulmányok a középkori filozófiáról) (Leo S. Olschki, 1989) 230-234. old.

4.	David C. Lindberg, The Beginnings of Western Science (A nyugati tudomány kezdetei) (Chicago: University of Chicago Press, 1992) 290-301. old.

5.	Clagett, 291-293. old.

6.	Lindberg, The Beginnings…, 258-261. old.

7.	Ugyanott 260-261. old.

8.	Charles Gillespie, ed., The Dictionary of Scientific Biography (A tudományos életrajzok szótára) (New York: Charles Scribner’s Sons, 1970-1990).


11. Egy katona története

1.	A legjobb modern életrajz Descartes-ról: Jack Vrooman: René Descartes (New York: G. P. Putnam’s Sons, 1970). Életrajzával összefont matematikai tevékenységéről lásd Muir, 47-76. old.; Stuart Hollingdale: Makers of Mathematics (A matematika alkotói) (New York: Penguin Books, 1989) 124-136. old.; Kramer, 134-166. old.; Bryan Morgan: Men and Discoveries in Mathematics (Emberek és felfedezések a matematikában) (London: John Murray, 1972) 91-104. old.

2.	A különböző forrásmunkák eltérnek ezen a ponton, méghozzá egyenlőtlenül.

3.	Muir, 50. old.

4.	George Molland, Mathematics and the Medieval Ancestry of Physics (Matematika és a fizika középkori előzményei) (Aldershot, Hampshire, U. K. and Brookfield, VT: 1995) 40. old.

5.	Kline, Mathematical Thought, 308. old.

6.	Molland, 40. old.

7.	Ptolemaiosz munkásságának leírását lásd Wilford, 25-34. old. Néhány évtizeddel Descartes születése előtt, 1569-ben a térképkészítésnek is megvolt a maga forradalma, amikor Gerhard Kremer, vagy jobban ismert, latinosított nevén Gerardus Mercator, kiadta új típusú világtérképét. Ezzel a térképpel Mercator megoldotta a földgömb levetítését egy sík lapra, a térkép lapjára. És ezt különösen jól tette a hajósok számára. Jóllehet Mercator térképe hol kinyújtotta, hol összehúzta a távolságokat, a szögek a térképén igazak maradtak. Vagyis: ugyanazok voltak a sík térképen, mint a görbült földfelületen! Ez azért volt jelentős, mert a hajó kormányosának a legegyszerűbb volt olyan útvonalon vinni a hajót, amelyen állandónak tartotta a pályának az iránytűvel alkotott szögét. Matematikai szempontból a térkép azért volt jelentős, mert a koordinátákkal végzett manipulációt, az ún. koordinátatranszformációt képviselte. Mercator ezt a matematikai műveletet nem végezte el – térképét empirikus úton készítette. A Descartes-féle (kartéziánus) geometria ezt az elemzést matematikailag viszi keresztül és sokkal mélyebb betekintést enged a térképkészítésbe. Descartes ismerte a Mercator-térképeket, de nem tudjuk, hogy mennyire, s azt sem, hogy miként befolyásolta a térképészet tudományának előrehaladása, mert publikációiban sohasem jegyezte fel a hivatkozásokat. A Mercator munkája mögötti matematika diszkusszióját lásd: Resnikoff – Wells, 155-168. old.

