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Könyvünk megírásával az volt a célunk, hogy kifejtsük Einsteinnek a térről és az időről szóló gondolatait, szándékaink szerint a lehető legegyszerűbben, de úgy, hogy az Olvasó is meglássa ennek az elméletnek a különös szépségét. Eljutunk a híres egyenlethez, amely kimondja, hogy E = mc2, miközben nem használunk Pitagorasz tételénél bonyolultabb matematikát. Ne aggassza az Olvasót, ha most éppen nem jut eszébe a Pitagorasz-tétel, majd leporoljuk, amikor szükség lesz rá. Legalább ilyen fontosnak tartjuk, hogy a könyv végére érve az Olvasó lássa, hogyan gondolkodik a természetről a modem fizika, és milyen elveket követnek maguk a fizikusok, miközben új elméletek kidolgozásán fáradoznak, amelyek alkalmazásai hétköznapi életünket is gyökeresen átalakítják. Az Einstein-féle téridőmodell keretei között magyarázatot kaphatunk arra, hogy miért ragyognak a csillagok, és mi működteti az elektromos berendezéseket; Einstein eredményei végső soron a modem fizika egészének az alapját jelentik. Könyvünket szellemi kihívásnak is szántuk, nemegyszer kifejezetten provokatív módon. Nem az ismertetett gondolatok fizikai megalapozottságáról van szó: ebben az értelemben Einstein elmélete kiállta a próbát, és számos kísérlet támasztja alá, ami a könyvből ki is derül. Ezzel együtt az a véleményünk, hogy az Einstein-féle világképet szükségképpen felváltja majd a természetnek egy még pontosabb leírása. A tudományban nincsenek örök igazsá-
gok, csupán olyan elképzelések, amelyeknek hamis vagy hiányos voltát még nem sikerült kimutatni. Ma annyit állíthatunk, hogy Einstein elmélete működik. A minket körülvevő világnak az a megközelítése tűnhet provokatívnak, amelyre a természet kihívásai kényszerítik a tudományt. Tudós és laikus egyaránt az intuíciójában bízva tekint a világra, és elsősorban a mindennapi tapasztalataira támaszkodva vonja le következtetéseit. Ha viszont a tudományos módszer elfogulatlan és precíz kritériumainak vetjük alá a megfigyeléseinket, akkor gyakran vagyunk kénytelenek szembesülni azzal, hogy a természet megtéveszti az intuíciónkat. A könyvből kiderül, hogy a nagyon nagy sebességek tartományában már nem érvényesek a térre és az időre vonatkozó köznapi elképzelések; ami felváltja őket, az újszerű lesz és meglepő, de egyúttal hallatlanul elegáns. Mindez igen tanulságos, de illő szerénységre int, nem egy tudóst pedig egyenesen szorongással tölt el: az Univerzum sokkal gazdagabb annál, semmint mindennapi tapasztalataink alapján gondoljuk. A modem fizika egyik legizgalmasabb vonása pedig az, hogy az általa fölkínált új, gazdag világkép matematikailag is rendkívül elegáns.
Bár az eredményei egyre komplikáltabbak, maga a tudomány végső soron nem bonyolult. Megkockáztatjuk, hogy lényege szerint a feladata nem más, mint hogy megszabadítson bennünket a velünk született előítéletektől, és olyan elfogulatlanul szemléltesse a világot, amennyire csak lehetséges. Ebben a tekintetben hol több, hol kevesebb sikert könyvelhet el, de azt nem nagyon lehet elvitatni, hogy rendkívül eredményes a természet működésének feltérképezésében. Azzal a bizalmatlansággal nehéz megbékélni, amellyel a józan észnek nevezett képességünkkel szemben kell felvérteznünk magunkat. Miközben arra tanít, hogy olyannak próbáljuk látni a természetet, amilyen, nem pedig
olyannak, amilyennek az előítéleteink láttatják velünk, a tudományos módszer révén sikerült benépesítenünk a környezetünket a mai technika sokoldalú és hatékony eszközeivel. Röviden: a módszer működik.
A könyv első részében bebizonyítjuk, hogy E = mc2. A „bizonyítás" azt jelenti, hogy nyomon követjük, hogyan jutott el Einstein ahhoz a konklúzióhoz, amit az egyenlet állít, tehát hogy a tömegben tárolt energia egyenlő a tömegnek és a fénysebesség négyzetének a szorzatával. Ha meggondoljuk, ez az állítás legalábbis váratlan. A legismertebb energiafajta valószínűleg a mozgó testeké: a mozgási energia. Ha egy teniszlabda eltalál valakit, akkor az ütés bizony fájdalmas lehet. Egy fizikus ezt úgy kommentálná, hogy az adogató játékos energiát közölt a labdával, és a labdát megállítva ezt az energiát vette föl a másik játékos teste. A tömeg pedig a tárgyakba foglalt anyag mennyisége. A teniszlabda tömege nagyobb, mint a pingponglabdáé, de egy bolygóénál kisebb. Az E = mc2 egyenlet szerint a tömeg és az energia szabadon átválthatok, akár a dollár és az euró, és a váltószám ebben az esetben a fény sebességének a négyzete. Hogy találhatott rá Einstein erre a kapcsolatra, és mit keres az energia és a tömeg viszonyát kifejező egyenletben a fény sebessége? A könyvben nem várunk el tudományos előképzettséget, és amennyire lehetséges, kerüljük majd a matematikát. Ezzel együtt a puszta leíráson túl valódi magyarázatot kínálunk, remélve, hogy eközben minden Olvasó talál valami újat.
A könyv további fejezeteiben azt mondjuk el, hogy miképpen hatja át ez az egyenlet a világ működéséről való tudásunk egészét. Miért világítanak a csillagok? Miért nyerhetünk annyival hatékonyabban energiát az atomokból, mint a szénből vagy az olajból? Az anyag végső szerkezetét feszegetve eljutunk a modem részecskefizika olyan fellegváraiba, mint a CERN Nagy Hadronütköztetője Genfben, a Higgs-részecske utáni hajtóvadászatról szóló beszámoló pedig elvezet az anyag eredetének a kérdéséhez. Végül az utolsó fejezetben bemutatjuk Einstein nevezetes fölismerését, hogy végső soron a tér és az idő szerkezete felelős a gravitációért, és itt derül fény arra a rejtélyesen hangzó kijelentésre is, hogy a Föld egy egyenes mentén kering a Nap körül.
1. TÉR ÉS IDŐ
„Tér” és „Idő”. Önnek mit mondanak ezek a szavak? A Tér talán a fénypontokkal pöttyözött sötétséget idézi, ahogy az égre nézve a szemünk elé tárul egy hideg téli éjszakán. Vagy a világűrt, ahol csillagos-sávos űrhajó száguld magányos útján a Föld és a Hold között, a fedélzetén simára borotvák arcú legénységgel, akik olyan nevekre hallgatnak, mint mondjuk a Buzz. Az Időről pedig az órája ketyegése juthat eszébe, vagy az, ahogyan a levelek színe barnára fordul, amint a Nap körüli útján, mint már ötmilliárd éve, ismét kevesebb meleget kap a Föld északi féltekéje. Mindannyian érzékeljük a teret és az időt: ezekben a keretekben rendeződik el a létezésünk. A térben változtatjuk a helyünket, miközben múlik velünk az idő.
A XIX. század vége felé több áttörésre került sor egymástól elszigeteltnek tekintett tudományterületeken, ami arra késztette a fizikusokat, hogy újragondolják a térnek és az időnek ezt az egyszerű, magától értetődő képét. A XX. század kezdetén aztán Hermann Minkowski, Albert Einstein kollégája és mestere híressé vált szavakkal vett búcsút a megszokott kulisszáktól, a színpadtól, ahol bolygók keringenek, és keresztezik egymást az utak. „Mostantól a tér és az idő mint önmagukban való fogalmak megszűnnek létezni, és csupán a kettejük valamiféle egyvelegéről beszélhetünk.”
Mi járhatott Minkowski fejében, amikor a térnek és az időnek erről az „egyvelegéről” beszélt? Misztikusan hangzó kijelentésének az értelmezése Einstein speciális relativitáselméletének a megértését jelenti - annak az elméletnek a megértését, amely szembesítette a világot minden egyenletek leghíresebbikével: E = mc2, és amely az univerzum szerkezetének a leírásában örök időkre főszereplővé tette a c szimbólummal jelölt mennyiséget, a fény sebességét.
Einstein speciális relativitáselmélete lényegét tekintve a tér és az idő leírása. Ebben az elméletben kulcsszerepet játszik egy különleges sebességfogalom: egy olyan sebességé, amelynél gyorsabban, hajtsa bármilyen erő, semmi nem mozoghat az univerzumban. Ez a fény sebessége: másodpercenként 299 792 458 méter az űr vákuumában. Ilyen sebességgel haladva a Földről elinduló fénysugár nyolc perc alatt éri el a Napot, százezer év alatt kijut a tejútrendszerből, és több mint kétmillió év elteltével eléri legközelebbi galaktikus szomszédunkat, az Andromédát. Amikor ma éjjel a Föld nagy teleszkópjai a világűr mélységei felé fordulnak, rég elhamvadt csillagok fényét észlelik a megfigyelhető univerzum peremén. Ez a fénysugár tízmilliárd évnél is régebben indult útnak, több milliárd évvel azelőtt, hogy egy összehúzódó csillagközi porfelhőből kialakult volna maga a Föld. A fény sebessége nagyon nagy, de persze nem végtelenül nagy. A csillagok és a galaxisok közti távolságokhoz képest pedig éppenséggel kicsinynek mondható. Ahhoz mindenesetre elegendően kicsiny, hogy parányi részecskéket majdnem ilyen sebességre lehessen felgyorsítani az olyan berendezésekben, mint a CERN huszonhét kilométeres Nagy Hadronütköztetője Genfben.
Egy ilyen kozmikus határsebesség létezése önmagában is különös elgondolás. Ebből a könyvből majd kiderül, hogy ennek a határsebességnek az azonosítása a fény
sebességével némiképp homályban hagyja a dolog lényegét. A határsebesség meglétének van ugyanis meghatározó szerepe Einstein univerzumában. Annak pedig, hogy a fény képes ennek a határnak az elérésére, jó oka van, de erről majd később. Itt és most legyen elég annyi, hogy amikor a tárgyak sebessége megközelíti ezt a bizonyos határt, különös dolgok történnek. Hogyan volna másképp lehetséges, hogy nem lehet túllépni? Mintha volna valamilyen természeti törvény, amelyik megakadályozza, hogy az autónk túllépje az óránkénti 130 kilométeres sebességet, függetlenül attól, hogy mekkora a motorja. De a sebességkorlátozásokkal ellentétben ezt a törvényt nem valamilyen kozmikus hatóság tartatja be az univerzum utazóival. A tér és az idő szerkezete teszi lehetetlenné a törvény megszegését, és meg kelt mondanunk, hogy ez igen szerencsés körülmény, egyébként ugyanis kellemetlen következményekkel kellene számolnunk. Ha túl lehetne lépni a fény sebességét, akkor időgépet szerkeszthetnénk, amellyel el lehetne jutni a múlt bármelyik pillanatába. Gondoljuk csak el, hogy visszatérünk a saját születésünk előtti időkbe, és véletlenül vagy szándékosan megakadályozzuk, hogy a szüléink találkozzanak. Az ilyesmire persze lehet egy izgalmas fantasztikus történetet alapozni, de a természet leírását nem: Einstein kimutatta, hogy az univerzum nem így épül fel. A tér és az idő olyan finoman vannak összehangolva, hogy az kizárja az effajta paradoxonok lehetőségét. Ennek persze ára van: fel kell adnunk a térről és az időről mélyen bennünk rögzült képet. Einstein univerzumában a mozgó órák lassabban ketyegnek, a mozgó tárgyak megrövidülnek, mi pedig milliárd évekkel utazhatunk előre a jövőbe. Ebben az univerzumban az ember élettartama majdnem korlátlanul megnyújtható. Megláthatjuk a kihamvadó Napot, ahogy a Föld vizei elpárolognak, és a Naprendszer örö-kos éjszakába merül. Csillagok születését örvénylő porfelhőkből, bolygók formálódását, és talán az élet keletkezését is új, ma még nem is létező világokon. Einstein univerzumában el lehet jutni a távoli jövőbe, a múlt kapuját viszont hét lakat zárja.
A könyv végére érve kiderül, hogy Einsteinnek tulajdonképpen nem volt választása, amikor eljutott a világegyetemünknek ehhez a fantasztikus képéhez, és az is, hogyan bizonyult helytállónak ez a kép egy sereg tudományos kísérletben és technikai alkalmazásban. Az ön autójában működő műholdas navigációs rendszer tervezői például számításba vették, hogy a keringő műholdakon másképpen telik az idő, mint a Földön. Einstein radikális víziója szerint a Tér és az Idő nem azok, aminek látszanak.
De túlságosan előreszaladtunk. Ahhoz, hogy megismerjük és elismerjük Einstein radikális meglátásait, először alaposan el kell gondolkodnunk a relativitáselmélet két központi fogalmán: ezek pedig a tér és az idő.
Képzelje el, hogy repülőn utazva könyvet olvas. 12:00 perckor az órájára pillant, úgy dönt, hogy félreteszi a könyvet, feláll, és előreballag egy kis tereferére a tíz sorral odébb ülő ismerőséhez. 12:15 perckor visszamegy a helyére, leül, és kézbe veszi a könyvet. A hétköznapi tapasztalat azt mondatná, hogy ugyanoda tért vissza, ahonnan elindult. Ugyanazt a tízsornyi utat tette meg visszafelé, és amikor leült, a könyvet ugyanott találta, ahová letette. Gondoljuk meg alaposabban, mit is jelent ez az „ugyanott”. Szőrszálhasogatásnak tűnhet, hiszen a hétköznapokban teljesen világos, ahogyan egy bizonyos helyet meghatározunk. Ha például találkozót beszélünk meg a sarki kávézóban egy barátunkkal, akkor számíthatunk rá, hogy az a helyén marad, mire mindketten megérkezünk. Ugyanott lesz, ahol legutóbb, talán az előző este kiléptünk az ajtaján. Ebben a legelső fejezetben nemegyszer tűnhet akadékoskodásnak, ahogyan az ilyen dolgokról beszélünk, de ezt kell tennünk. Ezeken a szemléletesen magától értetődő dolgokon elgondolkodva Arisztotelész, Galileo Galilei, Isaac Newton és Einstein útját járjuk. Hogyan lehetne tehát pontosan meghatározni, mit is jelent ez az „ugyanott”? A fölgolyón közismert módszert dolgoztak ki a helymeghatározásra. Bolygónkat képzeletbeli vonalak hálózzák be, a felszínére rajzolt szélességi és hosszúsági körök. Ezekre hivatkozva a Föld felszínének bármelyik pontját két számmal lehet azonosítani, amelyek ebben a vonalrendszerben kijelölik a szóban forgó pontot. Az angliai Manchester például az északi szélesség 53 fok 30 perce és a nyugati hosszúság 2 fok 15 percénél található. Ez a két szám pontosan megadja, hol találjuk Manchester városát, feltéve, hogy megállapodtunk az Egyenlítő, illetve a greenwichi délkör helyzetében. Most már hasonló módon adható meg a tér bármelyik pontja, akár a Földön, akár másutt. Ehhez a szélességi és hosszúsági körök hálózatát kell kiterjesztenünk a Föld felszínéről a térbe. Igazság szerint persze a Föld belsejében is folytatódnia kell ennek a háromdimenziós vonalrendszernek, egészen a középpontig. Ezek után bárhol legyen is valami, a Föld felszínén, a levegőben, vagy éppen a föld alatt, pontosan meg lehet mondani, hogy ehhez a hálózathoz képest hol található. De miért álljunk meg a földgolyónál? A hálózat kiterjeszthető a Holdig, magában foglalhatja a Jupiter, a Neptunusz és a Plútó pályáját, az egész tejútrendszert, sőt a teljes univerzumot. Ebben az óriási, esetleg végtelenül nagy kiterjedésű koordináta-rendszerben bármiről pontosan meg lehetne mondani, hogy hol van, ami Woody Allennel szólva jól jöhet, ha valaki folyton elfelejti, hová is tette a dolgait. Minden létezőnek jut hely azon az óriási színpádon, amelyet behálóz egy ilyen vonalrendszer, az univerzum minden objektuma elfér itt, akár egy hatalmas dobozban. Csábítóan hangzik, hogy ezt az óriási dobozt nevezzük „térnek”.
De térjünk vissza az „ugyanott” kérdéséhez, és vegyük újra szemügyre a repülőgép példáját. Ön persze úgy érzékeli, hogy 12:00-kor és 12:15-kor a térnek ugyanazon a pontján tartózkodik. De gondolja meg, mit lát ebből egy olyan megfigyelő, aki a Föld felszínéről szemléli az eseményeket. Az óránként 1000 kilométer sebességgel haladó repülőt figyelve ő bizony úgy látja, hogy 12:00 és 12:15 közöct ön megtett 250 kilométernyi utat. Más szóval ön a tér két különböző pontján tartózkodott a két időpontban. Kinek van igaza? Ki mozog ilyenkor, és ki marad egy helyben?
Ha nem tudja a választ erre az egyszerűen hangzó kérdésre, akkor jó társaságban találja magát. Arisztotelész, az egyik legnagyobb ókori görög gondolkodó például alaposan melléfogott ebben a kérdésben. Habozás nélkül felelte volna, hogy a repülőn utazva ön változtatta meg a helyét ebben a negyedórában. Ő úgy hitte, hogy a Föld nyugalomban van a világmindenség középpontjában. A Nap, a Hold, a bolygók és a csillagok pedig körülötte keringenek, koncentrikus héjakon, szám szerint ötvenöt kristályszférán: ezek a gömbhéjak egymásba vannak ágyazva, akár az orosz matrjoskababák. Lényegében tehát ő is a mi hétköznapi elképzeléseinket követte: a tér hatalmas színpadán, akár egy dobozban, ott vannak a bolygók, valamennyi szférájukkal együtt. Mai fülnek persze meglehetősen bizarrul hangzik egy olyan univerzum, amelyben nincs más, mint a Föld és ezek a forgó gömbhéjak.
De gondolja meg, ön vajon milyennek képzelné az univerzumot, ha soha nem hallott volna arról, hogy a Föld kering a Nap körül, a csillagok maguk is távoli
napok, némelyikük több ezerszer fényesebb a miénknél, csak éppen tőlünk sok-sok milliárd kilométernyi messzeségben. A tapasztalat egyáltalán nem azt sugallja, hogy Földünk csupán lebegő parány egy elképzelhetetlenül nagy univerzumban. Modem világképünk hosszú szellemi vajúdás eredménye, és gyakran nincs összhangban a hétköznapi tapasztalattal. Ha magától értetődő volna az, ahogyan több ezer évnyi próbálkozás és szellemi erőfeszítés nyomán ma látjuk az univerzumot, akkor az Arisztotelész kaliberű gondolkodók már régen így szemlélték volna a világot. Érdemes ezt észben tartani, ha ön e könyv egyik-másik gondolatát nehéznek találja; az ókor nagy szellemei is így vélekednének.
Hogy lássuk, miben téves Arisztotelész válasza, fogadjuk el átmenetileg a világot olyannak, amilyennek ő látta, és nézzük meg, mi lesz ebből. Ez az univerzum tehát feltérképezhető a minden irányban kiterjesztett szélességi és hosszúsági köröknek a Földhöz rögzített hálózatával, és ebben a rendszerben minden tárgy helye kiszámolható. így pedig az is eldönthető, ki mozog valójában. Ha a teret objektumokkal telezsúfolt doboznak gondoljuk, amelynek középpontjában ott a mozdulatlan Föld, akkor a repülőn utazva az ön helyzete igenis megváltozik ebben a dobozban, szemben a repülőt a Föld felszínéről szemmel tartó mozdulatlan megfigyelőével. Más szóval, létezik a mozgásnak egy abszolút formája, éspedig ebben az abszolút térben. Ez az abszolút mozgás nem más, mint időben lezajló helyváltoztatás az abszolút térben, a térbeli koordináta-rendszer Földhöz illesztett képzeletbeli hálózatához képest.
Ezzel az elképzeléssel az az egyik baj, hogy a Földnek esze ágában sincs mozdulatlanul lebegni a világmindenség középpontjában; forgó gömbje a Nap körül kering, történetesen másodpercenként körülbelül 30 kilométeres sebességgel mozog a Naphoz képest. Ha ön este lefekszik aludni, akkor több mint másfél millió kilométerrel odébb ébred föl reggel. Mondhatja persze, hogy nagyjából 365 nap után a térnek ugyanarra a pontjára kerül az ágya, hiszen eddigre a Föld éppen megkerüli a Napot. Ügy vélhetné, hogy az arisztotelészi világkép lényege megtartható, csupán igazítani kell rajta. Miért ne illeszthetnénk az egész rendszert a Naphoz? Egyszerű gondolat, de ugyanúgy hibás: maga a Nap ugyanis szintén kering, mégpedig a Tejút középpontja körül. Ez a mi galaxisunk mintegy 200 000 millió csillagot foglal magában - gondolja el, mekkora így aztán jókora időbe telik, mire a Nap, a Földdel és a többi rakományával körbeér. Pedig óránként 800 000 kilométer sebességgel száguld, de egy olyan kör mentén, amelynek 250 billió kilométer a sugara. Ekkora sebességgel is 226 millió év kell egy teljes kör bejárásához. Hát akkor illesszük a Tejút középpontjához a térbeli hálózatot (vagy - más néven - vonatkoztatási rendszerünket). Nem akármilyen érzés elalvás előtt azon morfondírozni, milyen is lehetett a világ, amikor a Föld a legutóbb „itt” járt, a térnek ezen a pontján. Ahol most a hálószobája áll, ott talán egy dinoszaurusz legelészett történelem előtti fák leveleit majszolgatva. De ez se megy. Az a helyzet, hogy maguk a galaxisok is mozognak, távolodnak egymástól, minél messzebb vannak tőlünk, annál gyorsabban. Rettenetesen bonyolult vállalkozás lenne pontosan áttekinteni, hogyan is mozgunk galaxisokkal telehintett világegyetemünkben.
Az arisztotelészi érveléssel az a baj, hogy láthatóan nem lehet pontosan értelmezni, mit is jelent az, hogy valami „egy helyben áll”. Vagy másképpen: lehetetlennek látszik annak eldöntése, hová is illesszük a térbeli hálózatot, amelyben aztán a testek helyét megállapítva tisztázni lehetne, mi áll egy helyben, és mi mozog. Arisztotelésznek soha nem kellett szembenéznie ezzel a
problémával, azon egyszerű oknál fogva, hogy az ő világképét a mindenség középpontjában mozdulatlan Földdel és a körülötte forgó szférákkal együtt majd kétezer évig senki nem vitatta. Lehet, hogy kellett volna, de, ahogy már mondtuk, ezek a gondolatok távolról sem magától értetődök, még a legnagyobb elmék számára sem. Claudius Ptolemaeus, vagy, ahogy ma ismerjük, Ptolemaiosz, a II. században élt Egyiptomban, és a nagy Alexandriai Könyvtárban tevékenykedett. Az éjszakai égboltnak e gondos megfigyelőjét gondolkodóba ejtette az akkoriban ismert öt bolygó vagy „bolygó csillag” (ezt jelenti az ógörög planéta szó) mozgása, amely határozottan különös volt. Hónapokon át követve őket az égbolton kiderül, hogy nem szokványos, sima pályán mozognak a csillagok között: útjuk során olykor hurkokat írnak le. Ezt a retrográd mozgás néven ismert titokzatos bolyongást már évezredekkel Ptolemaiosz előtt ismerték. Az ókori Egyiptomban a Marsról jegyezték fel, hogy olykor „visszafelé mozog”. Ptolemaiosz egyetértett Arisztotelésszel abban, hogy a bolygók a mozdulatlan Föld körül keringenek, de hogy retrográd mozgásukról is számot adjon, arra kényszerült, hogy kisebb, önmaguk körül forgó kerekekre kényszerítse őket, amelyek maguk is a forgó szférákhoz illeszkednek. Ebben a komplikált modellben aztán valóban meg tudta magyarázni a bolygók mozgását az éjszakai égbolton, de az egész konstrukció rettentően körülményes volt. A bolygók retrográd mozgásának valódi magyarázatára egészen a XVI. század közepéig kellett várni. Nikolausz Kopernikusz sokkal elegánsabb (és főleg helyes) elképzelése szerint a Föld nem a mindenség mozdulatlan középpontja, hanem a többi bolygóhoz hasonlóan kering a Nap körül. Kopernikusz nézetei nagy felzúdulást keltettek, műveinek betiltását például csak 1835-ben oldotta fel a katolikus egyház. Tycho Brahe pontos mérései, Johannes Kepler,
Galilei és végül Newton munkássága aztán nemcsak Kopernikuszt igazolták, hanem Newton mozgástörvényeire és az ugyancsak az ő nevéhez fűződő általános tömegvonzás tételére támaszkodva elvezettek a bolygómozgás általános elméletéhez. Egyúttal nemcsak az égbolt vándorainak mozgását sikerült megmagyarázni, hanem a forgó galaxisoktól az ágyúlövedékig minden, a gravitációban mozgó test viselkedését. Newton törvényeit pedig nem vitatta senki, világunk leírásának legalkalmasabb fogalmi kereteit jelentették egészen 1915-ig, amikor megjelent a színen Einstein általános relativitáselmélete.
A Föld és a bolygók helyzetének és mozgásának ez a folyamatosan átalakuló képe tanulságul szolgálhat bárki számára, aki meg van győződve, hogy erről vagy arról biztos tudás van a birtokában. Sok olyan dolog van a világban, amit eleinte magától értetődőn tekintünk igaznak. Ilyen például az az evidens benyomás, hogy egy helyben állunk. Az újabb megfigyelések mindig okozhatnak meglepetéseket, és gyakran okoznak is. Pedig nem illenék túlságosan meglepődnünk, hogy a természet nemegyszer bizonyul egészen másmilyennek, mint ahogyan a szénalapú szervezetekből kifejlődött majomszármazékok a Tejút peremén, egy jelentéktelen, középkorú csillag körül keringő, sziklás bolygónak a felszínéről látni vélik. A térnek és az időnek az a képe, amelyet ebben a könyvben felkínálunk, esetleg - pontosabban majdnem bizonyosan - csak közelítése egy még kidolgozásra váró átfogóbb elméletnek. A tudomány olyan diszciplína, amelyik nagy becsben tartja a bizonyosság hiányát, és azért olyan sikeres, mert ennek tudatában van.
Galileo Galilei, aki húsz évvel azután született, hogy Kopernikusz előállt az univerzum heliocentrikus modelljével, behatóan vizsgálta a mozgás jelenségét. Akár a miénk, az ő intuíciója is megerősíthette, hogy a rajta
élők mozdulatlannak érzik a Földet, a bolygók mozgása az égbolton viszont ennek az ellenkezőjét sugallta. Galilei azt ismerte fel, hogy ebből a látszólagos paradoxonból mély következtetés vonható le. Érzékeink szerint egy helyben állunk, noha tudjuk, hogy a Föld kering velünk a Nap körül. Igen, mert nincs arra mód, még elvileg sem, hogy eldöntsük, mi mozog, és mi áll egy helyben. Másképpen szólva, csak valamihez képest van értelme mozgásról beszélni. Ez pedig rendkívül fontos gondolat. Tulajdonképpen magától értetődően hangzik, így aztán alaposan el kell töprengenünk, hogy megértsük, mi mindent foglal magában. Magától értetődőnek hangzik, hisz valóban, a könyv, amelyet a repülőn olvas, önhöz képest mozdulatlan. Ha leteszi, ott marad, ahová rakta. És az is magától értetődő, hogy a Földről nézve a könyv együtt mozog a repülővel. Galilei lényegében azt ismerte fel, hogy ez minden, amit mondhatunk. És ha csak arról lehet beszélni, hogyan mozog a könyv önhöz képest a repülő fedélzetén vagy a földi megfigyelőhöz képest, a Naphoz vagy akár a Tejúthoz képest, egyszóval mindig valamihez képest, akkor az abszolút mozgás fogalmát sutba kell dobni - semmi szükség rá.
Ez a provokatív hangzású kijelentés mély, ugyanakkor felszínes, akár a jövendőmondók zen kinyilatkoztatásra emlékeztető egynémely jóslatai. Most azonban csakugyan bölcs megállapításnak bizonyul: Galilei megérdemli a hírnevét. Hogy megértsük, miért, gondoljuk meg, milyen körülmények között tudna bármit kezdeni a tudomány az arisztotelészi vonatkoztatási rendszerrel, amelyben eldönthető volna, hogy valami abszolút mozgásban van-e. Egy fogalom tudományos alkalmazhatósága abban áll, hogy kísérletileg ellenőrizhető következtetésekhez vezet. Egy „kísérlet” itt jelentheti bármilyen jelenség bármilyen összetevőjének a megmérését: egy inga lengésidejét, a gyertyaláng fényének a színét, vagy a szubatomi részecskék ütközését a CERN Nagy Hadron-ütköztetőjében. (Erre a kísérletre majd visszatérünk.) Ha viszont egy elgondolás nem vezet megfigyelhető következményekhez, akkor nincs rá szükség, ha az univerzum működését akarjuk megérteni. Eljátszadozhatunk vele, lehet szórakoztató vagy akár gondolatébresztő, de egyéb hasznát nem vesszük.
Világunk hemzseg a teóriáktól; ez a megközelítés igen jó hatásfokkal válogatja szét a búzát a konkolytól. Teáskanna-példázatában a filozófus Bertrand Russell hatásosan mutatott rá, milyen hiábavaló olyasmihez ragaszkodni, aminek nincs megfigyelhető vonatkozása. A maga részéről úgy gondolja, mondja Russell, hogy a Föld és a Mars között egy teáskanna kering az űrben, de túl kicsiny ahhoz, hogy akár a legnagyobb távcsövekkel rá lehessen találni. Ha most még nagyobb távcsöveket építve az égbolt fáradságos és hosszan tartó pásztázása után sem akadunk a nyomára, akkor erre Russell válasza az, hogy a teáskanna kisebb, mint gondolta, de ott van. Jól ismert manőver: „toljuk arrébb a kapufát!” És bár soha nem akadunk a nyomára, „elfogadhatatlan szűk-látókörűségre vallana", mondja Russell, ha emiatt valaki kételkedne a teáskanna létezésében. Ebben a példában Russell nem ahhoz a jogához ragaszkodik, hogy embertársai tartsák tiszteletben egy rögeszméjét, hanem arról beszél, hogy semmi hasznuk az olyan teóriáknak, amelyeket megfigyelés révén sem bizonyítani, sem pedig cáfolni nem lehet, függetlenül attól, hogy milyen szenvedélyesen hiszünk bennük. Kigondolhatunk bármilyen objektumot vagy elméletet, ha nincs mód ennek vagy valamilyen következményének az észlelésére, akkor nem visszük előre a tudományos megismerést. Így aztán a tudomány csak abban az esetben tudja értelmezni az abszolút mozgás fogalmát, ha tervezhető olyan kísérlet, amelyik kimutatja a létezését. Mondjuk fölsze—
relhetnénk a repülőgépen egy fizikai laboratóriumot, ahol aztán minden elgondolható fizikai hatást precízen lemérve megkísérelhetnénk kimutatni, hogy a repülőgép mozog. Kilendíthetünk például egy ingát, és megmérhetjük a lengésidejét. Elektromos kísérleteket végezhetünk, elemek, generátorok és motorok beiktatásával, vagy mérhetjük akár a nukleáris reakciók kiváltotta sugárzás intenzitását. Egy elegendően nagy repülőn elvben bármilyen kísérletet el lehetne végezni, amelyet az emberiség hosszú története során elvégeztek. A lényeg, és ennek az egész könyvnek az egyik központi gondolata - nem mellesleg a modem fizika egyik alapelve -, hogy amennyiben a repülőgép nem gyorsul vagy lassul, akkor a kísérletek egyike sem mutatja ki, hogy mozgásban van. Az sem segít, ha kinézünk az ablakon, mert a látvány alapján ugyanúgy mondhatjuk, hogy a táj suhan alattunk hátrafelé, óránként 1000 kilométeres sebességgel, mi pedig egy helyben állunk. Legfeljebb annyit állíthatunk, hogy „a repülőgéphez képest mozdulatlanok vagyunk”, vagy pedig „a talajhoz képest mozgásban vagyunk”. Ez Galilei relativitáselve: abszolút mozgás pedig nincs, mivel kísérletileg nem tehet kimutatni. Őszintén szólva ez nem akkora megrázkódtatás, intuitív szinten ezzel többé-kevésbé tisztában vagyunk. Egészen köznapi helyzetben élhetünk át ilyesmit, az állomáson veszteglő vonatban ülve, miközben a szomszéd vágányon lassan kifelé indul egy másik szerelvény; egy pillanat törtrészéig az a benyomásunk támadhat, hogy a mi vonatunk mozdult meg. Nem csoda, ha bizonytalanok vagyunk az abszolút mozgást illetően: ilyesmi ugyanis nem létezik.
Mindez elvont spekulációnak tűnhet, de éppen az efféle gondolatok vezethetnek el egy, a tér természetére vonatkozó alapvető következtetéshez, és ezek jelentik az első lépéseket az Einstein relativitáselméletei felé vezető úton. Mi derül ki a térről Galilei érvei nyomán? A következő: ha az abszolút mozgás elvileg sem mutatható ki, akkor nem tudunk mit kezdeni egy olyan abszolút vonatkoztatási rendszer fogalmával sem, amelyhez képest mozdulatlanságról lehetne beszélni. Így pedig az abszolút tér fogalma is értelmét veszti.
Ez pedig fontos megállapítás, érdemes egy kicsit körüljárni. Láttuk, hogy ha sikerülne megalkotni egy olyan arisztotelészi vonatkoztatási rendszert, amely a teljes univerzumot átfogja, akkor ehhez a vonatkoztatási rendszerhez képest igenis beszélhetnénk abszolút mozgásról. Azt is láttuk, hogy miután nem lehetséges olyan kísérlet, amellyel ki lehetne mutatni, hogy mozgásban vagyunk, el kell vetnünk egy ilyen vonatkoztatási rendszer eszméjét, hiszen nem volna mihez rögzíteni. Hogyan lehet értelmezni ezek után egy objektum abszolút helyzetét? Hogyan mondjuk meg, hogy az univerzum melyik pontján található? Az arisztotelészi abszolút vonatkoztatási rendszer fogalma nélkül ezek a kérdések tudományos szempontból értelmezhetetlenek. Az egyes objektumoknak csupán a viszonylagos helyzetéről beszélhetünk, a térbeli abszolút helyzetükről nem. Ez van annak a kijelentésnek a hátterében, hogy az abszolút tér fogalma tartalmatlan. A kísérleti tények nem indokolják, hogy az univerzumra egy mozgó objektumokat tartalmazó óriási dobozként gondoljunk. Nem lehet eléggé hangsúlyozni ennek a gondolatmenetnek a jelentőségét. Richard Feynman, a kiváló fizikus mondta valahol, hogy lehet bármilyen szépséges a teóriád, te magad lehetsz bármilyen okos, csenghet a neved bármilyen jól, ha az elméleted nem egyeztethető össze a kísérleti tényekkel, akkor hibás. Ebben a mondásban ott van a természettudomány lényege. Átfordítva: ha egy föltevés nem ellenőrizhető kísérleti úton, akkor nem tudjuk eldönteni, hogy helyese vagy sem, de bárhogy
áll is a dolog, ennek igazából nincs jelentősége. Ettől még helyezkedhetünk arra az álláspontra, hogy a föltevésünk igaz, bár nem ellenőrizhető, de ennek az a veszélye, hogy előítéletekkel terheljük meg a gondolkodásunkat. Mivel nincs mód egy abszolút vonatkoztatási rendszer fölvételére, megszabadulhatunk az abszolút tér fogalmától, ugyanúgy, ahogy az abszolút mozgás fogalmától megszabadultunk. Eddig megvolnánk, de hogyan tovább? Nos, az abszolút tér kényszeréből való kiszabadulás sajátos szerepet játszott Einstein tér-és időelméletének a kidolgozásában, de a részletekkel várnunk kell a következő fejezetig. A szabadságunkat már kikiáltottuk, de élni még nem éltünk vele. Kedvcsinálónak most annyit, hogy ha nincs abszolút tér, akkor két megfigyelő abban sem feltétlenül tud megegyezni, hogy egy tárgy mekkora. Ez elég hihetetlenül hangzik, hiszen ha egyszer egy golyó átmérője 4 cm, akkor ebben a kérdésben ez a végső szó. Az abszolút tér hiányában viszont nem feltétlenül.
Az eddigiekben a mozgás és a tér kapcsolatára próbáltunk rámutatni. Mi a helyzet az idővel? A mozgást a sebességével lehet jellemezni, a sebesség mérőszáma pedig kilométer per óra - vagyis az a távolság, amelyet a térben mozgó test adott idő alatt megtesz. Ilyenformán megjelenik a színen az idő. Mit mondhatunk róla? Van-e olyan kísérlet, amely igazolná az idő abszolút jellegét, vagy pedig ennek a még mélyebben belénk ivódott meggyőződésnek is búcsút kell mondanunk? Bár Galilei nélkülözni tudta az abszolút tér fogalmát, okfejtéséből semmit sem tudunk meg az idő természetéről, amelyre ő abszolút, megváltoztathatatlan adottságként tekintett. Ez olyasmit jelent, hogy elvben egymáshoz igazított parányi, pontos órákat lehet elgondolni az univerzum minden pontján, amelyek mindenütt ugyanazt az időt mutatják. Legyenek bár egy repülőgépen, a Földön, a
Nap felszínén (ha kibírják) vagy éppen egy távoli galaxisban, ha pontosan járnak, valamennyinek ugyanazt az időt kell mutatnia, most és mindörökké. Kiderül, hogy ez a természetesnek látszó elképzelés közvetlenül ellentmond Galilei azon állításának, hogy nincs olyan kísérlet, amellyel ki lehetne mutatni az abszolút mozgást. Meglepően hangzik, de olyan jellegű kísérletek nyomán jutottak a birtokunkba azok a bizonyítékok, amelyek végül tarthatatlanná tették az abszolút idő fogalmát, amelyekre még emlékezhetünk az iskolai fizikaórákról: a szereplőik áramforrások és vezetékek, motorok és generátorok. Ahhoz, hogy az abszolút idő fogalmához hozzáférhessünk, kitérőt kell tennünk a XIX. századba, az elektromos és mágneses jelenségek felfedezésének aranykorába.
2. A FÉNY SEBESSÉGE
Michael Faraday 1791-ben született Dél-Londonban, egy yorkshire-i patkolókovács fiaként. Autodidakta volt, tizennégy éves korában otthagyta az iskolát, és könyvkötőtanoncnak szegődött. Minden érintett fél számára szerencsés módon jelent meg a tudomány színpadán 1811-ben, miután Londonban meghallgatta a comwalli tudós, Sir Humphrey Davy előadását. Faraday elküldte az előadásról készített jegyzeteit Davynek, akinek annyira megnyerték a tetszését az alapos feljegyzések, hogy tudományos asszisztenséül fogadta a fiatalembert. Faraday a XIX. századi tudomány kiemelkedő alakja, minden idők egyik legnagyobb kísérleti fizikusának tartják. Davy egyszer azt mondta, hogy az ő legnagyobb tudományos felfedezése maga Faraday.
Egy XXI. századi természettudós némi irigységgel tekinthet vissza a kora XIX. századi évekre. Korszakalkotó felfedezései közben Faradaynek nem kellett egyezkednie a CERN sok ezer kutatójával és mérnökével, és nem volt szüksége Föld körüli pályára bocsátott űrteleszkópokra sem. Az ő „CERN”-je kényelmesen elfért a munkapadján, de kísérletei így is elvezettek az idő abszolút voltának cáfolatához. Mi tagadás, napjainkra alaposan megváltoztak a tudomány keretei, részben azért, mert az idők során már minden részletre kiterjedően megvizsgálták azokat a jelenségeket, amelyek bonyolultabb berendezések nélkül is tanulmányozhatók. Az manapság is megesik, hogy egyszerű kísérletek vezetnek el fontos eredményekhez, ám többnyire még a kicsiny előrelépésekhez is nélkülözhetetlen a bonyolult apparátus. A viktoriánus Londonban Faraday még egyszerű és olcsó eszközök, dróttekercsek, mágnesek és egy iránytű segítségével találta meg az első bizonyítékokat arra, hogy az idő másféle, mint amilyennek látszik. A tudósok szeretik ezt a fajta kísérletezést: az elektromosság újdonság volt akkoriban, ő pedig nem tett mást, mint ilyen berendezéseket kapcsolt össze, aztán figyelte, mi történik. Az ember szinte maga előtt látja a gázégő félhomályában a mozgó tekercsek árnyait a sötétre lakkozott munkapadon. Davy ugyan már 1802-ben ámulatba ejtette a Royal Institution hallgatóságát az elektromos világítás lehetőségét bemutató kísérleteivel, a világnak azonban még egy jó darabig várnia kellett, mire a század utolsó negyedében Thomas Edison kifejlesztette a valóban használható elektromos égőt. Az 1800-as évek kezdetén az elektromosság még fizikusok és mérnökök harci terepe volt a tudományos kutatások frontvonalában.
Faraday észrevette, hogy ha mágnest helyez egy huzaltekercs belsejébe, akkor a huzalban mindaddig elektromos áram folyik, amíg a mágnes mozog. Azt is megfigyelte, hogy ha egy vezetékben bekapcsolja az áramot, akkor a vezeték közelében lévő iránytű a bekapcsolás pillanatában kimozdul. Az iránytű mágnes jelenlétét érzékeli; ha a vezetékben nincs elektromos impulzus, akkor a Föld mágneses mezejében beáll az észak-déli irányba. Az elektromos impulzusnak tehát mágneses mezőt kell létrehoznia, olyasfélét, mint a Föld, csak éppen erősebbet, hiszen arra a pillanatra, amíg az impulzus átfolyik a huzalon, az iránytű elfordul az észak-déli irányból. Faraday kapcsolatot talált két olyan jelenség, az elektromosság és a mágnesesség között, amelyeknek elsőre semmi közük egymáshoz. Felkapcsoljuk a villanyt, és az izzón áram folyik át. Mi köze van ennek ahhoz az
erőhöz, amely a hűtőmágneseket a frizsider ajtajához rögzíti? Ez a kapcsolat messze nem nyilvánvaló, de a gondosan kísérletező Faraday azt találta, hogy elektromos impulzusok mágneses mezőket hoznak létre, mágnesek mozgása nyomán pedig áram keletkezik. Ezen a két, összefoglalóan elektromágneses indukciónak nevezett egyszerű jelenségen múlik az áramfejlesztő erőművek működése éppúgy, mint a mindenütt használatos elektromos motoroké, a hűtőszekrény szivattyújától kezdve a DVD-lejátszó „eject" funkciójáig. Nem lehet eléggé túlbecsülni Faraday hatását az ipari alkalmazásokra.