8.	Descartes nem egyszerűen örökölte az egész algebrát, amire szüksége volt a munkájához. Igen nagy részét maga fedezte fel. Először is tőle származik az, hogy az ábécé utolsó betűit használjuk az ismeretlen változók, első betűit pedig az állandók jelölésére. Descartes előtt az algebra nyelve meglehetősen ügyetlen volt. Amit pl. Descartes 2x2 + x3 alakban írt, azt szavakban, legfeljebb rövidítésekkel, „2Q plusz C”-nek kellett írni, ahol Q a négyzet (square, carré) helyett, a C pedig a köb (cube) helyett áll. Descartes jelölése fejlettebb, mert kifejezi az ismeretlent (x), aminek a négyzetét (2), vagy köbét (3) kell venni. Ennek az elegánsabb jelölésnek az alkalmazásával Descartes össze tudta adni, ki tudta vonni az egyenleteket egymásból vagy más műveleteket is tudott velük végezni. Képes volt arra, hogy az algebrai kifejezéseket aszerint osztályozza, hogy milyen görbetípust képviselnek. Így például felismerte, hogy a 3x + 6y - 4 = 0 és a 4x + 7y + 1 = 0 egyenletek mindegyike egyenest ír le, hiszen az ax + by + c = 0 általa általánosan tanulmányozott esetnek felelnek meg. Ily módon az algebrát az egyes esetek egyedi tanulmányozásából egész egyenletosztályok vizsgálatává alakította – lásd Vrooman, 117-118. old. Az algebrai szimbolizmus általánosabb történetét lásd Kline, Mathematical Thought, 259-263. old.; Resnikoff – Wells, 203-206. old.

9.	Mint olvasható a New York Times 1981. január 11-i számában, és idézi Tufte.

10.	Most jobban érthetjük a kör Descartes-féle definícióját. Ha a kör középpontja a koordináta-rendszer origójában van, a kör mentén lévő pont koordinátái pedig x és y, akkor az a követelmény, hogy x2 + y2 = r2 egyenletet elégítsék ki, egyszerűen azt jelenti, hogy megköveteljük, a kör minden pontja r távolságra legyen a középponttól. Ez egy egyszerű intuitív definíció, amit iskolás napjaink óta ismerünk.

11.	Bár mi csak a sík esetét, a kétdimenziós teret diszkutáltuk, Descartes koordinátáit könnyen ki lehet terjeszteni a három-, ill. többdimenziós térre is. Így például a gömb egyenlete: x2 + y2 + z2 = r2, az egyetlen különbség a harmadik koordináta, a z megjelenése. Ezen a módon a fizikai elméletek tetszőleges térbeli dimenziószám esetén is megfogalmazhatók. Kiderül például, hogy a közönséges kvantummechanika különlegesen egyszerű alakot ölt végtelen számú térdimenzió esetén, és ezt a tulajdonságát jól ki lehet használni az egyenletek közelítő megoldásában, amikor az egyenleteket egyébként nehéz lenne megoldani. A matematikában jártas olvasó ezt részletesen kifejtve megtalálhatja L. D. Mlodinow – N. Papanicolaou: „SO (2,1) Algebra and Large N Expansions in Quantum Mechanics” (SO [2,1] algebra és a nagy N sorfejtések a kvantummechanikában) című cikkében, Annals of Physics, vol. 128, no. 2. (September, 1980) 314-334. old.

12.	Vrooman, 120. old.

13.	Ugyanott, 115. old.

14.	Ugyanott, 84-85. old.

15.	Ugyanott, 89. old.

16.	Ugyanott, 152-155., 157-162. old.

17.	Ugyanott, 136-149. old.


12. A Hókirálynő dermesztő hidege

1.	Descartes és Krisztina kapcsolatáról lásd Vrooman, 212-255. old.

2.	Descartes különböző testrészeinek utazásáról a halála után, lásd ugyanott, 252-254. old.


13. A görbült tér forradalma

1.	Heath, 364-365. old.


14. Baj van Ptolemaiosszal!

1.	Ptolemaiosz és Próklosz érveléséről lásd Kline, Mathematical Thought, 863-865. old.

2.	A középkorban az iszlám civilizáció nagymértékben hozzájárult a matematika fejlődéséhez, nemcsak abban, hogy megőrizte az ókori görög munkákat, hanem az algebra fejlődésében is. Erről jó beszámoló található J. L. Bergen művében: Episodes in the Mathematics of Medieval Islam (Epizódok a középkori iszlám matematikájából) (New York: Springer Verlag, 1968); Szabit ibn Kurra életéről rövid beszámoló található a mű 2-4. oldalán. Próbálkozásait a párhuzamossági axióma bizonyítására vonatkozóan leírja: Gray, 43-44. old.; a későbbi iszlám matematikusok kísérleteit is megtaláljuk Gray művében.