A fizikai alapkutatásban egy jó kísérlet még általában nem elég a továbblépéshez. Faraday meg is akarta érteni, milyen mechanizmusok működnek a megfigyelései hátterében. Hogyan hozhat létre egy mágnes - tette föl a kérdést - elektromos áramot egy vezetékben, amellyel nincs fizikai kapcsolatban? És ugyanígy, hogyan térítheti el az iránytűt az elektromos impulzus az északi iránytól? Valamilyen hatásnak utat kell találnia a térben a mágnes és a huzaltekercs között; a tekercsnek énékelnie kell a belsejében mozgó mágnest, az iránytűnek pedig érzékelnie kell az áramimpulzust. Ezt a hatást ma elektromágneses mező néven ismerik. A Föld mágneses mezejéről beszélve már használtuk ezt a szót, és valószínűleg senki sem akadt fönn rajta, hiszen gyakran hangzik el ilyen-olyan összefüggésben. A mezők a fizika legelvontabb fogalmai közé tartoznak. Nagy szükség van rájuk, és rendkívül hasznosak a mélyebb összefüggések megértésében.
Ez a könyv sok milliárd szubatomi részecskéből áll; ezek együttesét úgynevezett mezőegyenletek1 segítségével lehet a legjobban leírni. Még az ön könyvet tartó keze vagy a könyvet Olvasó szeme is megragadhatók a téregyenletek nyelvén. Faraday az ő mezőit vonalnyalábokként írta le - ő erővonalakról beszélt amelyek a mágnesekből és az elektromos vezetékekből lépnek ki. Ha látott már papírlapon széthintett vasreszeléket mágnes hatására elrendeződni, akkor tudja, miről beszélünk. Gondoljon például a levegő hőmérsékletére a szobájában: ez a hétköznapi mennyiség például szintén felfogható mezőként. A radiátor közelében melegebb a levegő, az ablaknál hidegebb. Ha a szoba minden pontjában megmérjük a hőmérsékletet - legalábbis képzeletben és ezt az irdatlan mennyiségű számot egy táblázatba rendezzük, akkor ez a táblázat a szoba hőmérsékleti mezejének a pillanatnyi állapota, pontosabban annak egy ábrázolása. Ugyanígy, mágneses mező esetében elvben a tér minden pontjában följegyezhető, hogy ott mekkora az iránytű kitérése: így kapjuk a szoba mágneses mezejének egy ábrázolását. Egy szubatomi részecske által létrehozott mező kevésbé megfogható: a tér minden pontjában egy-egy valószínűség az értéke: annak az esélye, hogy a részecske a térnek éppen ebben a pontjában tartózkodik. A mezőkkel találkozunk majd a 7. fejezetben.
Jogosnak tűnhet a kérdés, hogy vajon miért kell olyan elvont fogalmakkal bajlódni, mint a mezők. Miért nem elégszünk meg a mérhető dolgokkal, mint az elektromos áram vagy az iránytű kitérése? Faradaynek érdekes módon éppen azért tetszett ez az elgondolás, mert az ipari forradalom tudósaihoz és mérnökeihez hasonlóan ízig-vérig gyakorlati ember lévén mechanikai jellegű kapcsolatot keresett a huzaltekercs és a mozgó mágnes között: az ő szemében ezek a mezők ténylegesen összekötötték őket a térben, annak a fizikai kapcsolatnak a hordozóiként, amelynek meglétéről a kísérletek tanúskodtak. Mélyebb oka is van annak, hogy a mezők fogalma nélkülözhetetlen, és hogy a mai fizikusok ugyanolyan valóságosnak tekintik őket, mint az elektromos áramot vagy az iránytű kitérését. Hogy mi ez az ok, és hogyan teszi lehetővé a természet mélyebb megértését, azt a skót fizikus, James Clerk Maxwell munkássága nyomán tudjuk. Einstein 1931-ben, Maxwell születésének századik évfordulóján „Newton óta a fizika legátfogóbb és legtermékenyebb gondolatainak” nevezte az elektromágnesesség Maxwell-féle elméletét. 1864-ben, három évvel Faraday halála előtt Maxwell egyenletek egy csoportját alkotta meg; ezek maradéktalanul leírták azokat az elektromos és mágneses jelenségeket, amelyeket Faraday és a többi kísérletező aprólékos gonddal megfigyelt és dokumentált a XIX. század első felében.
A természet megismerésének során az egyenletek a fizikusok legerősebb fegyverei. Mivel sokak számára az egyenletekhez fűződnek a legijesztőbb iskolai emlékek, a netán kedvét vesztő Olvasó megnyugtatására el kell róluk mondanunk egyet-mást, mielőtt továbbmennénk. Tisztában vagyunk azzal, hogy nem mindenki esik pánikba, ha a matematika kerül szóba, és reméljük, hogy a képzettebb Olvasó nem tekinti lekezelésnek, ha a türelmét kérjük. Első közelítésben egy egyenlet azt teszi lehetővé, hogy megjósoljuk valamely kísérlet kimenetelét anélkül, hogy elvégeznénk. Igen egyszerű példája mindennek Pitagorasz híres tétele a derékszögű háromszög oldalairól; erre az egyenletre egyébként hivatkozunk majd a könyvben, amikor az idő és a tér megdöbbentő tulajdonságait taglaljuk. A tétel azt mondja ki, hogy „az átfogó négyzete egyenlő a másik két oldal négyzetének az összegével”. A matematika szokásos nyelvén úgy szól, hogy x2 + y2 = z2, ahol z az átfogó, a derékszögű háromszög leghosszabb oldalának a hossza, x és y pedig a másik két oldalé. Az 1. ábráról minden leolvasható. Az x, y, z szimbólumok helyére az aktuális oldalhosszak írandók, x2 pedig az x szorozva x-szel műve—
let eredményér jelöli. Például 32 = 9, 72 = 49 és így tovább. Az x, y, z szimbólumoknak nincs semmilyen mélyebb jelentésük, írhatnánk helyettük másféle jeleket is. Lehet, hogy Pitagorasz tétele is barátságosabb lenne mondjuk £2 + •+•2 = ©2 alakban. Itt nyilván a smiley karakter jelenti az átfogó hosszát. Nézzük meg egy példán, hogyan működik ez a tétel. Ha egy derékszögű háromszög két rövidebb oldala 3 centiméter, illetve 4 centiméter hosszú, akkor a tétel azt állítja, hogy az átfogó hossza 5 centiméter, hiszen 32 + 42 = 52. A számoknak persze nem kell egésznek lenniük. Nos, ha egy háromszög oldalainak a hosszát megmérjük egy vonalzóval, akkor ez kétségkívül egy kísérlet, bár annak elég unalmas. Egyenletét felírva Pitagorasz megspórolt nekünk egy mérést azzal, hogy ha egy derékszögű háromszög két oldalát ismerjük, akkor a harmadik számolható. A fizikus számára ebben az a vonzó, hogy az egyenletek a „dolgok” között fennálló kapcsolatokat fejeznek ki, és így a valóságos világról szóló precíz kijelentésnek tekinthetők.
Maxwell egyenletei matematikailag sokkal bonyolultabbak, de lényegük szerint ugyanígy működnek. Például kiolvasható belőlük, hogy elektromos impulzus hatására milyen irányban tér ki az iránytű. Az egyenletekben az a figyelemre méltó, hogy mély, a kísérleti tapasztalatokból közvetlenül nem hozzáférhető mennyiségi kapcsolatokra lehet belőlük következtetni, és így a természet átfogóbb megértését teszik lehetővé. Mindez sokszorosan igaz a Maxwell-
1. ábra
egyenletekre. Az elektromágneses jelenségek matematikai leírásában Maxwell központi szerepet tulajdonított az elsőként Faraday képzeletében megjelenő absztrakt elektromos és mágneses mezőknek. Maxwell egyenletei szükségszerűen vonatkoztak ezekre a mezőkre, nem volt más választása. Faraday és társai töméntelen elektromos és mágneses jelenséget derítettek föl, és ez volt az egyetlen mód arra, hogy ezeket egységes matematikai nyelven lehessen tárgyalni. Mint ahogy Pitagorasz tétele a derékszögű háromszög oldalai között fennálló kapcsolatot írja le, a Maxwell-egyenletek az elektromos töltés és az elektromos áram, illetve az általuk létrehozott elektromos és mágneses mező viszonyát öntik matematikai formába. Maxwell zseniálisan látta meg, hogy a tulajdonképpeni főszereplők az addig csak a háttérben kirajzolódó mezők. Arra a kérdésre, hogy egy áramforrás miért hoz létre elektromos áramot, Maxwell azt felelte volna, hogy „ennek az az oka, hogy az elem elektromos mezőt létesít a vezetékben, és ez a mező hozza létre az áramot”. Arra a kérdésre, hogy miért tér ki az iránytű egy mágnes közelében, azt válaszolta volna, hogy „az iránytű a mágnest körülvevő mágneses mező hatására mozdul meg”. Annak pedig, hogy egy mozgó mágnes áramot kelt egy tekercsben, az az oka, hogy a mágneses mező megváltozása elektromos mezőt hoz létre a föltekercselt huzalban, az áram pedig ennek az elektromos mezőnek a hatására indul meg. Ezeknek a nagyon különböző jelenségeknek a leírása minden esetben elektromos és mágneses mezők jelenlétére, illetve a kölcsönhatásukra vezethető vissza. A fizikában időről időre tanúi lehetünk annak, ahogy első ránézésre elszigetelt jelenségek egy új, átfogó fogalom bevezetésével egyszerűbb és elfogadhatóbb magyarázatot kapnak. Nagyrészt ennek tulajdonítható, hogy a tudomány általában is olyan sikeres. Maxwell egyszerű és egységes leírását adta valamennyi megfigyelt elektromos és mágneses jelenségnek. Ez a leírás remekül működött abban az értelemben, hogy a segítségével Faraday és társai valamennyi úttörő kísérletét meg lehetett magyarázni, a kísérletek eredményeit pedig előre meg lehetett jósolni. Ez már önmagában nagy fegyvertény volt, a helyes egyenletek felírása során azonban valami sokkal figyelemreméltóbb is történt. Egyenleteinek felírásakor Maxwellnek szüksége volt egy olyan tag bevezetésére, amelynek a jelenléte nem következett a kísérleti eredményekből. Erre a tagra kizárólag azért volt szüksége, hogy az egyenletek matematikailag összhangban legyenek egymással. Ebben a kijelentésben a modem tudomány egyik legmélyebb és bizonyos értelemben legtitokzatosabb vonása mutatkozik meg. A bennünket körülvevő világ fizikai szereplőinek a viselkedése megjósolható, és ehhez általában nincs szükség a legalapvetőbb összefüggéseknél több matematikára - ennek jó részét már Pitagorasz is ismerte, amikor hozzálátott a derékszögű háromszögek vizsgálatához. Mindez tapasztalati tény ugyan, de messze nem nyilvánvaló. Wigner Jenő, a Nobel-díjas fizikus 1960-ban írt egy híressé vált esszét „A matematika megmagyarázhatatlan hatékonysága a természettudományokban” címmel. Ebben azt állítja, hogy „egyáltalán nem természetes, hogy a Természetnek vannak törvényei, még kevésbé az, hogy az ember képes ezeket fölismerni". Minden eddigi tapasztalat arra tanít minket, hogy a természetben valóban törvények érvényesülnek, a dolgok viselkedése szabályokat követ, ezeknek a törvényeknek a megfogalmazására pedig a matematika nyelve a legalkalmasabb. Ez pedig azt az érdekes lehetőséget veti fel, hogy a kísérlett tapasztalatokkal együtt a matematikai összhangra való törekvés volna az útmutató a fizikai valóság törvényeihez; a tudomány története során mindenesetre újra és
újra ez történt. Ebben a könyvben is látunk majd rá példát. Ha ez tényleg így van, akkor az univerzum egyik csodás misztériumával állunk szemben.
Történetünkre visszatérve, a matematikai összhangot kereső Maxwell egy új, eltolási áramnak nevezett taggal egészítette ki azt az egyenletet, amelyik a huzalon átfolyó áram hatására kitérő iránytű Faraday által megfigyelt viselkedését volt hivatva leírni. Ez az eltolási áram nem kellett ahhoz, hogy értelmezni lehessen Faraday eredményeit, az egyenletek ezzel a taggal együtt, de e nélkül is megmagyarázták a kor kísérleti tapasztalatait. Eleinte ő maga sem látta, de ezzel az egyszerű kiegészítéssel Maxwell briliáns egyenleteiből sokkal több jött ki, mint az, hogy hogyan működnek az elektromos motorok. Az eltolási áramot bevezetve kiderül, hogy az elektromos és a mágneses mező szoros kapcsolatban vannak egymással. Az új egyenletek ugyanis átírhatók a hullámegyenletnek nevezett alakba, amelyek, nem meglepő módon, hullámok terjedését tárgyalják. Ilyen egyenletek írják le a hang terjedését a levegőben, de azt is, ahogyan az óceán hullámai kigördülnek a partra. Maxwell, miközben Faraday huzalokkal és mágnesekkel végzett kísérleteit akarta matematikailag megfogni, önmaga számára is váratlan módon valamiféle mozgó hullámok létezését jósolta meg. De amíg az óceán hullámai a vízben terjednek, a hanghullámok pedig a levegő molekuláinak sajátos mozgása, a Maxwell-féle hullámokat oszcilláló elektromos és mágneses mezők hozzák létre.
Mifélék ezek a titokzatos oszcilláló mezők? Képzeljük el, hogy Faraday elektromos impulzust hoz létre egy huzalban: az eredmény egy növekvő elektromos mező. Azt is láttuk, hogy ha egy vezetéken elektromos áram folyik, akkor ott mágneses tér keletkezik (emlékezzünk arra, hogy Faraday kísérletében kimozdult a vezeték mellé helyezett iránytű). Maxwell megfogalmazásában az elektromos mező megváltozása a mágneses mező megváltozását váltja ki. De Faraday azt is mondja, hogy egy tekercs belsejében mágnest mozgatva változtatjuk a mágneses mezőt, tehát elektromos mező keletkezik, ennek hatására pedig áram indul el a vezetékben. Maxwell nyelvén a mágneses mező változása az elektromos mező változását váltja ki. Mi történik, ha most eltávolítjuk az áramforrást és a mágnest? Maguk a mezők megmaradnak, mégpedig a folyamatos átalakulás állapotában, hiszen bármelyikük megváltozása a másik változását vonja maga után. Maxwell egyenletei leírják a kétféle mező kölcsönhatását, ahogyan az intenzitásuk változik. Azt is megjósolják, hogy ezek a hullámok szükségképpen adott sebességgel haladnak előre. Nem meglepő módon ezt a sebességet olyan mennyiségek határozzák meg, amelyeket Faraday már megmért. A hanghullámok esetében ez a sebesség körülbelül 330 méter másodpercenként, valamivel nagyobb, mint az utasszállító repülőgépeké. A hang sebessége a hullámot hordozó levegőmolekulák kölcsönhatásaitól függ, ezek pedig a légnyomástól és a levegő hőmérsékletétől. Az utóbbiak befolyásolják ugyanis azt, hogy milyen közel kerülhetnek egymáshoz a molekulák, és mekkora sebességgel pattannak vissza ütközés után. A Maxwell-féle hullámok sebességéről az egyenletek azt mondják, hogy egyenlő az elektromos és a mágneses mező térerősségének az arányával; maguk a térerősségek igen könnyen megmérhetők. A mágneses térerősség két mágnes között fellépő erőként mutatkozik meg. Az „erő” szót lépten-nyomon használjuk majd, és azt a hatást értjük rajta, amely valamit húz vagy tol. Ez a húzó/toló hatás számszerűsíthető, és mint ilyen, mérhető. Ha pedig meg akarjuk érteni a világ működését, nem meglepő, ha ennek a hatásnak a forrását keressük. Az elektromos térerősséget ugyanilyen egyszerűen lehet megmérni: két
objektumot elektromosan feltöltünk, és lemérjük a köztük fellépő erőt. Ezt az elektromos „feltöltést” enyhe áramütés formájában akaratlanul is átélheti az ember, ha egy száraz napon végigsétál egy műanyag szőnyegen, majd megfog egy fémtárgyat, mondjuk az ajtó kilincsét. Ennek a kellemetlen élménynek az a magyarázata, hogy a szőnyegről elektronok, az elektromosság alapvető részecskéi dörzsölődnek a cipőtalpunkra, így elektromos mező jön létre a szereplők, vagyis a sétáló és az ajtókilincs között. Ez a mező áramimpulzust indít el, ha megfogjuk a kilincset, ugyanúgy, ahogy Faraday tapasztalta a kísérletei során.
Ehhez hasonló egyszerű kísérleti módszerekkel lehet megmérni mind az elektromos, mind pedig a mágneses térerősséget, Maxwell egyenletei pedig azt mondják, hogy a keletkező hullámok sebessége ezeknek az aránya. Mekkora ez a sebesség? Mi adódik az elektromágneses hullámok sebességére Faraday leleményes kísérleteiből és Maxwell zsenialitásából? Történetünk egyik drámai pillanatához érkeztünk, csodálatos példájához annak, hogy miért olyan szép, hatékony és mély tárgy a fizika: Maxwell hullámai másodpercenként 299 792 458 méteres sebességgel terjednek. Megdöbbentő módon ez éppen a fény sebessége - Maxwell rátalált a fény egy lehetséges magyarázatára. Azért látjuk a környező világot, mert a Maxwell-féle elektromágneses mező áthatol a sötétségen, egészen a szemünkig, a sebessége pedig egy huzaltekercs és egy mágnes segítségével meghatározható. Maxwell egyenletei jelentik azt a rést, amelyen át a fény bejut a mi történetünkbe, és e megvilágosodás minden egyes mozzanata ugyanolyan fontos, mint Einstein azon fölismerései, amelyekhez elvezetett. Abból pedig, hogy a természetben létezik egy különleges, állandó sebesség, ez a másodpercenkénti 299 792 458 méter, a következő fejezetben eljutunk, ahogy Einstein is eljutott, az idő abszolút jellegének az elvetéséhez.
A figyelmes Olvasó talán felfigyel itt egy problémára, vagy legalábbis a szerzők valamelyes következetlenségére. Annak alapján, amit az 1. fejezetben írtunk, nyilvánvalóan nincs jogunk sebességről beszélni anélkül, hogy megmondanánk, mihez képest mérjük ezt a sebességet. Az a helyzet, hogy Maxwell egyenletei erre vonatkozóan nem mondanak semmit. A hullámok sebessége - tehát a fénysebesség - természeti állandóként jelenik meg bennük, mint az elektromos és a mágneses térerősség aránya. Ebben az elegáns matematikai konstrukcióban sehol sem szerepel a hullámforrás sebessége, sem pedig a műszeré, amelyik észleli ezeket a hullámokat. Maxwell és kortársai természetesen tisztában voltak ezzel, de nem zavartatták magukat különösebben. Mégpedig azért nem, mert a legtöbbjük - talán mindegyikük - úgy gondolta, hogy a hullámoknak, a fényt is beleértve, valamilyen közegre van szükségük, amelyben terjedhetnek, valamilyen megfogható, fizikai közvetítőre. A Faraday-félék gyakorlatiasan közelítették meg a világot; ahol hullám van, gondolták, ott valami hullámzik. A vízhullámok a vízben jönnek létre, a hanghullámok pedig a levegőben vagy más közegben, a vákuumban semmiképp. „Az űrben nem hallatszik a sikolyod."
A XIX. század végére uralkodóvá vált az a nézet, hogy a fény terjedését egy speciális közeg biztosítja, amelyet éternek neveztek el. A Maxwell-egyenletekben megjelenő sebesség így természetes módon volt értelmezhető mint a fénynek az éterhez viszonyított sebessége. Ez teljesen összhangban van azzal, ahogyan a hang terjed a levegőben. Ha a levegő nyomása és hőmérséklete adott, akkor a hang sebessége is meghatározott, és csak a levegőmolekulák kölcsönhatásaitól függ, a hangforrás mozgásához semmi köze.
Ennek az éternek viszont különös dolognak keli lennie. Maradéktalanul ki kell töltenie a kozmoszt, hiszen a fény bárhová eljut, a Naptól a Földig éppúgy, mint a messzi csillagoktól akár a legtávolabbi galaxisokig. Utcai sétáinkon az éteren hatolunk keresztül, ahogy a Föld is az éterben mozogva teszi meg éves útját a Nap körül. Minden mozgás az éterben történik, és ez a közeg alig vagy egyáltalán nem fejt ki ellenállást a rajta áthaladó szilárd objektumokkal szemben, még akkor sem, ha az akkora, mint egy bolygó. Az éterben mozgó szilárd tárgyakra ható ellenállás ugyanis lassítaná a mozgásukat, és így ennek az ellenállásnak a következtében a Föld, amely nagyjából ötmilliárd ízben kerülte már meg a Napot, veszített volna a sebességéből, akár egy mézescsuporba pottyanó fémgolyó. így pedig a földi év egyre rövidebb lenne. Az egyetlen elfogadható feltevés tehát az, hogy a Föld és a szilárd tárgyak akadályoztatás nélkül haladnak az éterben. Azt hihetné az ember, hogy egy ilyen közeget nem is lehet kimutatni, de a korabeli tudósok kísérletező leleményessége nem ismert korlátokat. Albert Michelson és Edward Morley 1881-ben elképesztően pontos mérések sorozatába fogtak azzal a céllal, hogy észlelik azt, ami látszólag észlelhetetlen. A kísérletek elve megejtően egyszerű. Bertrand Russell 1925-ben írt egy remek könyvet a relativitásról; hasonlata szerint a Föld olyasféleképpen mozog az éterben, mint amikor egy szeles napon sétálunk körbe-körbe; utunk során hol szemből fúj a szél, hol pedig hátulról. Ugyanígy, mivel a Nap körüli pályáján a Föld az éterben mozog, a Nap és a Föld pedig ugyanebben a közegben járják közös útjukat a Tejút középpontja körül, az év egy adott időszakában a Földnek az éterszéllel szemközt kell haladnia, máskor pedig azzal egyező irányban. A Föld mozgása a Nap körül még abban a rendkívül valószínűtlen esetben is éterszelet hozna létre, ha a Naprendszer egésze nyugalomban volna az éterhez képest, hasonlóan ahhoz, ahogy a száguldó autó ablakán még szélcsendes napon kinézve is hajunkba kap a szél.
Michelson és Morley arra vállalkoztak, hogy évente több alkalommal lemérik a fény sebességét. Velük együtt mindenki arra számított, hogy a különböző időpontokban mért sebességek, ha csak egy parányit is, de különböznek majd, hiszen az éterhez képest folyamatosan változott a Föld és vele együtt a kísérleti műszerek sebessége. Az interferencia elvén alapuló eleve rendkívül érzékeny módszerüket hat éven keresztül tökéletesítve Michelson és Morley 1887-ben hozták nyilvánosságra eredményeiket. Ezek az eredmények pedig egybehangzóan negatívnak bizonyultak. A kísérlet során soha, egyetlen irányban sem sikerült kimutatni, hogy a fény sebessége egy fikarcnyit is változott volna.
Ha az éterhipotézis helytálló, akkor ezt a stabilitást nagyon nehéz megmagyarázni. Képzeljünk el egy úszót, amint az árral együtt úszik egy folyóban. Ha óránként 5 kilométeres sebességre képes, a folyó pedig 3 kilométeres sebességgel folyik a medrében, akkor úszónk a parthoz képest óránként 8 kilométeres sebességgel halad. Ha visszafordul, és az árral szemben úszik, akkor a parthoz képest óránként 2 kilométer a sebessége. Michelson és Morley kísérlete sokban hasonlít erre a szituációra. Az úszó a fénysugár, a folyó az éter, amelyben a fény mozog, a folyópart pedig a kísérleti műszer, amelyet Michelson és Morley szilárdan rögzítettek a Föld felszínén. Eredményeik szerint ez az úszó mintha mindig 5 kilométeres sebességgel úszna a folyóparthoz képest, függetlenül attól, milyen gyors a folyó, és milyen irányban igyekszik ő maga.
Michelson és Morley tehát nem lelték nyomát, hogy a műszereikben éter áramlana. Mivel a kísérletekben az éternek nincsenek megfigyelhető következményei, egyszer s mindenkorra el kell vetnünk az éter fogalmát, ahogyan az 1. fejezetben az abszolút tér fogalmát elvetettük. Mellesleg filozófiai szempontból az éter fogalma sosem volt valami bizalomgerjesztő, az éter létezésének bizonyítása után ugyanis el lehetne kezdeni abszolút mozgásról beszélni, ami szembemenne Galilei relativitást elvével. Történetileg valószínűsíthető, hogy ez volt Einstein személyes álláspontja is, amikor 1905-ben megfogalmazta a speciális relativitás elméletét. Ebben ugyanis határozottan elvetette az éter fogalmát, noha állítólag csak felületesen ismerte Michelson és Morley idevágó kísérleteit. Annyi mindenesetre bizonyosnak látszik, hogy a filozófia nem megbízható kalauz, ha a természet működését vizsgáljuk; ami pedig az éter kérdésében a végső szót illeti, az elvetése mellett szóló döntő érv az, hogy a kísérleti eredmények nem indokolják a bevezetését.
Így aztán mind a tudományos jóérzésünk, mind pedig a kísérleti adatok amellett szólnak, hogy az éter fogalma nem tartható. Ez a döntés viszont fölvet egy komoly problémát: a Maxwell-egyenletek nagyon pontosan adják meg a fény sebességét, de semmilyen információt nem tartalmaznak arra nézve, hogy mihez képest mérendő ez a sebesség. Gondoljunk egy merészet, és fogadjuk el az egyenleteket úgy, ahogy vannak, aztán nézzük meg, hová vezet ez a szellemi kalandozás. Ha valami képtelenségre jutunk, akkor majd visszakozunk, és miközben megpróbálkozunk egy újabb hipotézissel, hízeleghetünk magunknak, hogy belekóstoltunk a tudományba. Maxwell egyenleteiből következik, hogy a fény másodpercenként 299 792 458 méter sebességgel halad, az egyenletekben viszont sem a fényforrás, sem pedig a mérőműszer sebessége nem szerepel. Az egyenletek így azt mondják, hogy a fény sebességét minden körülmények között ugyanakkorának kell mérnünk, függetlenül attól, hogy milyen gyorsan mozog egymáshoz képest a fényforrás és a mérőműszer; a fény sebessége természeti állandó. Ez az állítás annyira meglepő, hogy érdemes elgondolkodni, mit is mond valójában.
Képzeljük el, hogy bekapcsolunk egy zseblámpát. Ekkor, mondja a józan ész, akár utol is érhetjük a fénysugarat; elvben elegendő, ha elég gyorsan futunk. Ebbe még az is belefér, hogy fej fej mellett haladunk a fénysugárral: ehhez csak annyi kell, hogy mi is a fény sebességével szedjük a lábunkat. Ha viszont szó szerint tartjuk magunkat a Maxwell-egyenletekhez, akkor függetlenül attól, hogy milyen gyorsak vagyunk, a fénysugár másodpercenként 299 792 458 méterrel távolodik tőlünk. Ha nem így volna, akkor a fény sebessége más volna a futó és más a lámpát tartó megfigyelő számára. Ez pedig ellentmond Michelson és Morley kísérleti eredményeinek, valamint annak az állításunknak is, hogy a fény sebessége természeti állandó, mindig ugyanannyi, bárhogy mozogjon is a fényforrás vagy a megfigyelő. Furcsa helyzetbe kerültünk. Józan ésszel ezek szerint a Maxwell-egyenletek nem tarthatók, vagy legalábbis módosításra, esetleg átértelmezésre szorulnak. Lehetséges, hogy csak megközelítően helyesek? Ez ésszerűen hangzik, hiszen egy mérőműszer bármifajta valóságos mozgása csak egészen csekély mértékben változtathatja meg az egyenletekből kapott másodpercenkénti 300 ezer kilométert. Elképzelhető, hogy Faraday kísérletei nem voltak alkalmasak ilyen kicsiny eltérés kimutatására. A másik választás az, hogy elfogadjuk a Maxwell-egyenleteket azzal a furcsa következményükkel együtt, hogy egy fénysugarat nem lehet utolérni. Ez az elképzelés nemcsak a józan észnek mond ellent, hanem, ahogy az
a következő fejezetből kiderül, következik belőle az idő abszolút jellegének a tarthatatlansága is.
Az, hogy az idő nem abszolút, ma ugyanolyan nehezen emészthető, mint a XIX. század tudósai számára volt. Intuitív szinten mélyen belénk vésődött, hogy mind a tér, mind pedig az idő abszolút kategóriák. Nagyon nehéz ettől szabadulni, hiszen eszerint működik az intuíciónk. Newton törvényei mindenestül ezekre a fogalmakra épülnek, és mind a mai napig sok-sok mérnök munkájának jelentik a fundamentumát. A XIX. században pedig a Newton-törvények végképp fölötte álltak minden gyanúnak. Miközben Faraday az elektromosság és a mágnesesség titkait kutatta a Royal Institutionban, Ismabard Kingdom Brunel, aki maga volt a por excellence mérnök, a Nagy Nyugati Vasutat építette meg London és Bristol között. Brunel híres Clifton hídja 1864-re épült meg; Maxwell ugyanebben az évben fejezte be Faraday munkájának nagyszabású elméleti szintézisét és sejtett meg valamit a fény természetéből. A Brooklyn híd nyolc évvel később készült el, 1889-re pedig az Eiffel-torony is fölmagasodott a párizsi égre. A gőzgépek korának nagyszabású ipari létesítményeit azoknak az elveknek az alapján tervezték meg és építették föl, amelyeket még Newton fogalmazott meg. A newtoni mechanika messze nem csak elvont matematikai elmélet. Sikerei nyomot hagytak bolygónk arculatán, mind nagyobb léptékben tanúsítva, hogy az ember képes megérteni és a saját hasznára fogni a természet törvényeit. El lehet képzelni a korabeli tudósok felzúdulását, amikor szembesültek Maxwell egyenleteivel és azzal a burkolt fenyegetéssel, amelyet a newtoni világkép alapjaira jelentettek. Nem lehetett két győztest kihirdetni, Newton és az abszolút idő pedig egyeduralkodónak látszott. A XX. század az állandó fénysebesség nyugtalanító problémájával köszöntött be: Maxwellnek és
Newtonnak nem lehetett egyszerre iga2a. 1905-ig és egy addig ismeretlen fizikus, Albert Einstein színrelépéséig kellett várni, hogy kiderüljön: a természet Maxwell oldalán áll.
A magyar szaknyelv a „téregyenlet" kifejezést használja. (A lektor.)
3. SPECIÁLIS RELATIVITÁS
Az első fejezetben eljutottunk ahhoz a megállapításhoz, hogy az eredendően szemléletes arisztotelészi tér-és időfogalmat felesleges ballasztok terhelik. Kiderült, hogy a teret nem szükségképpen kell olyan változatlan és abszolút entitásként felfognunk, ahol a dolgok, úgymond, végbemennek. Beszéltünk Galileiről, aki világosan megfogalmazta, hogy az abszolút tér fogalmára egyszerűen nincs szükség, de határozottan kiállt az idő abszolút, univerzális természete mellett. A második fejezetben belekóstoltunk a XIX. századi fizikába. Faraday és Maxwell nyomán kiderült, hogy a fény nem más, mint elektromos és mágneses mezők szimbiózisa, amely Maxwell gyönyörű egyenletei szerint terjed a térben. Hová jutottunk el? Ha elvetjük az abszolút tér fogalmát, akkor mivel lehetne kiváltani? És milyen értelemben kérdőjelezzük meg azt, hogy az idő abszolút? Ebben a fejezetben megpróbálunk választ adni ezekre a kérdésekre.
Albert Einstein a modern tudomány emblematikus alakja. Borzas fehér üstöké, mezítlábas figurája a „Professzort” testesítette meg a kortársak szemében; ha egy gyereket arra kérünk, rajzoljon le egy tudóst, az eredmény jó eséllyel az idős Einsteinre hasonlít. Azok a gondolatok viszont, amelyekről ebben a könyvben szó esik, egy fiatalember gondolatai. A XX. század fordulóján, amikor a tér és az idő természetén töprengett, Einstein a húszas éveiben járt, fiatal házas volt, és ifjú apa. Nem tartozott sem az egyetemi, sem pedig a tudományos hierarchiához, viszont gyakran, akár éjszakába nyúlón vitatkozott a fizika problémáiról jó barátok kis csoportjával. A főáramtól elszigetelten dolgozó Einstein képe a mai napig táplálja az intézményes tudományon felülkerekedő magányos harcos mítoszát. Sajnálatos, hogy ebben a mítoszban számos meg nem értett géniusz kereshet önigazolást, akik meg vannak győződve róla, hogy egymagukban sikerült rátalálniuk a világmindenség átfogó elméletére, és nem értik, miért nem kíváncsi rájuk senki. Einstein igenis szoros kapcsolatban állt a tudományos világgal, bár tény, hogy a pályája nehezen indult.
Egyetemi pozíciók betöltésekor ugyan nem merült föl a neve, de ő szembetűnő állhatatossággal dolgozott a kor elsőrendűen fontos tudományos kérdésein. Huszonegy évesen fejezte be tanulmányait a Szövetségi Műszaki Egyetemen (ETH) Zürichben, természettudományos és matematika szakos tanári oklevéllel. Ezután több iskolában volt óraadó tanár, szabad idejében pedig a doktori értekezésén dolgozott. 1901-ben egy schaffhauseni magániskola tanáraként benyújtotta disszertációját a zürichi egyetemen, de visszautasították. A kudarc után Bembe költözött, és harmadosztályú műszaki ügyvivőként a svájci szabadalmi hivatal munkatársa lett. A munkával járó viszonylagos anyagi biztonságnak és szellemi szabadságnak is tulajdonítható, hogy életének legtermékenyebb évei következtek ezután; az elért eredmények bőségét tekintve ez az időszak alighanem egyedülálló, még ha az összes valaha élt tudóst is figyelembe vesszük.
Ennek a könyvnek a legnagyobb része Einstein munkásságának ezzel a szakaszával foglalkozik, amely aztán a dicsőséges 1905-ös évben tetőzött. Ebben az évben írta le Einstein először az E = mc2 formulát, ekkor nyerte el a doktori címet, és ekkor írta meg a fotoelektromos effek—
tusról azt a cikket, amelyért végül Nobel-díjat kapott. Jellemző, hogy 1906-ban, amikor még mindig a szabadalmi hivatalban dolgozott, munkahelyén, mintegy elismeréséül annak, hogy radikálisan megváltoztatta a világképünket, másodosztályú műszaki ügyvivővé léptették elő. Végül 1908-ban jutott egyetemi álláshoz Bemben. Az ember eltöpreng, mi mindent érhetett volna el, ha ezekben az években nem szabadidős tevékenységként kényszerül űzni a fizikát. Ő maga viszont mindig nagy szeretettel tekintett vissza a berni időkre. Subtle is the Lord című könyvében Abraham Pais, Einstein barátja és életrajzírója azt írta Einsteinnek a szabadalmi hivatalban töltött napjairól, hogy „halandóként akkoriban járt a legközelebb a Paradicsomhoz", mert bőségesen volt ideje a fizikán gondolkodni.
Az E = mc2 formulához vezető úton Maxwell egyenleteinek matematikai tökélye inspirálta Einsteint; olyannyira lenyűgözték, hogy úgy döntött, komolyan veszi azt a következményüket, hogy a fény sebessége állandó. Módszertani szempontból ezzel nincsen semmi baj: Maxwell egyenletei Faraday kísérleti tapasztalataiból nőttek ki, a kísérletek elméleti következményeit pedig el szokás fogadni. Az ember persze élhet némi fenntartással a mozgásnak egy olyan formájával szemben, amelyben a mozgó tárgy mindig ugyanolyan gyorsan távolodik tőlünk, függetlenül attól, hogy milyen sebességgel eredünk a nyomába. Képzeljük el, amint óránként 70 kilométeres sebességgel autózunk és 100 kilométeres sebességgel elhúz mellettünk egy másik autó. Nyilvánvaló, hogy ezt az autót óránként 30 kilométerrel látjuk távolodni. Ha követni akarjuk Einsteint, akkor attól az előítélettől kellene megszabadulnunk, hogy mindezt „nyilvánvalónak" tartsuk; akkor bizony bele kell törődnünk, hogy a fény mindig ugyanolyan gyorsan távolodik tőlünk, függetlenül attól, hogy mi magunk milyen gyorsak vagyunk. Hétköznapi tapasztalataink eszerint megtéveszthetnek, úgyhogy bízzunk meg Einsteinben, fogadjuk el tényként, ahogy ő is elfogadta, és nézzük meg, hová vezet az a föltevés, hogy a fény sebessége állandó.
Einstein speciális relativitáselméletének az alapja két állítás, vagy ahogy az ilyesmit a tudományban nevezik, két axióma. Az axiómák olyan kijelentések, amelyeket igaznak fogadunk el, a logikai következményeiket pedig, amelyek a fizikai világról szóló állítások, kísérleti úton ellenőrizzük. A módszer első része nagyon régi, és az ókori Görögországban alakult ki. A leghíresebb alkalmazása Eukleidész nevéhez fűződik, aki Elemek című művében azt a geometriai rendszert foglalta össze ilyen módon, amelyet még ma is tanítanak az iskolában. Geometriáját öt axiómából kiindulva építette föl, ezeket nyilvánvaló igazságoknak tekintette, amelyek nem szorulnak bizonyításra. Később látni fogjuk, hogy Eukleidész geometriája valójában csak egy a számos lehetséges geometria közül: az euklideszi sík az asztallap matematikai modellje. A Föld felszínének a geometriája nem euklideszi; másféle axiómák írják le. Egy számunkra még fontosabb példával pedig rövidesen megismerkedünk: ez a téridő geometriája. Ami a módszer második részét, a következtetések kísérleti ellenőrzését illeti, ezzel a régi görögök nem sokat törődtek. Ha törődtek volna, akkor ma nagyon másképp nézne ki a világ, amelyben élünk. Ezt a magától értetődőnek látszó továbblépést az arab tudósok tették meg a XI. században, Európában viszont csak jóval később, a XVI. és a XVII. században került rá sor. A kísérleti tapasztalatokra építkező tudomány fejlődése aztán hallatlanul felgyorsult, ami pedig technikai robbanáshoz és prosperitáshoz vezetett.
Einstein első axiómája szerint Maxwell egyenletei igazak, abban az értelemben, hogy a fény mindig ugyanakkora sebességgel terjed az üres térben, függetlenül
attól, hogy hogyan mozog a fényforrás, illetve a megfigyelő. A második axióma Galilei nyomán lényegében azt mondja, hogy nem lehetséges olyan kísérlet, amelynek alapján abszolút mozgást lehetne kimutatni. Ezzel a két állítással fölszerelkezve nekivághatunk, ahogy jó fizikushoz illik, hogy földerítsük a következményeket. A tudomány mércéje szerint az a végső próbája Einstein e két axiómából felépített elméletének, hogy képes-e megjósolni, illetve megmagyarázni a kísérleti eredményeket. Ezúttal bővebben idézzük Feynmant: „Általában szólva a következő módon keressük az új törvényeket. Az első lépésben találgatunk. Ha ez megvan, akkor utánaszámolunk, mi minden következik abból, ha a találgatásunk helyes. Ha ez is megvan, akkor a számításainkat összehasonlítjuk a Természet működésével, azzal, ami van. Ennek során mindazt, amit kiszámoltunk, egybevetjük a tapasztalatainkkal, illetve kísérleteket végzünk. Közvetlen megfigyeléssel ellenőrizzük tehát, hogy az elmélet működik-e. Ha a kiszámolt eredmények nem vágnak egybe a megfigyelésekkel, akkor az elmélet rossz. Ez az egyszerű kritérium a tudomány kulcsa. Hogy milyen elegáns az elméleted, az teljesen mindegy. Nem számít, hogy milyen zseniális vagy úgy egyébként, érdektelen, hogy hogyan cseng a neved, mindegy, hogy ki a javaslat gazdája - ha nem vág egybe a tapasztalattal, akkor hibás. Erről van szó.”
Ezek a nagyon hatásos mondatok egy 1964-es előadáson hangzottak el. Az előadást filmre vették, a YouTube-on látható, és mindenkinek ajánljuk.
A következőkben áttekintjük Einstein axiómáinak a következményeit. Eközben a gondolatkísérlet módszerét alkalmazzuk: ezzel Einstein is szívesen élt. Vizsgáljuk meg tehát annak a föltevésnek a következményeit, hogy a fény sebessége a különböző megfigyelők számára azonos, függetlenül attól, ahogyan egymáshoz képest mozognak. Szükségünk lesz egy különös berendezésre: a neve fényóra. Ez az óra két párhuzamos tükörből áll, amelyek között ide-oda cikázik a fénysugár. A készülék alkalmas az idő mérésére, ha a fénysugár egy oda-vissza útját tekintjük óraütésnek: tiktak. Ha mondjuk a tükrök 1 méterre vannak egymástól, akkor a fénysugár nagyjából 6,67 nanomásodperc alatt teszi meg az utat a két tükör között oda-vissza. Ha gondolja, ellenőrizze ezt a számolást: a másodpercenként 299 792 458 métert befutó fénysugárnak 2 méternyi utat kell megtennie. Szó, ami szó, ez a végtelenül pontos óra 150 milliónyit üt egyetlen szívdobbanás alatt.
Képzeljük most el ezt az órát egy mozgó vonatra telepítve, amint az éppen elszáguld az állomás peronja előtt. Az egymillió dolláros kérdés most már így szól: a peronon álló megfigyelő szerint milyen gyorsan ketyeg az óra? Einstein előtt mindenki azt gondolta, hogy ugyanolyan gyorsan, azaz 6,67 nanomásodpercenként egyet.