3.	Részletesebben lásd: Gray, 57-58. old.


15. Egy napóleoni hős

1.	Gauss életéről szóló részletes beszámolót lásd G. Waldo Dunnington: Carl Friedrich Gauss: Titan of Science (Carl Friedrich Gauss: A tudomány titánja) (New York: Hafner Publishing Co., 1955).

2.	Muir, 179. old.

3.	Ugyanott, 181. old.

4.	Ugyanott, 182. old.

5.	Ugyanott, 179. old.

6.	Ugyanott, 161. old.

7.	Hollingdale, 317. old.

8.	Ugyanott, 65. old.

9.	Muir, 179. old.


16. Az ötödik posztulátum összeomlik

1.	Dunnington, 24. old.

2.	Ugyanott, 181. old.

3.	Russell, 548. old. További részletekért lásd: http://www.turnbull. dcs.stand.ac.uk/historv/Mathematicians/Wallis.html (a St. Andrews College website-ján, ‘99 April.

4.	Kline, Mathematical Thought, 871. old.

5.	Greenberg, 146. old. Két jó elemzés található Kant időre és térre vonatkozó nézeteiről Russell könyvében: Introduction to Mathematical Philosophy, 712-718. old., és Max Jammer könyvében: Concepts of Space (A tér fogalmai) (New York: Dover Publications, 1993) 131-139. old.

6.	Russell: Introduction to Mathematical Philosophy (Bevezetés a matematikai filozófiába) (New York: Dover Publications 1993) 144-145. old.

7.	Dunnington, 215. old.

8.	Egy tipikus görög saláta.

9.	Az analitikus és a szintetikus ítélet megkülönböztetését lásd I. Kant: A tiszta ész kritikája, IV. kötetében.

10.	Sokszor volt alkalmam, hogy Feynmannal beszélgessek erről a kérdésről a Kaliforniai Műegyetemen 1980-1982 között.

11.	Dunnington, 183. old. További részletek Bolyai János életéről és munkásságáról, lásd Gillespie, Dictionary of Scientific Biography, 268-271. Lobacsevszkijről: Muir, 184-201. old.; E. T. Bell: Men of Mathematics (A matematika alkotói) (New York: Simon & Schuster, 1965, 294-316.; Heinz Junge, ed.: Biographien bedeutender Mathematiker (Jelentős matematikusok életrajzai) (Berlin: Volk und Wissen Volkseigener Verlag, 1975) 353-366. old. Bolyai J.: Appendix Scientiam spatii absolutem veram exhibens a veritate aut falsitate Axiomatis XI Euclidei (a priori haud unquam decidenda) independentem: adjecta ad casum falsitatis, quadrature circuli geometrica, Maros-Vásárhely, 1832.
Bolyai János: Appendix. A tér tudománya, szerkesztette, bevezetéssel, magyarázatokkal, kiegészítésekkel ellátta Kárteszi Ferenc, Akadémiai Kiadó, Budapest, 1973. – N. I. Lobacsevszkij: O nacsalah geometrii (A geometria alapjairól) Kazán, 1829. – Geometriai vizsgálatok a párhuzamosok elméletének köréből. Akadémiai Kiadó, Budapest, 1961.

12.	Tom Lehrer: „Nicolai Ivanovitch Lobachevski”. Ami a publikációt illeti, a szöveg elérhető a http://www.keavenv.demon.co.uk/lehrer/ lvrics/maths.htm helyen.

13.	Különös, hogy halála után megtalált kézirataiból az derült ki, hogy Bolyai megrögzött euklideszi volt: még a nem euklideszi tér felfedezése után is azzal próbálkozott, hogy a párhuzamosok posztulátumának euklideszi alakját bizonyítsa, ami pedig elvette volna saját előző eredményének jelentőségét.