A 2. ábra mutatja, hogyan látja a peronon álló megfigyelő azt, amikor a vonaton egyet üt az óra. A peronról nézve ennyi idő alatt a mozgó vonattal együtt a fénysugár is elmozdul. Ennek az a következménye, hogy a peronon álló megfigyelő nem ugyanoda látja visszaérkezni a fénysugarat, ahonnan az elindult, hiszen az eltelt idő alatt elmozdult az óra. Ahhoz tehát, hogy ugyanolyan tempóban ketyegjen, mint amikor nyugalomban van, a fénynek valamivel gyorsabban kell haladnia, különben nem tudná ezt a valamivel hosszabb utat 6,67 nanoszekundum alatt befutni. Newton univerzumában pontosan ez történik, a vonat mozgása még rásegít egy kicsit a fény sebességére. De most - és ez a lényeg - Einstein axiómája szerint a fénysugár nem gyorsulhat föl, a fénysebesség ugyanis mindenki számára ugyanakkora. Zavarba ejtő módon ebből az következik, hogy a peronon álló megfigyelő úgy érzékeli, hogy a mozgó óra tényleg lassabban üt, egyszerűen azért, mert onnan nézve a fény hosszabb utat jár be. Ez a gondolatkísérlet tehát azt mondja, hogy ha a fénysebességet Maxwell tanítása szerint természeti állandónak tekintjük, akkor az egymáshoz képest mozgó megfigyelők számára szükségképpen máshogyan telik az idő. Másképpen szólva az idő abszolút mivolta nem egyeztethető össze a fénysebesség univerzális jellegével.
Felhívjuk a figyelmet arra, hogy ez az állítás nem a mi fényóránkra vonatkozó kuriózum. Nincs elvi különbség a fényóra és egy közönséges ingaóra között, amelynél egy másodpercbe telik, amíg a lengő inga egyik szélső helyzetéből a másikba jut. De ugyanígy szerepelhetne a kísérletben egy atomóra, amelyben egy atom által kibocsátott fényhullám rezgései mérik az eltelt időt. Még a testünket alkotó sejtek bomlásának a folyamata is használható volna óraként; Einstein konklúziója minden időmérő eszközre érvényes. Igazság szerint a fényóra az Einstein-féle elmélet magyarázatának hagyományos kelléke, és ez a furcsa időmérő eszköz szűnni nem akaró zavaros viták forrása, éppen mert annyira szokatlan. Noha az iménti különös következtetés az idő természetének a lényegét ragadja meg, azt is gondolhatnánk, hogy ez csupán ennek a szokatlan eszköznek valamilyen rejtett tulajdonságán múlik. Ez azonban félreértés; az időmérő eszközök sokaságából azért választottuk éppen a fényórát, mert így tudtuk kihasználni a következtetéseinkben Einstein szokatlan előírását a mindenki számára egyforma fénysebességről. Minden megállapítás viszont, amelyre a fényórára hivatkozva juthatunk, a felhasznált időmérő eszköztől függetlenül igaz marad. Nézzük meg, hogy mi ennek a magyarázata. Tegyünk egy konténerbe egy fényórát meg egy ingaórát, és üljünk bele mi magunk is. A két órát igazítsuk össze. Ha nagyon pontosak, akkor az idők végezetéig szinkronban fognak ketyegni, és ugyanazt az időt mutatják. Ha mindez a mozgó vonaton történik, akkor Einstein második axiómája szerint a konténerben ülve nem tudjuk eldönteni, hogy mozgunk-e vagy sem. Ha viszont a fényóra másként viselkedne, mint az ingaóra, akkor nem maradnának szinkronban, mi pedig a lezárt konténer belsejéből ennek alapján közölhetnénk, hogy igenis mozgásban vagyunk. Az ingaórának tehát szinkronban kell maradnia a fényórával, vagyis ha a peronon álló megfigyelő azt tapasztalja, hogy a mozgó fényóra lassabban jár, akkor minden mozgó órát lassúbbnak kell látnia. Szó sincs itt optikai csalódásról:
a peronon álló megfigyelő mérései szerint a mozgó vonaton valóban lassabban telik az idő.
A dolog most már úgy áll, hogy vagy ragaszkodunk az abszolút idő megszokott kereteihez, és nem fogadjuk el a Maxwell-egyenleteket, vagy pedig Maxwell és Einstein nyomán elutasítjuk az idő abszolút jellegét. Melyik a helyes döntés, és milyen bizonyítékok alapján hozható meg? Olyan kísérletre volna itt szükség, amelyben, ha Einsteinnek igaza van, mérhető módon lelassul a mozgásban lévő rendszerek ideje.
Ahhoz, hogy egy ilyen kísérletet megtervezzünk, először ki kellene számolni, milyen gyorsnak kell lennie a mozgásnak ahhoz, hogy énékelhető legyen a keresett hatás. Az talán nem meglepő, hogy ha a megengedett óránkénti 130 kilométerrel furikázunk az országúton, ettől még nem nagyon lassul le az idő - szó sincs arról, hogy amíg elvoltunk bevásárolni, a gyerekek idősebbek lettek nálunk. Ez így komolytalanul hangzik, de ha szó szerint vesszük Einsteint, akkor pontosan erre számíthatunk, és biztosan szemet szúrna a változás, ha elég nagy sebességgel haladnánk. De mekkora ez az elég nagy? Az állomás peronján álló megfigyelő úgy látja, hogy a fény az ábra háromszögének két oldala mentén halad. Mivel így a fénynek hosszabb utat kell megtennie, mint amikor az óra nyugalomban van - mondja Einstein -, az idő lassabban telik, mert egy tiktak tovább tart. Mindössze azt kell kiszámolnunk, hogy (adott vonatsebesség esetén) mekkora ez a tovább, és megvan a válasz. Ehhez igénybe vesszük Pitagorasz segítségét.
Ha az Olvasó nem akarja követni a számolást, nyugodtan ugorja át a következő bekezdéseket. így persze bíznia kell bennünk, hogy nem hibáztunk. Ugyanez az ajánlat érvényes mindenfajta matematikára, amellyel az Olvasó a könyvben összeakad. Ilyen részhez érve mindig továbblapozhat, és nem kell aggódnia - a matematika segít ugyan a fizikai gondolatok alaposabb megértésében, de egyáltalán nem nélkülözhetetlen a könyv értő olvasásához. Reméljük azért, hogy az ilyesmiben gyakorlatlan Olvasó is megpróbál velünk együtt számolni. A magunk részéről igyekeztünk könnyen érthetővé tenni a dolgokat, de az a véleményünk, hogy a matekból nem kell túl nagy ügyet csinálni. Az újságokban közölt logikai fejtörőkkel sokkal nehezebb megbirkózni, mint e könyv bármelyik matematikai fejtegetésével. Ezek után jöjjön, aminek jönnie kell; a most következő számolgatásnál nem nagyon lesz bonyolultabb ebben a könyvben, az eredmény viszont megéri a fáradságot.
Nézzük ismét a 2. ábrát, és jelöljük T-vel a mozgó vonaton utazó fényóra ciklusidejének a felét, ahogyan a peronon álló megfigyelő érzékeli. Ennyi idő alatt teszi meg a fénysugár az alsó tükörtől a fölsőig vezető utat. Ki fogjuk számolni, hogy mekkora ez a T. A peronon álló megfigyelő számára ennek az időnek a kétszerese telik el, miközben a fényóra egyet tiktakol. Ha tudnánk a T értékét, akkor kiszámolhatnánk a háromszög leghosszabb oldalának (az átfogónak) a hosszát: ez cT, a fény sebességének és annak az időtartamnak (T) a szorzata, amennyi ahhoz kell, hogy a fénysugár megtegye az alsó és a fölső tükör közti utat. Hogy is volt? Az út hossza egyenlő a sebességnek és az utazással töltött időnek a szorzatával. Ha például egy autó egy órán keresztül 60 kilométeres sebességgel halad, akkor 60 x 1 = 60 kilométernyi utat tesz meg. Könnyen kapjuk az eredményt akkor is, ha az utazás történetesen két óráig tart. Lépten-nyomon az „út = sebesség x idő” formulára van szükség. Mindenesetre ha T-t ismerjük, akkor ki tudjuk számolni, mekkora utat tesz meg a vonat egy fél tiktak alatt: ha a vonat v sebességgel mozog, akkor az óra vT-vel mozdul el fél tik-takonként. Megint arról van szó, hogy „út = sebesség x idő”. Ez a távolság egy derékszögű háromszög egyik
befogója. Mivel az átfogó hosszát ismerjük, a Pítagorasz-tétel segítségével kiszámolhatnánk a másik befogó hosszát, a két tükör távolságát. De álljon meg a menet -ezt a távolságot ismerjük: éppen 1 méter. Pitagorasz tétele tehát most azt mondja, hogy (cT)2 = 12 + (vT)2. Felhívjuk a figyelmet a zárójelekre: azt jelzik a matematikában, hogy a különböző műveletek közül melyiket kell elsőnek elvégezni. Itt például (vT)2 arra utasít, hogy „szorozd össze v-t és T-t, aztán az eredményt emeld négyzetre”.
Most ezt kell csinálnunk.
Lényegében meg is vagyunk. A fény sebességét, c-t ismerjük, és most persze meg van adva a vonat V sebessége is. Az egyenletből most már megkapható T értéke. A legkezdetlegesebb módszer az, ha tippelünk erre az értékre, aztán kipróbáljuk, hogy teljesül-e ezzel az egyenlet. Tipikusan nem, és így újabb és újabb tippeket kell kipróbálni. Egy idő után akár rá is bukkanhatunk a helyes eredményre. Szerencsére most nem kell ez a vacakolás, mert ezt az egyenletet „meg lehet oldani”. Az eredmény T2 = 1/(c2 - v2). Aki ért valamit a matematikához, az mostanra valószínűleg már nagyon unatkozik. Aki nem, az álmélkodhat, honnan vettük ezt a T2 = 1/(c2- v2 ) formulát. Nos, ez itt nem egy algebrakönyv, jobb, ha megbíznak bennünk. Számokat helyettesítve legalábbis ellenőrizhető, hogy helyes az eredmény. Igazából persze T2 jött ki, azaz „T szorozva T-vel”. A T értékét innen négyzetgyökvonással kapjuk.
A mi feladatunkra visszatérve, most már meg tudjuk mondani, milyen tempóban látja ketyegni az órát a peronon álló megfigyelő: egy tiktak az az idő, amíg a fény az alsó tükörről eljut a fölsőre, és megint visszaér - éppen 2T. A T2-re kapott mennyiségből négyzetgyököt vonva és 2-vel szorozva azt kapjuk, hogy 2T = 2/gyök(c2 -v2). Ez az összefüggés teszi lehetővé, hogy kiszámoljuk, mennyi ideig tart a peronon álló megfigyelő számára egy tiktak, ha ismerjük a vonat, illetve a fény sebességét, továbbá azt, hogy milyen messze van egymástól a két tükör. (Ez most 1 méter.) Aki viszont a vonaton ülve figyeli az órát, az úgy találja, hogy egy tiktaknyi idő egyszerűen 2/c, hiszen ebben az elrendezésben a fénysugár 2 méternyi utat tesz meg c sebességgel (út = sebesség x idő, és így idő = út/sebesség). Ennek a két időtartamnak az aránya mondja meg, hogy a peronon álló megfigyelő mérése szerint hányszor lassabban jár az óra a mozgó vonaton. Ez az aránv c/gyök(c2 -v2), ami némi ügyeskedéssel l/gyök(1-v2/c2) alakba is írható. Ez a mennyiség nagyon fontos szerepet játszik a relativitáselméletben, és általában a görög ábécé y (gamma) betűjével szokták jelölni. Vegyük észre, hogy g nagyobb mint 1, legalábbis akkor, ha v/c kisebb 1-nél, azaz a vonat az órával a fedélzetén lassabban halad, mint a fény. A hétköznapi sebességek legtöbbje bizony sokkal kisebb, mint a fénysebesség (ha az autósok számára ismerősebb formában fejezzük ki, fényóránként több mint egymilliárd kilométert tesz meg), és ilyenkor g valóban nagyon közel van az 1-hez. Csak akkor kezd érzékelhető módon különbözni 1-től, ha v a fénysebességnek viszonylag jelentékeny hányada.
Ezzel meg is volnánk a matematikával - sikerült pontosan kiszámolnunk, hogy a peronról nézve hányszorosára lassul le az idő a vonaton. Nézzünk egy számpéldát is, hogy ráérezzünk, mit is mondanak ezek az eredmények. Ha a vonat óránként 300 kilométeres sebességgel halad, akkor v2/c2 igen-igen kicsi: 0,000000000000077 (utána lehet számolni). A megfelelő „időnyújtó” tényező, y értéke ekkor 1 / gyök(1-0,000000000000077) = 1,000000000000039. Ahogy várható volt, ez a hatás jelentéktelen: 100 évi vonatozás mindössze 0,0000000000039 évvel nyújtaná meg az ön életét a peronon várakozó kollégához képest; ez valamivel több, mint egy ezredmásodperc tizede. Ha viszont a vonat a fénysebesség 90 százalékával száguld, akkor ez a hatás sokkal kézzelfoghatóbb. Ilyenkor az időnyújtó y tényező nagyobb 2-nél, ami azt jelenti, hogy a peronon álló megfigyelő az állomás órájához képest kevesebb, mint feleolyan gyorsan látná járni a vonaton elhelyezett órát. Így hangzik Einstein előrejelzése, nekünk pedig, jó tudósok módjára, kísérleti bizonyítékokat kell keresnünk, ha el akarjuk fogadni. Így elsőre mindenesetre elég hihetetlenül hangzik.
Mielőtt elgondolkodnánk azon, miféle kísérlet dönthetné el a vitát, álljunk meg egy kicsit, és nézzük meg, mire jutottunk. Vegyük szemügyre az iménti gondolatkísérletet egy olyan megfigyelő nézőpontjából, aki az órával együtt utazik a vonaton. Az ő számára az óra mozdulatlan, a benne föl-le cikázó fénysugárral együtt. Ugyanazt látja, mint az, aki ugyanennek az órának egy másik példányával üldögél az állomás kávézójában. Az utazónak azt kell tapasztalnia, hogy az ő órája minden 6,67 nanomásodpercben tiktakol egyet, szívdobbanásonként 150 milliószor, mert Galilei nyomán megállapította, hogy az óra hozzá képest mozdulatlan. Eközben az állomáson tartózkodó megfigyelő azt közli, hogy a vonat órájának valamivel több mint 6,67 nanomásodpercre volt szüksége egy tiktakhoz. Így aztán a mozgó óra 150 millió ütése alatt az ő szíve egy picivel több, mint egyet dobban. Ez legalábbis furcsa: a peronon álló megfigyelő úgy tapasztalja, hogy gyorsabban öregszik, mint a vonat utasa.
A vasúti forgalomban közlekedő szerelvények persze messze elmaradnak a fénysebességtől, ott ez a hatás, mint láttuk, elenyésző, noha valóságos. Egy elképzelt világban egy irdatlan hosszú vágányon egy majdnem fénysebességgel száguldó vonaton viszont megsokszorozódik, és így a peronon álldogáló megfigyelő is érzékelheti, hogy gyorsabban öregszik, mint a vonat utasa.
Ami a fizikai kísérletek világát illeti, ha itt akarjuk kimutatni az idő abszolút jellegének tarthatatlanságát, akkor meg kell találnunk a módját, hogy közel fénysebességgel mozgó objektumokat vizsgáljunk, hiszen csak ebben a tartományban lesz a g értéke érzékelhetően nagyobb 1-nél. Ideális esetben olyan objektumokat kellene tanulmányozni, amelyek rendelkeznek valamiféle élettartammal, tehát valamikor megsemmisülnek. Ilyenformán meg lehetne nézni, hogy növekszik-e az élettartamuk, ha nagy sebességgel mozognak.
A tudósok nagy szerencséjére ilyen objektumok léteznek; ami azt illeti, maguk a tudósok is ilyenekből épülnek föl. A parányi szubatomi elemi részecskéket, éppen kicsiny voltuk miatt, könnyen lehet nagy sebességre felgyorsítani. Azért nevezik őket eleminek, mert jelenlegi tudásunk szerint a legkisebb építőkövei mindannak, ami az univerzumban található. Az elemi részecskékről bőségesen lesz még mit mondanunk a későbbiekben, most csak kettejükről, az elektronról és a müonról akarunk beszélni.
Az elektron az a részecske, amelynek mindannyian adósai vagyunk, ugyanis mi magunk is belőlük épülünk fel. Ugyanez az elektron, az elektromos áram részecské-
je áramlik a vezetékeken, hogy kigyújtsa a lámpáinkat és fölmelegítse a sütőinket. A müon minden szempontból olyan, mint az elektron, csak nehezebb. Maguk a fizikusok sem értik igazán, hogy miért látott el minket a természet az elektronnak ezzel a másolatával, amely feleslegesnek látszik, ha nem akarunk mást összerakni, mint bolygókat és embereket. Bármilyen oka van is a müon létezésének, jó hasznát veszik azok a tudósok, akik Einstein relativitáselméletét szeretnék tesztelni. Rövid az élettartama, másfelől igen parányi, és így könnyen gyorsítható nagyon nagy sebességre. Legjobb tudomásunk szerint az elektronok örök életűek, egy nyugalmi állapotban lévő müon ellenben körülbelül 2,2 mikromásodpercig él. (Egy mikromásodperc a másodperc egymilliomodrésze.) Amikor egy müon megsemmisül, majdnem mindig elektron lesz belőle, továbbá két darab szubatomi részecske, két neutrínó, de ezek a részletek most nem fontosak. Most elég annyi, hogy a müonok tényleg elbomlanak. Egy gyorsítóberendezés, a brookhaveni (Long Island, New York) Altemating Gradient Synchrotron (AGS) az Einstein-elmélet nagyon szép kísérleti ellenőrzését tette lehetővé. Az 1990-es évek végén a brookhaveni fizikusoknak sikerült olyan müon-sugárzást létrehozniuk, amely a fénysebesség 99,94 százalékával keringett egy 14 méter átmérőjű gyűrű mentén. Ha a köröző müonok 2,2 mikromásodpercig élnek, akkor ennyi idő alatt 15 kört futnak be. Nos, a valóságban több mint 400 kört tettek meg, az élettartamuk tehát nagyjából a 29-szeresére, valamivel több, mint 60 mikromásodpercre nőtt. Ezek a tények. Einstein láthatóan jó nyomon jár, de vajon mennyire pontos?
Itt tesz értékes szolgálatot az a matematika, amelyet a fejezet egy korábbi részében munkára fogtunk. Pon-
tosan kiszámoltuk, hogy egy adott sebességgel mozgó óra milyen mértékben lassul le egy álló órához képest. Az ott felírt egyenlet megadja, hogy a fénysebesség 99,94 századrészével száguldva mennyivel telik lassabban az idő, azaz hányszorosára nő meg egy müon élettartama. Einstein azt jósolja, hogy a brookhaveni müonok ideje yszorosára nyúlik, ahol y=1/gyök(1-v2/c) a kísérletben pedig v/c = 0,9994. Ha van egy kalkulátor az Olvasó keze ügyében, akkor írja be a számokat, és íme: Einstein formulája 29-et számol ki, éppen a brookhaveni kísérletek során tapasztalt értéket.
Álljunk meg egy kicsit, és gondoljuk át még egyszer, hogy mi is történt itt tulajdonképpen. A Pitagorasz-tételen, valamint Einstein azon föltevésén kívül, hogy a fény sebessége minden megfigyelő számára egyforma, semmi egyebet nem használtunk annak a formulának a levezetéséhez, amely lehetővé tette, hogy megjósoljuk egy müon nevű elemi részecske élettartamát, amikor ez a részecske a fénysebesség 99,94 százalékára gyorsult fel egy brookhaveni gyorsítóban. Azt jósoltuk, hogy 29-szer annyi ideig él, mint nyugalomban lévő társa, és ez az előrejelzés pontosan megegyezik azzal, amit a brookhaveni tudósok tapasztaltak. Minél tovább nézi ezt a dolgot, kedves Olvasó, annál megdöbbentőbb. Isten hozta a fizika világában! Az 1990-es évekre persze Einstein elmélete már bőségesen beigazolódott. A brookhaveni tudósok a müonok egyéb tulajdonságainak a vizsgálatával voltak elfoglalva; Einstein elméletének élettartamnövelő kövekezménye lehetőséget adott rá, hogy tovább tanulmányozhassák őket.
A kísérleti bizonyítékok alapján levonhatjuk a következtetést: az idő képlékeny valami. A különböző emberek (vagy a különböző müonok) ideje más tempóban múlik, attól függően, hogy milyen gyorsan mozognak.