14.	Dunnington, 228. old.


17. Elveszve a hiperbolikus térben

1.	„Idézetek Henri Poincarétól” („Quotations by Henri Poincaré”) lásd: http://www-groups.dcs.st-and.ac.uk/historv/mathematicians/quotations/ poincare.html (A St. Andrews College website-ján, 1999 júniusában.)

2.	A Poincaré-modell részletes matematikai diszkusszióját lásd: Greenberg, 190-214. old.

3.	Hogy matematikailag korrektek legyünk, meg kell jegyezzük, hogy van egy másik görbetípus is, amit ebben a modellben Poincaré-vonalnak hívnak. Ez olyan átmérő, ami áthalad a korong középpontján és végpontjai a korong határán vannak. Nem különbözik valójában a más típusú Poincaré-vonalaktól, az átmérő merőleges a korong határára, és felfogható úgy is, mint egy körív – egy végtelen nagy körlap köríve.

4.	A XVIII. század elején Gerolamo Saccheri jezsuita lelkész és professzor a páviai egyetemen tanulmányozta Szabit egyik követőjének, Naszíraddínnek és Wallisnak a munkáját. Az ebből merített inspirációval vágott neki, mint annyian mások, hogy Eukleidészt minden hibájától megfossza. Tudjuk, hogy ez volt az indítéka, mert halálának az évében, 1733-ban Saccheri megjelentetett egy könyvet „Euclides ab Omni Maevo Vindicatus” (Eukleidész megfosztva minden hibájától) címmel. Mint annyian előtte, Saccheri is tévedett. Egyvalamit azonban korrekt módon bizonyított: a párhuzamossági axióma alakja, ami az elliptikus terekhez vezet, logikai ellentmondásban van Eukleidész más axiómáival is.


18. Az emberi fajnak nevezett csúszómászókról

1.	Gauss a geodézia terén végzett munkájának áttekintését lásd: Dunnington, 118-138. old.

2.	Interjú Steven Mlodinowval, 1999. október.


19. Mese a két idegenről

1.	Riemann munkájáról és hagyatékáról kiváló beszámoló található – bizonyos életrajzi kiegészítésekkel – Michael Monastyrsky művében: Riemann, Topology and Physics (Riemann, topológia és fizika), angolra fordította Roger Cooke, James King, Victoria King (Boston: Birkhäuser, 1999). Riemann életéről összefoglalás található Bell könyvében, 484-509. old.

2.	Adrien-Marie Legendre könyve, 1830. évi kiadás. Frissebb kiadás: Paris: A. Blanchard, 1955. Arról a történetről, hogy Riemann ezt gyorsan elolvasta, lásd: Bell, 487. old.

3.	Bell, 495. old.

4.	Kline, Mathematical Thought, 1006. old.


20. A hibák kozmetikázása 2000 év után

1.	David Hilbert: Grundlagen der Geometrie (A geometria alapjai) (Berlin: B. G. Teubner, 1930). Ezt az idézetet diszkutálja Kline, Mathematical Thought, 1010-1015. old. és Greenberg, 58-59. old., Greenbergnél jó diszkusszió található a nem definiált fogalmakról, a 9-12. oldalon.

2.	Gray, 155. old.

3.	Kline, Mathematical Thought, 1010. old.

4.	Az axiómáinak részletesebb bemutatását lásd: Greenberg, 58-84. old.

5.	Kline, Mathematical Thought, 1010-1015. old.

6.	Kiváló magyarázat található Ernest Nagel – James R. Newman, Gödel’s Proof (Gödel bizonyítása) (New York: New York University Press, 1958) című könyvében és ajánlható az általa inspirált világméretű klasszikus: Douglas Hofstadter; Gödel, Escher, Bach: An Eternal Golden Braid (Gödel, Escher, Bach: Az örök aranyszalag) (New York: Vintage Books, 1979 – magyar nyelven: D. R. Hofstadter: Gödel, Escher, Bach (Egybefont gondolatok birodalma), fordította: Lipovszki Gábor, Typotex Kiadó, Budapest, 1998.


21. Forradalom a fény sebességével

1.	Monastyrsky 34. old.

2.	Ugyanott, 36. old.

3.	Például J. J. O’Connor – E. F. Robertson: William Kingdon Clifford, http://www-groups.dcs.st-and.ac.uk/historv/mathematicians/clifford.html (A St. Andrews College website-ján, 1999. jún.).


22. A relativitás másik Albertje

1.	Michelson életének történetéért lásd Dorothy Michelson Livingston, The Master of Light: A Biography of Albert A. Michelson (A fény ura: Albert A. Michelson életrajza) (New York: Scribner, 1973).

2.	Harvey B. Lemon, „Albert Abraham Michelson: The Man and the Man of Science” (A. A. Michelson, az ember és a tudomány embere) American Physics Teacher (most American Journal of Physics) vol. 4. No. 2. (February, 1936).

3.	Brooks D. Simpson, Ulysses S. Grant: Triumph over Adversity 1822-1866. (U. S. Grant: Győzelem a balsors felett, 1822-1865) (New York: Hughton Mifflin, 2000) 9. old.

4.	New York Times, 1931. május 10. 3. old. – idézi Daniel Kevles, The Physicists (A fizikusok) (Cambridge, Massachusetts: Harvard University Press, 1995) 28. old.

5.	Adolphe Ganot, Elements de Physique (A fizika elemei, kb. 1860, idézi Loyd S. Swenson, Jr., The Ethereal Aether (A földöntúli éter) (Austin, Texas: University of Texas Press, 1972) 37. old.

6.	G. L. De Haas-Lorentz szerk.: H. A. Lorentz (Amsterdam: North-Holland Publishing Co., 1957) 48-49. old.

7.	Az Arisztotelész-féle éter tárgyalása megtalálható: Henning Genz: Nothingness: The Science of Empty Space (A semmi: az üres tér tudománya) (Reading, Massachusetts: Perseus Books, 1999) 72-80. old.

8.	Pais, 127. old.

9.	A bekezdés így szól: „Nem tudjuk, hogy mi ez a közeg, és úgy látszik, arra vagyunk ítélve, hogy tudatlanok maradjunk, mert nem észlelhetjük magát a közeget, hanem csak a tárgyakat, amik hatása miatt válnak láthatóvá… Ugyanakkor ez nem jár következményekkel számunkra, … feltéve, hogy ismerjük a jelenség törvényeit, és ezek a törvények történetesen csaknem olyan tökéletesen ismertek, mint a gravitáció esetében” – E. S. Fischer, Elements of Natural Philosophy (A természetfilozófia elemei) (Boston, 1827) 226. old. Az angol kiadás a német kiadásból M. Biot híres termodinamikus által készített francia szöveg alapján történt.

10.	Fresnel tulajdonképpen arra reagált, hogy a polarizált fényt 1808-ban Étienne-Louis Malus francia fizikus felfedezte. Fresnel szerint a polarizáció azért lehetséges, mert a fény a terjedési irányra merőleges két másik irány egyikében rezeg. Ha közülük az egyiket, vagy másikat kiszűrjük, akkor ez az, ami a polarizációhoz vezet. Azok a hullámok, amik csak a terjedés irányában rezegnek, nem rendelkezhetnek ezzel a tulajdonsággal.


23. A tér anyaga

1.	Körülbelül száz esztendő választja el Maxwell két életrajzát egymástól, az egyik Louis Campbell – William Garnett, The Life of James Clerk Maxwell (James Clerk Maxwell élete) (London, 1882; New York: Johnson Reprint Co., 1969), a másik pedig Martin Goldman, The Demon in the Aether (Kísértet az éterben) (Edinburgh: Paul Harris Publishing, 1983).

2.	A matematikában jártas olvasók kedvéért a Maxwell-egyenletek a vákuumban a következők az eredeti megfogalmazás szerint:
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