Az időnek ezen a nyugtalanító viselkedésén túl egy másik probléma is kirajzolódni látszik, amelyre a szem-füles Olvasó talán fölfigyelt. Gondoljunk vissza a gyorsítóban keringő müonokra. Helyezzünk el képzeletben egy célvonalat a gyűrűben, és számláljuk meg, hányszor haladnak át rajta a keringő müonok rövid életük során. A müonokat szemmel tartó fizikus 400-at számlál, hiszen megnőtt a részecskék élettartama. A kérdés most az, hogy ha egy megfigyelő a müonok sebességére gyorsulva velük együtt köröz, akkor ő vajon hányszor halad át a képzeletbeli célvonalon? Az egyetlen elfogadható válasz a 400, másképpen a világnak nem volna értelme. A velük együtt haladó megfigyelő saját órája szerint viszont a müonok csupán 2,2 mikromásodpercig élnek, hiszen hozzá képest nyugalomban vannak, és nyugalmi állapotban ennyi a müon élettartama. A megfigyelő és a müon ezek szerint 400 kört tesznek meg a gyűrű mentén, mielőtt a müon elbomlana. Mi folyik itt? Ez a négyszáz kör egyszerűen nem fér bele a 2,2 mikromásodpercbe. Szerencsére látszik egy kiút ebből a dilemmából: a müon perspektívájából nézve éppenséggel csökkenhetett a gyűrű kerülete. Hogy minden a helyére kerüljön, a müonnal együtt keringő megfigyelőnek a gyűrű kerületét, azaz egy-egy kör hosszát éppen annyiszor kell kisebbnek érzékelnie, ahányszorosára a müon élettartama megnőtt. A tér tehát szintén képlékeny valami, és az idő nyúlásával együtt ez is megfigyelhető jelenség. A mozgó tárgyak összezsugorodnak. A példa bizair ugyan, de képzeljük el, hogy egy 4 méter hosszú autó megpróbál beállni egy 3,9 méter hosszú garázsba. Einstein azt mondja, hogy ha az autó a fénysebességnek legalább a 22 százalékával manőverezik, akkor bepréselődhet a garázsba -legalábbis egy szemvillanásnyi időre, mielőtt kidöntené a hátsó falat. Ha követte a korábbi számolást, akkor ellenőrizheti, hogy valóban 22 százalék a megfelelő érték. Ha ennél gyorsabban megy az autó, akkor 3,9 méternél rövidebbre zsugorodik, ha pedig lassabban, akkor nem zsugorodik össze eléggé.
Már az elemi részecskék világában is elég különös, hogy az idő múlása lelassul és a távolságok megrövidülnek, de Einstein gondolatmenete emberi léptékben is érvényes. Egykor talán majd az emberi faj túlélése múlhat ezen a sajátos jelenségen. Képzeljük el a földi életet a távoli jövőben. Néhány milliárd év, és a Nap az élet fenntartójából, a fény és hő megbízható forrásából fortyogó, instabil szörnyeteggé változik, amelynek halálos vöröslő örvényei elnyelhetik a bolygónkat. Ha eddigre még nem pusztult el az emberiség, akkor elkerülhetetlenné válik, hogy elmeneküljön az ősi bölcsőből, és utat keressen a csillagok között. Közvetlen környezetünk, a Tejút, ez a százmilliárd csillagnyi spirál mintegy 100 000 fényév kiterjedésű. A fénynek 100 000 évre van szüksége, hogy bejárja - legalábbis a Földön végzett számítás szerint. Ez utóbbi záradék szükséges volta remélhetőleg világos annak fényében, amit eddig elmondtunk. Ügy tűnhet, hogy az emberiség soha nem juthat messzebb a bolygónkhoz nagyon közeli (legalábbis csillagászati léptékben) néhány csillagnál, hiszen még a fény is 100 000 év alatt éri el a Tejút távoli zugait, ilyen utazásra pedig mi aligha vállalkozhatunk. És itt segít Einstein. Ha egy űrhajó közel fénysebességgel halad, akkor a csillagok közötti távolságok összezsugorodnak, annál nagyobb mértékben, minél jobban megközelíti a hajó sebessége ezt az értéket. Ha sikerülne felgyorsulnunk a fénysebesség 99,99999999 százalékára, akkor a tejútrendszerből kijutva elérhetnénk a majdnem 3 millió fényévnyire lévő szomszédos galaxist, az Andromédát, és ez nem tartana tovább 50 évnél. Ez még így is nagyon nehéz feladatnak látszik, és tényleg az. Az nagy kérdés, hogy miképpen gyorsítható föl egy űrhajó ilyen szédítő sebességre, de ez nem változtat a lényegen: a deformálódó tér és idő korábban elképzelhetetlen módon teszi lehetővé, hogy eljuthassunk az univerzum távoli vidékeire. Ha ön, kedves Olvasó, tagja volna az emberiség első Androméda-expedíciójának, amely ötven év alatt érkezne meg a szomszédos galaxisba, akkor elképzelhető, hogy a gyermekei, akik már a világűrben születnek, vissza szeretnének térni az óhazába, hogy a saját szemükkel lássák, milyen is a Föld, az esti mesék kék bolygója. Ha az űrhajó visszaindul, és újabb ötven év alatt megérkezik a Földre, akkor száz évig tartana ez az egész utazás az Andromédáig és vissza. Érkezéskor azonban azt tapasztalnák, hogy a Földön eközben rettenetesen hosszú idő, 6 millió év telt el. Még az sem biztos, hogy fennmaradt az őket útra bocsátó civilizáció. Rémítő és csodálatos az a világ, amelybe Einstein nyomában bemerészkedtünk.
4. A TÉRIDŐ
Az eddigiekben a történeti utat követve igyekeztünk bemutatni, hogyan jött létre a relativitáselmélet; okoskodásaink nem sokban különböztek Einstein egykori gondolatmenetétől. Meg kellett barátkoznunk azzal, hogy a tér, ahol életünk eseményei zajlanak, nem valami hatalmas színpad, és hogy az idő sem abszolút, nem mindenütt telik ugyanúgy. Ehelyett valami nagyon is képlékeny és szubjektív tér-és időfogalom látszik kirajzolódni. Eltűnt az égboltról a nagy óra, és bizonyos értelemben eltűnt maga az égbolt is. Teljesen érthető, ha a világot valami hatalmas dobozfélének érzékeljük, amelyben mindenki megy a dolga után, mert ez az a kép, amely lehetővé teszi, hogy képesek legyünk gyorsan és sikeresen tájékozódni benne. Térérzéknek nevezhetnénk azt az adottságunkat, amelynek révén a környezetünkben zajló változásokat, mindenfajta mozgást egy elvont viszonyítási rendszerben észlelünk, és ez a képességünk minden bizonnyal jó szolgálatot tesz, ha el akarjuk kerülni a ragadozókat, ennivalóhoz akarunk jutni, és egyáltalán, a fenyegető külvilág kihívásai között életben akarunk maradni.
Azt viszont nincs okunk feltételezni, hogy ez a mélyen belénk plántált modell, amelyet évmilliók során vésett a génjeinkbe a természetes kiválasztódás, több volna, mint modell. Ha túlélési előnyt jelent az, ahogyan a világot szemléljük, akkor előbb-utóbb ez a szemléletmód válik dominánssá. Hogy tudományosan helyes-e
vagy sem, az érdektelen. Mi viszont, mivel úgy döntöttünk, elfogadjuk a Faraday munkapadján lefolyt kísérletek eredményeit és azok Maxwell-féle magyarázatát, tudóshoz illő módon elvetettük azt a barátságos tér-és időmodellt, amely segítette őseinket, hogy megéljenek és boldoguljanak Afrika szavannáin. Sok millió év tapasztalatai formálták és igazolták vissza ezt a bennünk rögzült modellt, és zavarba ejtő érzés lehet sutba dobni. Amikor a zűrzavar nyomán támadó értetlenség helyére -jó esetben - a megvilágosodás felemelő élménye lép, az a tudomány diadala. Ha most az előbbit átélve az Olvasó esetleg elbizonytalanodik, bízunk benne, hogy része lesz az utóbbiban, mire a könyv végére ér.
Ez a könyv nem tudománytörténet. A lehető legvilágosabban szeretnénk elmagyarázni a tér és az idő fogalmát, és az a véleményünk, hogy a relativitáselmélet megértéséhez nem feltétlenül a történetén keresztül vezet a jól járható út. Száz év telt el Einstein forradalma óta, és ma már tudjuk, hogy a teret és az időt átfogóbb és kielégítőbb módon is lehet szemlélni. Így aztán ahelyett, hogy túlságosan belebonyolódnánk az egykori tankönyvek magyarázataiba, vágjunk neki a dolognak újra, tiszta lappal. Eközben azt is megtudhatjuk, mire gondolt Minkowski, amikor arról beszélt, hogy a teret és az időt egyetlen entitássá kell egyesíteni. Egy ilyen elegánsabb leírás birtokában aztán jó eséllyel foghatunk az E = mc2 egyenlet igazolásához, ami végül is könyvünk fő célja.
Az a helyzet, hogy Einstein elmélete csaknem mindenestül leírható a geometria nyelvén. Ez úgy értendő, hogy kell ugyan némi algebra a dologhoz, de elsősorban ábrákra és megfelelő fogalmakra van szükség. Ami az utóbbiakat illeti, az elmélet három alapvető fogalomra épül: az invariancia, az okság és a távolság fogalmára. Aki nem fizikus, az e három szó közül kettőnek valószínűleg nem ismert a jelentését; a harmadik minden bizonnyal ismerős, de mint látjuk majd, egyáltalán nem magától értetődő.
Az invariancia a modem fizika központi fogalma. Tegye le a könyvet, és nézze meg alaposan, amit maga előtt lát. Most forduljon meg és nézzen az ellenkező irányba. Hogy mit lát a szobájából, az attól függ, honnan néz rá, a természet törvényei viszont minden irányból nézve ugyanolyanok. Mindegy, hogy észak, dél, kelet vagy nyugat felé fordul, a gravitáció ugyanolyan erővel hat önre, és mindig a talaj felé vonzza. Ha forgatni kezdi a tévéjét, attól továbbra is működik majd, az autója pedig elindul, akár Londonban, akár Los Angelesben, akár pedig Tokióban parkolta le. Ezek a példák azt illusztrálják, hogyan érvényesül az invariancia a természetben. Úgy tűnik, mintha valami nagyon nyilvánvaló dologról beszélnénk. De rendkívül termékeny megközelítésnek bizonyul, ha természeti törvényeinktől megkívánjuk, hogy invariánsak legyenek. Az előbbiekben kétfajta invarianciára láttunk példát. Amikor azt írjuk elő, hogy a természet törvényei ne változzanak meg, ha más irányból nézve határozzuk meg őket, akkor forgási invarianciáról beszélünk. Hasonlóan, ha azt követeljük meg, hogy a természet törvényei ne változzanak meg, ha innen oda megyünk, akkor eltolási invarianciáról beszélünk. Ezek a nyilvánvalónak látszó előfeltevések módfelett hatásos eszköznek bizonyultak Emmy Noether kezében, aki Albert Einstein szerint a matematika történetének legjelentősebb nőalakja volt. 1918-ban Noether publikált egy tételt, amely az invariancia, illetve bizonyos fizikai mennyiségek megmaradása között fennálló mély kapcsolatra mutatott rá. A fizika megmaradási tételeiről többször is esik majd szó a későbbiekben, itt és most Noether alapvető eredményét ismertetjük. Abban a speciális esetben, amikor különböző irányok mentén szemléljük a világot, és azt tapasztaljuk, hogy a természet törvényei ettől nem változnak meg, a tétel szerint létezik egy fizikai mennyiség, amely a forgás során állandó marad. Ezt a megmaradó mennyiséget esetünkben perdületnek vagy szögmomentumnak nevezik. Ami az eltolási invaranciát illeti, a megfelelő megmaradó mennyiséget lendületnek vagy momentumnak nevezik. Hogy ez hogyan működik, azt egy talán önkényesnek látszó, de igen érdekes fizikai jelenség példáján igyekszünk elmagyarázni.
A Hold minden évben 4 centimétemyit távolodik a Földtől. Mi ennek az oka? Képzeljük el a forgó földgolyó felett mozdulatlanul lebegő Holdat. Az óceánok vize a Hold vonzóerejének engedelmeskedve a Holddal szemközt valamelyest megemelkedik, és a tengelye körül forgó földgolyó nap mint nap áthalad az így kialakuló „hullámsüveg” alatt. Ez az oka az árapály jelenségének. Mármost a víztömeg és a Föld felülete között fellépő súrlódás lassítja a Föld forgását. A hatás nagyon kicsi, de mérhető: a földi napok egyre hosszabbak lesznek, százévenként nagyjából két ezredmásodperccel. A forgás sebességét a fizikusok a szögmomentum révén mérik meg, így a fentiek szerint az idők során ez a mennyiség, a Föld szögmomentuma, csökken. Noether azt mondja, hogy mivel a világ minden irányból nézve ugyanolyan (vagy, szakszerűbben szólva, a természet törvényei invariánsak a forgatásokra nézve), azért érvényes a szögmomentum megmaradásának a törvénye, a szögmomentumok összmennyisége nem változhat. Mi történik így azzal a szögmomentummal, amelyet a Föld az árapály-súrlódás miatt elveszít? Nos, átadódik a Holdnak, amely így a Föld forgásának lassulását ellensúlyozva gyorsabban kering a Föld körül. Ez pedig azzal jár, hogy valamelyest távolabb kerül tőle. Ahhoz, hogy megmaradjon a Föld—Hold-rendszer teljes szögmomentuma, a Holdnak egy távolabbi pályára kell kerülnie: így ellentételeződik a Föld forgásának a lassulása. Ez a hatás valóságos és tulajdonképpen meglepő: a Hold, amint évről évre messzebb sodródik a Földtől, hogy megmaradhasson az együttes szögmomentum. Italo Calvinót, az olasz regényírót annyira elbűvölte ez a jelenség, hogy „A Hold távolsága” című novellájában elmeséli, hogy valamikor réges-régen az őseink még minden éjjel elhajóztak az óceánon, hogy találkozzanak a lemenő Holddal, és létráikon felkapaszkodjanak rá. Ahogy teltek az évek, és a Hold egyre távolabb sodródott, a Hold szerelmesei választás elé kerültek: örökre ottrekednek a Holdon, vagy visszatérnek a Földre. Ez a meglepő és Calvino tollán igen költői jelenség mindenestül megmagyarázható az invariancia elvont fogalma, illetve a fizikai mennyiségek megmaradása és az invariancia között fennálló mély kapcsolat alapján.
Nem lehet eléggé hangsúlyozni az invariancia jelentőségét a modern tudományban. Tudományként a fizika olyan univerzális fogalmi rendszer megalkotására törekszik, amelyben a törvények nem véleményként fogalmazódnak meg. Fizikusként megpróbáljuk földeríteni a kozmosz invariáns tulajdonságait, mert, ahogy Noether jól tudta, ezek átfogó, lényegi felismerésekhez vezethetnek. Ezeket az invariáns tulajdonságokat azonban távolról sem könnyű meglátni, mert a természet egyszerűsége és szépsége általában rejtve marad.
A tudomány egyetlen területén sem igaz ez olyan mértékben, mint a modern részecskefizikában. A részecskefizika a szubatomi világot vizsgálja; az univerzum végső építőköveit keresi, illetve az ezeket összetartó kölcsönhatásokat. Ezek egyikével, az elektromágneses kölcsönhatással már találkoztunk. Megértése vezetett a fény természetének ahhoz a magyarázatához, amelynek nyomán elindultunk a relativitáselmélethez vezető úton. A szubatomi világban két további kölcsönhatás is
működik. Az erős nukleáris kölcsönhatás cartja egyben az atommagokat az atomok belsejében, a gyenge nukleáris kölcsönhatás pedig azért felelős, hogy fénylenek a csillagok, továbbá a radioaktív bomlás bizonyos fajtáiért; a gyenge nukleáris kölcsönhatás az alapja például a tárgyak életkorát vizsgáló radiokarbon kormeghatározásnak. A negyedik kölcsönhatás a gravitáció, talán a legismertebb, és mind között a leggyengébb. Mind a mai napig Einstein általános relativitáselmélete a gravitáció legjobb elméleti leírása; a könyv utolsó fejezetében látjuk majd, hogy ez valójában a tér és az idő elmélete. Ez a négy kölcsönhatás az, amely mindössze tizenkét alapvető részecske között érvényesülve létrehozza mindazt, ami a világunkat alkotja: a Napot, a Holdat, a csillagokat, a Naprendszer bolygóit, de a tulajdon testünket is. Micsoda egyszerűség ez az univerzum első ránézésre kimeríthetetlen változatosságához képest!
Ha kinéz a szobája ablakán, akkor talán egy városra lát, amint a délutáni napfény visszaverődik az acél-és üvegtornyokon. Az is tehet, hogy gondosan elkerített rétek zöldjében legelésző tehenek fekete-fehér foltjaira esik a pillantása. De akár város van odakint, akár vidéki táj, szinte bármelyik ablakon kinézve az emberi beavatkozás jól kivehető nyomaival találkozunk. Civilizációnk mindenhová benyomul, a XXI. század fizikája pedig azt állítja, hogy ez a sokféleség a lényegét tekintve nem több néhány részecskefajta matematikai körtáncánál, amely immár 13,7 miliárd éve zajlik, ezeket a részecskéket pedig négyféle természeti erő tartja mozgásban. Az emberi agy bonyolultsága, illetve az emberi szellem és alkotóképesség nagyszabású együttműködésének mindenütt tapasztalható eredményei egyaránt elkendőzhetik a természet eredendő egyszerűségét és eleganciáját. A tudósnak az a feladata, hogy olyan tulajdonságokat derítsen fel, amelyek, mint valami rosette-i kő, lehetővé teszik a természet nyelvének megfejtését, és feltárják annak minden szépségét.
Az eszköz pedig, amelynek révén felismerhetjük és hasznosíthatjuk a természetnek ezeket az adottságait, a matematika. Ez a kijelentés önmagában is mély kérdéseket vet föl, és egész könyvek születtek azért, hogy érthetően kifejtsék, mi lehet ennek az oka. Ismét Wigner Jenőt idézve: a „természettörvények létezése egyáltalán nem természetes, még kevésbé az, hogy az ember képes azokat felfedezni”. Talán soha nem fogjuk megérteni a matematika és a természet kapcsolatának jellegét, de története során bebizonyosodott, hogy a matematika a világ mélyebb megértésének megbízható eszközévé segít elrendezni a gondolkodásunkat.
Ahogy már eddig is hangsúlyozni próbáltuk, ebben a meggyőződésben írják föl az egyenleteiket a fizikusok, maguk az egyenletek pedig nem szólnak másról, mint a külvilág „szereplői” között fennálló kapcsolatokról. Ilyen egyenlet például a sebesség = út/idő, amellyel az előző fejezetben találhozhattunk a fényórákról szóló részben. A megfelelő jelölésekkel ez az egyenlet v = x/t alakú, ahol v a sebesség, x a megtett út, t pedig az x távolság megtételéhez szükséges idő. Ez nagyon egyszerű dolog: ha például ön 60 kilométernyi utat tett meg 1 óra alatt, akkor óránként 60 kilométeres sebességgel utazott. Mármost azok a legérdekesebb egyenletek, amelyek alkalmasak arra, hogy a természetet minden megfigyelő számára ugyanúgy írják le. Ez azt jelenti, hogy az ilyen egyenletek kizárólag invariáns mennyiségekre vonatkozhatnak. Az univerzumban elfoglalt helyzetünktől függetlenül meg kéne tudnunk egyezni abban, hogy mi az, amit megmértünk. A józan ész azt mondja, hogy a tér bármely két pontja közti távolság ilyen invariáns mennyiség, és egészen Einsteinig ez így is volt. Az előző fejezetben viszont kiderült, hogy egyáltalán nem az. Jól jegyezzük meg: a hétköznapi józan ész nem csalhatatlan. Hasonlóan, az idő múlása egyedi, és attól függ, hogy milyen gyorsan mozognak egymáshoz képest az órák. Einstein felborította a dolgok megszokott rendjét, és ha az univerzum megbízható leírására törekszünk, akkor nem hivatkozhatunk többé a térre vagy az időre. A természet mély összefüggéseit kereső fizikus számára tehát a v = x/t egyenlet nem tartozik az alapvető kapcsolatok közé, mert nem invariáns mennyiségek viszonyát fejezi ki. A tér és az idő trónfosztásával a fizika alapjait ingattuk meg. Mit tehetünk ebben a helyzetben?
Például azt, hogy az elveszett rendet egy föltevéssel vagy sejtéssel kíséreljük meg helyreállítani. Ez így elég fennkölten hangzik, pedig gyakran csak találgatásról van szó. A tudósok lépten-nyomon ilyesmihez folyamodnak, mivel nem a módszer eleganciája az, amit egy alapvető elmélet díjazásakor elismernek. A sikeres találgatás is célhoz vezet, ha összhangban van a kísérleti tényekkel. A mi sejtésünk bizony igen radikális: a tér és az idő egyetlen entitássá vonhatók össze, amelynek a neve „téridő"; a téridőben pedig a távolság invariáns. Hangzatos kijelentés; majd kiderül, mi van mögötte. Jobban meggondolva, talán nem annyira merész, mint első hallásra vélnénk. Ha nincs többé az abszolút távolság és az egyenletesen múló idő ősi bizonyossága, akkor talán az lehet a kiút, ha valamiképpen egyesíteni próbáljuk ezt a két, látszólag elszigetelt fogalmat. A közvetlen feladatunk pedig az, hogy a távolság olyan mértékére találjunk a téridőben, amely nem függ attól, hogy hogyan mozgunk egymáshoz képest. Kéretik majd nagyon figyelni, ha meg akarjuk érteni, hogyan működik a térnek és az idő-nek ez a szintézise. Egyáltalán, miféle távolság az, amit keresünk?
Tegyük fel, hogy reggel hétkor fölkelek az ágyamból, és nyolckor befejezem a reggelimet. Ekkor mindazok alapján, amit tapasztalatból tudunk, igaz az alábbi két kijelentés:
(1) Az ágyam és a konyha térbeli távolságát 10 méternek mérem, de ha valaki nagy sebességgel cikázik át a színen, akkor ettől különböző távolságot mér;
(2) Az órám szerint egy órán át reggeliztem, egy nagy sebességgel mozgó megfigyelő viszont más időtartamot jegyez föl.
A föltevésünk most már úgy szól, hogy a felébredésem és a reggeli befejezése közti „távolság” a téridőben minden megfigyelő számára ugyanakkora: invariáns. Egy ilyen közmegegyezés kulcsfontosságú, ugyanis olyan természeti törvényekhez akarunk eljutni, amelyek éppen erre a valamire, a téridőre vonatkoznak. A fenti állítás csupán találgatás, tipp, hogy milyen a világ, anélkül hogy bármit is igazoltunk volna belőle. Még abban sem állapodtunk meg, hogyan számoljuk ki a távolságot a téridőben. Mielőtt azonban folytatnánk, meg kell magyaráznunk a második kulcsszavunk, az okság jelentését.
Az okság egy újabb, ránézésre nyilvánvalónak látszó fogalom, a felhasználásával azonban mély következtetésekhez juthatunk el. Röviden szólva arról a követelményről van szó, hogy ok és okozat alapvető viszonyában nem cserélhető föl a sorrend. Az ön születésében kulcsszerepet játszott az édesanyja, és a térnek és időnek semmilyen épeszű elképzelésével sem egyeztethető össze az a lehetőség, hogy ön előbb jöjjön a világra, mint az édesanyja. Merő képtelenség volna egy olyan univerzum, amelyben ilyesmi mégis bekövetkezhetne.
Ebben a formában vélhetően senki sem vitatja az okság követelményét.
Tanulságos viszont, ahogy ezt az emberek a mindennapokban hajlamosak figyelmen kívül hagyni. Vegyük például a próféciákat. Nostradamus és a hozzá hasonlók sokak szemében még ma is nagy becsben állnak, mert álmukban vagy valamiféle transzban állítólag képesek voltak meglátni jövőbeli eseményeket. Másképpen szólva, még Nostradamus életében láthatóvá lettek olyan események, legalábbis az ő számára, amelyekre évszázadokkal a halála után került sor. Ő 1566-ban halt meg, de látni vélte az 1666-os londoni tűzvészt, Napóleon, illetve Hitler felemelkedését, az Egyesült Államok elleni, 2001. szeptember 11-én végrehajtott támadásokat, és -ez a mi személyes kedvencünk - az Antikrisztus eljövetelét Oroszországban 1999-ben. Az Antikrisztus még várat magára, de ne zárjuk ki, hogy már úton van; ha befut, mielőtt e könyv nyomdába kerülne, természetesen készek vagyunk korrigálni a szöveget.
De fordítsuk komolyra a szót: Nostradamus halála egy „esemény”, aminthogy Adolf Hitler születése vagy a nagy londoni tűzvész is az. Ahhoz, hogy Nostradamus megfigyelhessen egy olyan eseményt, mint a londoni tűzvész, szükséges, hogy fölcserélődjék e két esemény bekövetkezésének a sorrendje. Így fogalmazva majdhogynem semmitmondó a következtetés: Nostradamus a tűzvész előtt meghalt, tehát nem figyelhette meg. Ehhez ugyanis a tűzvész nevű eseménynek megfigyelhetőnek kellett lennie a Nostradamus halála nevű esemény bekövetkezése előtt, és így a két esemény sorrendjének valóban föl kellett cserélődnie. Van itt egy lényeges finomság: Nostradamus akár okozója is lehetett a tűzvésznek. Elképzelhető, hogy letétbe helyezett egy nagyobb summát, és ez valakit arra ösztökélt, hogy 1666. szeptember másodikán valamivel éjfél után lángba borítsa a
Pudding Lane-c. Ezzel okozati kapcsolatba kerülnének Nostradamus életének és halálának eseményei azokkal az eseményekkel, amelyek a nagy londoni tűzvésszel kapcsolatosak. Ahogy majd látni fogjuk, az a helyzet, hogy csak az egymással ilyen oksági kapcsolatban álló események sorrendje nem cserélhető föl. Einsteinnél ok és okozat viszonya szent és sérthetetlen.
Vannak olyan események, amelyek mind a térben, mind pedig az időben egymástól elegendően távol zajlanak le ahhoz, hogy egyiküknek se legyen semminemű kihatása a másikra. Figyelemre méltó módon az ilyen események sorrendje felcserélhető. Einstein elméletében van egy kiskapu, amely lehetővé teszi két esemény sorrendjének a fölcserélését, feltéve, hogy ez a csere semmilyen módon nem befolyásolja az univerzum állapotát. A későbbiekben pontosan elmagyarázzuk, mit jelent itt az „elegendően távol”. Most annyit, hogy az okság imént bevezetett követelményét axiómának tekintjük, amelynek kulcsszerepe lesz a téridő elméletének felépítésekor. A végső próba persze az, hogy az így kapott elmélet milyen sikerrel jósolja meg a kísérletek eredményeit. Nostradamusról egyébként el kell mondanunk, hogy egy jóslata legalábbis beteljesült. Egy minden korábbinál kínzóbb köszvényrohama közben állítólag még közölte a titkárával, hogy „Mire fölkel a nap, már nem leszek az élők sorában”. Másnap reggel holtan találták a padlón.
Mi köze az okságnak a téridőhöz, azon belül is a téridőbeli távolságokhoz? Nos, amint majd látjuk, az okság követelménye oly mértékben határozza meg a téridő szerkezetét, hogy nem is nagyon marad választásunk. Egyetlenegy módon lehet csak összeszerkeszteni a teret és az időt úgy, hogy az így létrejövő struktúrában továbbra is fennálljon a dolgok oksági sorrendje. Bármilyen más elrendezés megsértené az okság elvét, és képtelen kalandokra adna lehetőséget. Visszamehetnénk az időben, hogy megakadályozzuk a saját születésünket, Nostradamus pedig egészségesebb életmódot követve esetleg elkerülhette volna a köszvényt.
3. ábra
Ideje visszatérnünk a téridőbeli távolság mibenlétének tisztázásához. Egyelőre tegyük félre az időt, és gondoljuk át, amit a jól ismert háromdimenziós távolságról tudunk. Tegyük fel, hogy két város távolságát akarjuk lemérni egy térképen. Aki már volt hosszabb repülő-úton, és eközben alkalma nyílt figyelni a gép útját a fedélzeti információs rendszer képernyőjén, megerősítheti, hogy a Föld felszínének bármely két pontja közötti legrövidebb útvonal görbének látszik. Ezt a görbét főkörnek nevezik. A 3. ábrán a Föld egy részletének térképe látható, amelyen megrajzoltuk a legrövidebb útvonalat Manchester és New York között. A földgömbön szemlélve világos a dolog, de így, elsőre mégis szokatlan, hogy két pont között egy görbe mentén vezet a legrövidebb út. Ennek az az oka, hogy a Föld gömbölyű, a felszíne nem sík. Arról is a földfelszín görbültsége tehet, hogy némely síkbeli térképen például Grönland sokkal nagyobbnak látszik Ausztráliánál, holott valójában kisebb. A lényeg: két pont között csak olyankor egyenes a legrövidebb útvonal, ha a tér lapos: az euklideszi asztal háromdimenziós változata. A szakma azt mondja erről, hogy ebben az esetben a tér geometriája euklideszi. Eukleidész nem tudta, és igazság szerint egészen a XIX. századig nem is derült ki, hogy a térnek ez a geometriája csupán egy a számtalan különböző geometria közül. Matematikai szempontból ezek mindannyian kifogástalanok, és némelyikük alkalmas a természet leírására. Egy példa éppen a Föld felülete, amelynek nemeuklideszi a geometriája. Két pont között ilyenkor nem az euklideszi egyenes a legrövidebb út.
További megszokott euklideszi tulajdonságok is sérülnek a Föld felületén. Például egy háromszög belső szögeinek az összege immár nem 180 fok, az észak-déli irányú párhuzamos egyenesek pedig metszik egymást, mégpedig a pólusokban. Ha Eukleidész nem segít, akkor nekünk kell kiderítenünk, hogyan lehet kiszámolni a távolságokat az olyan nemeuklideszi terekben, mint például a Föld felülete. Lemérhetnénk például a távolságokat egy földgömbön, mondjuk egy darab zsineggel, így nem okoz problémát a felszín görbülete. Egy pilóta ugyanígy kifeszíthet egy zsineget a földgömbjén két város között, megmérheti, milyen hosszú, aztán megszorozhatja ezt az értéket a Föld és a földgömb méretének az arányával. De mi van, ha nincs kéznél földgömb, vagy éppenséggel számítógépes programot kell írnunk, amely segíti a repülőgépek navigációját? Ez a zsinegezés egyébként sem hangzik valami meggyőzően; egy egyenlet kéne ide, amelyik kiszámolja a földfelszín bármely két pontjának a távolságát, ha tudjuk, melyik szélességi, illetve hosszúsági körön helyezkednek el a pontok, és persze ismerjük a Föld alakját és a méretét. Nem is túl nehéz ilyen egyenletet felírni, valamelyes matematikai
előképzettséggel bárki megpróbálkozhat vele. Most nincs rá szükségünk, legyen elég annyi, hogy van ilyen egyenlet, és nagyon másképp néz ki, mint az euklideszi „asztallap” hasonló összefüggései. De lehetővé teszi, hogy egy gömb felszínén bármely két pont távolságát kiszámoljuk, olyasformán, ahogy Pitagorasz tétele segítségével ki tudjuk számolni egy asztallap két pontjának a távolságát (az átfogót), ha ismerjük a pontok távolságát az asztallap széleitől (a befogókat). Mivel az egyenesek Eukleidész hatáskörébe tartoznak, bevezetünk egy általános elnevezést a két pontot összekötő legrövidebb vonalra. Ez az elnevezés minden esetben használatos, akár euklideszi a tér, akár nem. Geodetikus vonalnak nevezik; a Föld felszínén például ilyen geodetikus vonalak a főkörök, a lapos térben pedig az egyenesek. De ne szaporítsuk tovább a szót; a közönséges háromdimenziós térben nem sok újat tudunk mondani a távolságról. Más dolgunk van: azt kell tisztáznunk, hogyan mérjük a távolságot a téridőben. Lépjünk tovább, és vegyük be a játékba az időt is.
Térjünk vissza a bevezető példához, amikor ébredés után megreggeliztünk a konyhában. Eközben minden további nélkül mondhattuk volna azt, hogy az ágyunk és a konyha térbeli távolsága 10 méter. Ugyanígy beszélhettünk volna arról - bár némileg mesterkélten hangzik -, hogy az ébredésünk és a reggeli befejezésének időbeli távolsága 1 óra. Az időre nem szoktunk így gondolni, mert nem a geometria nyelvén beszélünk róla. Valami olyasmit mondanánk inkább, hogy „Egy óra telt el ébredéstől a reggeli befejezéséig”. Az pedig egyenesen sületlenségnek hangzik, hogy „10 méter telt el, miközben az ágyból fölkelve leültem a konyhában”. A tér az tér, az idő pedig idő, a kettőt nem kéne összekeverni. Mi most az egyesítésükre szántuk el magunkat; az a gyanúnk ugyanis, hogy csak így teremthetők meg azok a fogalmi keretek, amelyek között Maxwellnek is és Einsteinnek is helye van. Lépjünk tehát tovább, és nézzük, hová vezet mindez. Ha Ön nem hivatásos tudós, akkor a most következő fejtegetéseket az eddigieknél bonyolultabbnak találhatja, ugyanis ezúttal minden tekintetben elvont módon okoskodunk majd. A tudomány erejét éppen gondolkodás módjának elvontsága adja, de ugyanezen okból találják sokan nehéznek; a mindennapok során ugyanis nem nagyon használjuk ezt a képességünket. Az elektromos és a mágneses mezőkről szólva már találkoztunk elvont, mély eszmefuttatásokkal; megnyugtatásul: véleményünk szerint a tér és az idő egyesítéséhez szükséges absztrakció valószínűleg nem fog akkor nehézséget okozni.
„Időbeli távolságról” beszélve valójában úgy gondolunk az időre, mint valami újabb dimenzióra. Mára megszokottá vált a háromdimenziós jelző 3D rövidítése; a szó és a rövidítés arra utal, hogy a térnek három dimenziója van: fel és le, balra és jobbra, előre és hátra. Ha az időt is be akarjuk illeszteni ebbe a rendszerbe, hogy értelmezni tudjuk a távolságot a téridőben, akkor valamilyen értelemben négydimenziós teret készítünk. Az időbeli dimenzió viszont másféle, mint a térbeliek. A térben teljesen szabadon mozoghatunk, az időben viszont csak egy irányban. Az időt egyáltalán nem úgy észleljük, mint a teret. Mindez persze nem áthatolhatatlan akadály. Arra az absztrakciós szintre kellene eljutnunk, hogy az időre „csupán újabb dimenzióként” tekintsünk. Ha ez az ugrás túl nagy, akkor segíthet egy gondolatkísérlet: képzeljen el egy teremtményt, amelyik csak előre és hátra, illetve balra és jobbra tud mozogni. Soha nem érzékeli, hogy létezik fel és le - lapos világban él. Ha valaki azzal áll elő, hogy teremtményünk próbáljon elképzelni egy további, harmadik dimenziót, síkbeli elméje lehetetlen feladattal szembesülne. De ha volna benne matematikai véna, akkor boldogan fogadná ezt a lehetőséget. Ha elképzelni nem is tudná ezt a titokzatos harmadik dimenziót, legalább utána tudna számolni. Valahogy így vagyunk a négydimenziós térrel. Ahogy halad előre a történet, egyre természetesebben gondolhatunk majd úgy az időre, mint ami „csak egy újabb dimenzió”. A legelső dolog, amit megtanítunk a hallgatóinknak a manchesteri egyetemen, amikor fizikusi tanulmányaikat elkezdik, hogy bizony bárki elveszítheti a fonalat, mindenkivel megeshet, hogy összezavarodik. Nagyon kevesen vannak, akik első hallásra átlátják a bonyolult fogalmakat. A mélyebb megértés felé vezető úton kicsiny léptekkel kell haladni. Ahogy Douglas Adams mondja: „Ne ess pánikba!”
Vegyünk is vissza a tempóból, és nézzük a dolgokat a leghétköznapibb módon: úgy, ahogy megtörténnek. Felébredünk, elkészítjük a reggelit, megesszük a reggelit és így tovább. Egy dolog bekövetkezését a „téridő egy eseményének” fogjuk nevezni. Egy eseményt négy szám segítségével lehet egyértelműen megadni a téridőben: három térbeli koordinátával és egy időbelivel: előbbiek azt mondják meg, hogy hol, az utóbbi pedig azt, hogy mikor következett be a szóban forgó esemény. A térbeli koordináták bármelyik jól bevált rendszere használható: lehetnek például a szélességi és a hosszúsági körök, illetve a tengerszint feletti magasság. Miközben ön békésen alszik az ágyában, a koordinátái mondjuk az északi szélesség 53° 28' 2,28", nyugati hosszúság 2° 13' 50,52", és történik mindez 38 méterrel a tenger szintje fölött. Ahhoz, hogy az időkoordinátát is meg tudjuk mondani, kell egy óra. (Mivel az idő nem univerzális, az egyértelműség kedvéért pontosan meg kell mondanunk, kinek miféle órájáról van szó.) Akárhogy is, például greenwichi idő szerint reggel hét órakor megszólal az ébresztő, ön pedig fölébred. Négy számunk van tehát, amelyek minden eseményt egyértelműen azonosítanak a téridőben. Vegyük észre, hogy a koordináta-rendszer megválasztásának nincs jelentősége. Ezek a koordináták az angliai London közelében lévő Greenwich városkán átmenő képzeletbeli vonalhoz képest vannak megadva. Ezt a konvenciót egyébként 25 ország képviselői fogadták el 1884 októberében, az egyetlen San Domingo ellenszavazatával (Franciaország tartózkodott). Jegyezzük meg még egyszer, mert nagyon fontos, hogy a koordináta-rendszer megválasztásának nincs semmiféle elvi jelentősége.
Legyen az első esemény a téridőben az, amikor felébredek az ágyamban, a második pedig az, amikor befejezem a reggelimet. Ahogy mondtuk, a két esemény között 10 méter a térbeli és 1 óra az időbeli távolság. Az egyértelműség miatt ehhez most olyasféle dolgokat kellene hozzáfűzni, hogy „Egy mérőszalaggal megmértem az ágy és a reggelizőasztal távolságát. A szalag véget kifeszültek az ágy és az asztal között”, illetve „Az eltelt időt az ébresztőóra, illetve a konyhai falióra segítségével mértem meg”. Ne feledjük: külön-külön mind a térbeli, mind pedig az időbeli távolságot illetően igenis lehet eltérés a különböző megfigyelők adatai között. Aki repülőn ülve halad el a ház felett, azt találja, hogy az órám késik, az ágy és a konyha távolsága pedig összezsugorodott. Olyan távolságot keresünk, amelyet a téridőben mindenki ugyanakkorának észlel. Az egymillió dolláros kérdés most már így szól: „Hogyan lehet a téridőben ebből a 10 méterből és az 1 órából invariáns távolságot fabrikálni?” A döntést alaposan meg kell fontolnunk; nincs könnyű dolgunk, mert csakúgy, mint a Föld felületén adódó legrövidebb távolságok esetén, itt sem számíthatunk Eukleidészre.
Ha távolságokat akarunk számolni a téridőben, akkor azonnal problémába ütközünk. A térbeli távolságot méterben mérjük, az időbeli távolságot pedig másodpercben; milyen alapon ötvözhető ez a két mértékegység? Különböző fajta mennyiségekről van szó, mintha almához akarnánk narancsot adni. Jó hír, hogy a távolság átváltható időre, és ez megfordítva is igaz: ehhez a már látott v = x/t egyenletet kell elővenni. Egy kis algebra, és megkapjuk az időt, mint t = x/v, a távolságot pedig mint x = vt. Egy sebesség jellegű mennyiség beiktatásával tehát távolság és idő egymásba konvertálhatók. Vezessünk be tehát egy ilyen kalibráló sebességet, és az értékét jelöljük c-vel. Ezek után az időt egyszerűen úgy válthatjuk át távolsággá, hogy megszorozzuk ezzel a c számmal mint sebességgel. Okoskodásunknak ezen a pontján ez a c tulajdonképpen bármilyen jól bevált sebesség lehet, eddig nem köteleztük el magunkat egyetlen konkrét érték mellett sem. Igazság szerint a csillagászatban mindennapos ez a módszer, amellyel a távolságot időre váltjuk. A csillagok és a galaxisok távolságát többnyire fényévekben adják meg; ez az a távolság, amelyet a fény egy év alatt megtesz. Megszoktuk a használatát, világos, hogy mit jelent: de itt is arról van szó, hogy a távolságot években mérjük, amely pedig az időmérés egysége. A csillagászatban egyébként ez az „átváltási” sebesség éppen a fény sebessége.
Előrébb vagyunk: az időt és a távolságot ugyanazzal a mércével mérjük. Ez lehet például méter vagy mérföld, fényév vagy bármi hasonló. A 4. ábrán a téridő két eseményét egy-egy parányi kereszt ábrázolja. Most egy formula kellene, hogy kiszámolhassuk, milyen messze van egymástól a két esemény a téridőben. Az ábra átfogójának a hosszát keressük, ha adva van a másik két oldal. Némileg precízebben, a háromszög alapja legyen x, a magassága pedig ct. Ez azt jelenti, hogy a két esemény térbeli távolsága x, az időbeli távolságuk pedig ct. Arra keressük a választ, hogy mekkora az s átfogó, ha a befogók hossza x és ct. A már látott példában az ágy és a konyhaasztal között x = 10 méter a térbeli és t = 1 óra az időbeli távolság. Mivel c értéke eddig tetszőleges volt, ez a ct szorzat is meghatározatlan; mintha körbejárnánk. Ennek ellenére próbáljunk továbbmenni.
El kell döntenünk, hogyan számoljuk ki ennek a háromszögnek az átfogóját, a két esemény távolságát a téridőben. Dolgozhatunk-e az euklideszi térben, ahol rendelkezésünkre áll a Pitagorasz-tétel, vagy ennél komplikáltabb a feladat? Lehetséges, hogy a mi terünk sem lapos, ahogy a Föld felülete sem az, vagy még ennél is bonyolultabb módon. Igazság szerint végtelen sokféleképpen számolhatnánk ki a távolságokat. Ebben a helyzetben olyasmihez folyamodunk, amit a fizikusok is gyakran megtesznek ilyenkor: próba szerencse alapon kísérletezünk. Nem a hasunkra ütve, hanem egy rendkívül fontos és igen hasznos elv alkalmazásával tippelünk majd; magát az elvet a XIV. század fordulóján élt angol gondolkodó, William of Ockham nyomán Occam borotvájának nevezik. A frappáns kifejezés többé-kevésbé kézenfekvő gondolatot takar, amelyet azonban a hétköznapokban meglepően nehéz alkalmazni. Pedig a mottója: „nem kell a dolgokat túlbonyolítani!”, minden helyzetre érvényesnek látszik. Occam egyébként úgy fogalmazott, hogy „Ne tételezz föl többet, mint amennyi feltétlenül szükséges!” Occam borotvája akkor válik rendkívül hatékony, mondhatnánk kegyetlen eszközzé, amikor a természet vizsgálatakor veszik kézbe. Használata során ilyenkor a szóba jövő hipotézisek közül először a legegyszerűbbet kell kipróbálni. Ha ez csődöt mond, akkor lépésről lépésre újabb feltevésekkel kell kiegészíteni, egészen addig, amíg összhangba nem kerülünk a tapasztalati tényekkel. A mi esetünkben ez a legegyszerűbb feltevés abból indul ki, hogy a téridőnek legalábbis a térrésze euklideszi. Ha például olyasmit jelent, hogy ha a szobában, ahol most ezt a könyvet olvassa, hagyományos módon kiszámolja két tárgy térbeli távolságát, akkor a bővebb rendszerben is ugyanez az érték adódik. Ennél nem nagyon van egyszerűbb. A kérdés most már az, hogyan lehetne beépíteni az időt ebbe a számolásba. Egy másik egyszerűsítő föltevés szerint ez a mi téridőnk mindenütt ugyanolyan. Ezek nagyon erős feltevések, és igazság szerint Einstein végül nem is ragaszkodott hozzájuk. Így jutott el ahhoz a fantasztikus lehetőséghez, hogy az anyag és az energia megléte a téridő folyamatos változását eredményezheti. Rátalált az általános relativitáselméletre, amely mind a mai napig a gravitáció legjobb elméleti leírása. Az általános relativitáselmélettel még találkozunk a könyv utolsó fejezetében, addig azonban megtartóztatjuk magunkat az ilyesfajta kitérőktől. Ha Occam módszerét követve elfogadjuk a fenti két egyszerűsítő föltevést, akkor kiderül, hogy összesen két lehetőségünk marad arra, hogy kiszámoljuk a távolságokat a téridőben. Az átfogó hosszára ilyenkor szükségképpen vagy s2 = (ct2) + x2, vagy pedig s2 = (ct2) - x2 adódik, egyszerűen nincs más lehetőség. Bár nem bizonyítottuk be, de az a feltevés, hogy a téridő mindenütt ugyanolyan, e kettőn kívül minden más lehetőséget kizár. Vagy a pluszjelet választjuk, vagy pedig a mínuszjelet. Ezen a ponton már késő erőltetni a bizonyítást, legyünk inkább haszonelvűek, és nézzük, miből élünk: mi van, ha így döntünk, és mi van, ha úgy.
Az előjel megváltoztatásával nagyon másképpen kezdene működni a jó öreg Pitagorasz-tétel. Van mit mérlegelni: megtartsuk-e a pozitív változatot, vagy váltsunk át a negatív tagot tartalmazó távolságegyenletre. Ránézésre érthetetlen, hogy egyáltalán minek kellene itt utánanéznünk. Hogy lehet egyáltalán szóba hozni ezt a negatív taggal bővített Pitagorasz-tételt? De ne méltatlankodjunk, így nem lehet gondolkodni. A gömbi távolságformula például nem is hasonlít a Pitagorasz-tételre, így igazából azzal kacérkodunk, hogy vajon lehetséges-e, hogy a téridő az euklideszi értelemben nem lapos. Mivel pedig a hagyományos forma mellett a negatív változat az egyetlen szóba jövő lehetőség (feltéve, hogy teljesülnek a föltevéseink), a dolgok jelenlegi állása szerint semmilyen érv nem szól az elvetése mellett. Tartsuk hát meg, és nézzük a következményeit. Ha aztán sem a pozitív, sem pedig a negatív előjelű változat nem válik be, és így nem sikerül használható távolságformulát találnunk a téridőben, akkor vissza kell menni a kályhához, és elölről kezdeni az egészet.
A most következő gondolatmenet nagyon elegáns, bár távolról sem könnyű. Tartjuk magunkat ahhoz az ígéretünkhöz, hogy a Pitagorasz-tételnél bonyolultabb dolgokat nem veszünk igénybe, de ez nem jelenti azt, hogy nem kell majd kétszer is elolvasnia a következő bekezdéseket. De megéri a fáradságot, mert ha követi a gondolatmenetet, olyasmiben lehet része, amit a biológus Edward O. Wilson jón világélménynek nevez. A fennkölt kifejezés eredete az időszámításunk előtti VI. században tevékenykedő jón gondolkodó, milétoszi Thalész munkásságához köthető, aki Arisztotelész kétszáz évvel későbbi méltatása szerint megvetette a természettudomá-
nyok alapjait. A kifejezés forrása az a meggyőződés, hogy a világ, minden bonyolultsága ellenére, megmagyarázható néhány egyszerű természeti törvény segítségével, mert lényegét tekintve rendezett és egyszerű. (Emlékeztetünk itt Wigner esszéjére.) A tudósnak az a feladata, hogy a bonyolult felszín mögé hatolva fölfedje a mélyben rejlő egyszerűséget. Az a bizonyos jón világélmény pedig az, ahogyan közvetlenül megéljük a világ szépségét és átláthatóságát. Képzeljen el egy hópelyhet, amint a kezére száll. Csipkés szimmetriája elbűvölő és elegáns. Nincs két egyforma hópehely, és e kaotikus gazdagságban első ránézésre hiába keresnénk a rendet. A tudomány viszont kiderítette, hogy a hópelyhek látszólagos bonyolultsága bámulatosan egyszerű szerkezetet rejt: mindegyikük milliárdnyi vízmolekula együttese. Ennyi egy hópehely, nem több, és mégis, szerkezet és forma elképzelhetetlen gazdagsága jöhet létre, ha bolygónk légkörében ezek a H2O molekulák összekapcsolódnak a téli éjszaka hidegében.
Az előjelek dilemmájának a feloldásához az okság fogalmára lesz szükségünk. Tegyük fel elsőre, hogy a megszokott pitagoraszi forma írja le a téridőbeli távolságot, azaz s2 = (ct2) + x2. Vegyük elő újra a két eseményt: reggel hétkor felébredünk az ágyban, illetve reggel nyolckor befejezzük a reggelit a konyhában. Valami olyasmi következik, amitől esetleg kileli a hideg, mert a hajdani matekórák szellemét idézi, amikor ön talán a felhőkön merengve nézett ki a tavaszi napsütésbe. Nos, jelöljük az ébredés eseményét O-val, a reggeli befejezését pedig A-val. Ezt kizárólag a tömörebb írásmód kedvéért tesszük, eszünkben sincs professzori talárba burkolózva teleírni a táblát.
Tudjuk tehát, hogy O és A között térben x = 10 méter a távolság, az időben pedig c = 1 óra. Mind a két értéket méréssel kaptuk. Még nem állapodtunk meg a c értékében, de ha ezzel is megleszünk, akkor a rendelkezésünkre áll ct, és így a távolságegyenletünk segítségével kiszámolhatjuk s értékét, az O és az A események téridőbeli távolságát. Az a hipotézisünk, hogy miközben x, illetve t értéke változhat - és változik is, ha valaki a fényéhez közeli sebességgel elröpülve méri meg ezeket a mennyiségeket az s távolság ugyanakkora marad. Tehát x és t értékének csak úgy szabad megváltozniuk, hogy a kiszámolt s érték ne változzék. Talán fölöslegesnek tűnik az állandó ismételgetés, de hadd emlékeztessünk rá, hogy általában arra törekszünk, hogy fizikai törvényeink a téridő invariáns mennyiségeire vonatkozzanak, az s távolság pedig éppen ilyen. Ha ez így túl elvont, akkor elmondhatjuk másképp, kevésbé szakszerűen is: a természet törvényeinek valóságos dolgok kapcsolatát kell kifejezniük, ezek a dolgok pedig a téridőben találhatók. A téridő az a színhely, amelyben a dolgok létezése megvalósul. Valóságos természetük tehát ezért nem múlhat a megfigyelőn, nem lehet vélemény kérdése. Ilyen értelemben mondjuk, hogy a téridőben a távolság invariáns. Ha egy közönséges szobában egy széket megvilágít a kandalló tüze, akkor a szék tünékeny árnyéka nem invariáns. Az árnykép változhat attól függően, hogy mekkora tűz lobog és hol van
a kandalló, de nem lehet kétséges, hogy az árnyék forrása valóságos és változatlan. Arra törekszünk, hogy a téridő fizikája kivezessen az árnyak világából, és valóságos dolgok kapcsolatát tárja föl.
Nagyon fontos következményei vannak annak, hogy két különböző megfigyelő mérhet más értékeket az x-re és a t-re, miközben a kiszámolt s ugyanannyi. Ezt egyébként igen egyszerűen lehet ábrázolni. Az 5. ábrán egy kört rajzoltunk, a középpontja O, az ébredés eseménye, a sugara pedig s. Mivel most a hagyományos pitagoraszi távolságot tételezzük fel, a kör minden pontja ugyanakkora, s távolságra van O-tól. Ez magától értetődő: az s távolság a kör sugara. A körön kívüli pontok ennél távolabb vannak O-tól, a belső pontok pedig ennél közelebb. A feltevésünk viszont az, hogy s az O és az A események téridőbeli távolsága. Az A esemény tehát bárhol lehet a körön, a téridőben mindig s távolságra lesz az O ponttól. Hol van tehát a körön az A esemény? Ez bizony attól függ, ki mérte meg az x és a t mennyiségeket. Én magam a házban tartózkodva x = 10 métert és t = 1 órát mértem, így az én számomra az A pont helyzete adott: az ábrán meg is jelöltük. Egy nagy sebességű rakétán tovarepülő megfigyelő mind az x, mind a t értékét másnak méri, de ha s nem változik, akkor az esemény még mindig ott van a körön. Amikor a különböző megfigyelők különböző térbeli és időbeli távolságokat mérnek, az azzal jár, hogy az eseményt jelölő pont elmozdul a körön. Két lehetséges helyzetét A'-vel, illetve A"-vel jelöltük. Ami az A' helyzetet illeti, vele nincs semmi baj, de vegyük szemügyre a másik, az A" helyzetet. Drámai dolog történt: az A" esemény az O ponttól időben negatív távolságra került. Másképpen szólva A" előbb történt meg, mint az O, átkerült annak múltjába. Ebben a világban befejezhetjük a reggelit, mielőtt fölébrednénk. Ez pedig nem több és nem kevesebb az okság axiómájának nyílt semmibevételénél!
Itt jegyezzük meg, hogy a mi 4. és 5. ábráinkhoz hasonló ábrákat „téridődiagramoknak” nevezik. Segítenek eligazodni, ha látni akarjuk, mi történik. Igazából nagyon egyszerű a szerkezetük. Az eseményeket pontok jelölik, egy-egy kicsiny x. Ha ezeket a pontokat függőlegesen összekötjük a „tér” címkéjű egyenessel (a vízszintes tértengellyel), akkor itt le tudjuk olvasni, hogy ezek az események milyen messze vannak az O ponttól a térben. Hasonlóan, az „idő” címkéjű egyenesen (ez a függőleges időtengely) egy-egy vízszintes szakasz jelzi, hogy mennyi idő telt el a mi eseményünk és az O esemény között. A tértengely fölött az O esemény jövőjében lévő pontok vannak, hiszen a t értéke ennek a tartománynak a pontjaira pozitív. Ugyanígy, a tértengely alatti tartomány az O múltja (hiszen a t itt negatív).
A rideg tény a mi esetünkben az, hogy ha érvényben akarjuk tartani az okság elvét, akkor el kell vetnünk a legegyszerűbb hipotézisünket, és valami bonyolultabb után kell néznünk.
E bonyolultabb, és igazság szerint most már egyedüliként szóba jövő hipotézis szerint a pontok távolságát a téridőben az s2 = (ct2) - x2 formula számolja ki. A pozitív előjelű változathoz képest most olyan világba kerülünk, ahol nem érvényes az euklideszi geometria, ahogy nem érvényes a Föld felületén sem. A matematikusok hiperbolikus térnek nevezik azt a rendszert, amelyben ezzel a formulával lehet kiszámolni két pont távolságát. A fizikusok másképpen hivatkoznak rá: Minkowski-téridőnek mondják. Az Olvasó ezt kedvező előjelnek veheti: jó nyomon járunk! Nagyon fontos lenne viszont, hogy tisztázzuk, sérülhet-e a Minkowski-téridőben az okság elve.
A válaszhoz ezúttal is azokra a görbékre van szükség, amelyeknek a pontjai a téridőben azonos s távolságra vannak az O ponttól. Ezeket a görbéket kell megvizsgálnunk, ugyanis most ezek felelnek meg az euklideszi téridő köreinek. A negatív előjel miatt most minden másként alakul. A 6. ábrán megint feltüntettük a jól ismert eseményeket, O-t és A-t, és a görbét is, amelynek a pontjai a téridőben ugyancsak s távolságra vannak az O ponttól. Az a döntő különbség, hogy ezek a pontok most nem egy körön, hanem egy hiperbolának nevezett görbén helyezkednek el. Ennek a görbének minden pontjára igaz a mi távolságformulánk: s2 = (ct2) - x2. A görbe láthatóan egyre közelebb kerül a két szaggatottan megrajzolt egyeneshez, amelyek 45 fokos szöget zárnak be a tengelyekkel. Egy rakétán száguldó megfigyelő tapasztalatai most egészen másfélék, mint a pozitív előjeles változatban, ugyanis az A esemény ezúttal mindig az O jövőjében marad. Bárhogy mozdul el, nem juthat az O múltjába. Minden megfigyelő számára úgy zajlik le a történet, hogy először felébredünk, azután pedig megreggelizünk. Hátra lehet dőlni: a Minkowski-téridőben nem sérül az okság elve.
Érdemes alaposan átgondolni az elhangzottakat, mert a könyv egyik legfontosabb eredményével van dolgunk. Ha úgy határozunk, hogy a téridőben a negatív előjelet tartalmazó pitagoraszi formulával definiáljuk két esemény, O és A távolságát, akkor függetlenül attól, hogy ki hogyan figyeli meg ezt a két eseményt, az A soha nem kerül az O múltjába; a hiperbola mentén mozdul el. Ez azt jelenti, hogy ha van olyan megfigyelő, aki szerint az A eseményre az O jövőjében kerül sor, akkor minden megfigyelő ezt tapasztalja. A hiperbola soha nem jut be az O múltjába, semmi akadálya a közmegegyezésnek: reggelizni csak ébredés után lehet.
Távolról sem mondható könnyűnek a gondolatmenet, amelynek a végére értünk. Eredeti hipotézisünk szerint a téridőben van olyan „invariáns” távolság, amely minden megfigyelő szerint ugyanakkora. Nos, a fentiekből semmiképpen nem az következik, hogy ez a hipotézis helyes. Annyi történt, és ez nem kevés, hogy a hipotézisünk átment egy fontos próbán: nem sérti az okság elvét. De ezzel nincs vége a dolognak, most nem a matematika játékát játsszuk. Fizikusként olyan elméleten dolgozunk, amely leírja, hogyan működik a világ. Az lesz az elméletünk végső próbája, hogy képes-e tapasztalati tényeket előre jelezni. Most még nem bocsátkozhatunk jóslatokba, nem tudjuk ugyanis, mekkora az átváltási sebesség, amit c-vel jelöltünk. Számok nélkül pedig nem lehet számolni.
Emlékezzünk vissza, a c-re azért volt szükség, hogy nekiláthassunk a téridőbeli távolság definiálásának. Ehhez a távolságot és az időt ugyanabban a mértékegységben kellett megmérnünk, de egyelőre nem tudjuk, mire vonatkozik ez a mennyiség. Minek lehet a sebessége? A válasz az imént megismert Minkowski-téridő egy különleges tulajdonságán múlik. Eközben fontos szerep jut a 45 fokos egyeneseknek. A 7. ábrán további olyan görbéket rajzoltunk meg, amelyek a téridőben állandó távolságra haladnak az O ponttól. Az a lényeg, hogy összesen négyféle ilyen görbe van. Egyikük teljes egészében az O jövőjében halad, a másik pedig az O múltjában. A további kettő, a bal és a jobb oldalon viszont metszi a vízszintes tengelyt, ez pedig aggasztó, hiszen ez történt a körökkel is a távolságformula pitagoraszi, pozitív előjeles változatában. Annak idején ez a hipotézis elvetéséhez vezetett, mert sértette az okság elvét. Most mi lesz? Megint elbotlunk, ugyanabban a kőben? Az a helyzet, hogy ezúttal van kiút. A 7. ábrán a B esemény a kritikus zónában van, az ábra szerint az O múltjában. Az O-tól a B-vel egyenlő távolságra lévő események hiperbolája most metszi a tértengelyt, ennek pedig az a következménye, hogy egyes megfigyelők a B eseményt az O jövőjében, mások pedig az O múltjában látják megtörténni. Emlékeztetünk: az események téridőbeli távolságának minden megfigyelő számára ugyanakkorának kell lennie, akkor is, ha mind a tér, mind pedig az időbeli távolságokat különbözőnek találják. Úgy tűnik, hogy mégsem tartható az okság elve, de szerencsére mégsem így áll a dolog.
Hogyan lehetne épségben tartani az okság elvét a mi téridőelméletünkben? A válaszhoz alaposabban meg kell gondolnunk, mit is tartsunk az okság felől. A most következő fejtegetésben űrhajók és lézerek is színre lépnek, így az Olvasó lazíthat egy kicsit, ha az előző szakasz elvont fejtegetésein töprengve megfájdult volna a feje. Nézzük ismét az O eseményt, tehát hogy reggel felébredek az ágyamban. A történeti hűség kedvéért, mondjuk, azért, mert megszólalt a vekker. Képzeljük most el, hogy nem sokkal azelőtt felszáll egy űrhajó a legközelebbi csillagrendszer, a tőlünk alig több mint 4 fényévnyire lévő Alfa Centauri egyik bolygójáról, és elindul a Föld felé. Szükségképpen úgy látja-e minden megfigyelő, hogy az űrhajó még azelőtt indult útnak, hogy felébredtem volna? Az okság elvét szem előtt tartva ez azon múlik, hogy az információ terjedhet-e végtelen gyorsan az univerzumban vagy sem. Az előbbi esetben elképzelhető, hogy ez az idegen űrhajó kilő egy lézersugarat, amely hipp-hopp, itt terem, és elporlasztja a vekkert. így nem lesz, ami fölébresszen, és elszalasztom a reggelit. A baljós események sorában persze ez volna a legkevesebb, de ez
egy gondolatkísérlet, így tegyük túl magunkat a csillagközi lézertámadás áldozatául esett vekkeren, és folytassuk a gondolatsort. Az űrhajó lézertámadása miatt nem reggeliztem meg, így ha ragaszkodunk az okság elvéhez, akkor a két esemény, az ébredés és a reggeli sorrendje nem cserélhető fel. Ez világos, hiszen ha volna olyan megfigyelő, aki az ébredésem után látná útnak indulni az űrhajót, akkor ellentmondásba kerülnénk: az ő forgatókönyve szerint szól a vekker, én pedig felébredek. Mármost vagy felébredek, vagy tovább alszom, a kettő egyszerre nem megy. Ebből következik, hogy ha az információ akármilyen gyorsan terjedhet, akkor semmilyen két esemény bekövetkezésének a sorrendje nem cserélhető föl anélkül, hogy ne sérülne ok és okozat törvénye. De ebben az okfejtésben van egy egérút. Eszerint igenis lehetséges, hogy bizonyos események (mint az O és a B) sorrendje megváltozzék, de csak abban az esetben, ha a 7. ábrán látható módon helyezkednek el egymáshoz képest. A két 45 fokos egyenes kritikus szerepet játszik ebben a történetben.
Próbáljuk el újra a lézersújtotta vekker esetét, de ezúttal úgy, hogy mindeközben érvényben van egy kozmikus határsebesség. Az idegen űrhajó lézersugara tehát nem érheti el a kilövésének a pillanatában a vekkeremet. Még egy utolsó jelölés: hívjuk a 7. ábra szerint B-nek a lézersugár elindításának eseményét. Ha a lézersugár kilövése (B esemény) nagyon kevéssel az ébresztőóra megszólalása (O esemény) előtt történik, és attól nagyon messzire, akkor az űrhajó nem tudja megakadályozni az ébredésemet, mert a lézersugárnak egyszerűen nincs ideje, hogy eljusson az űrhajótól a vekkerig. Mindenképpen ez a helyzet, ha a lézersugár nem lépheti túl a kozmikus határsebességet. Ebben az esetben az O és a B eseményeket okozatilag függetleneknek mondják.
Amint az ábrán is látható, most azt tesszük föl, hogy a B esemény éppenhogy megelőzi az O eseményt úgy, hogy eközben a jobb oldali szögtartományban helyezkedik el, amely mindenképpen kritikus zóna az oksági viszonyok szempontjából. Különböző megfigyelők általában másképpen látják: van, aki szerint B az O előtt következett be, és van, aki szerint nem. A különböző nézőpontoknak megfelelően a B elmozdul a hiperbolán, amely metszi a jövőt és a múltat elválasztó tértengelyt. A B-nek ez a mozgása elkerülhetetlen, de ok és okozat viszonya megmenthető, ha a B esemény semmilyen módon nem lehet hatással az O eseményre. Más szóval érdektelen, hogy a B esemény az O múltjában van-e, vagy pedig a jövőjében, ha ez semmilyen különbséget nem okoz, mégpedig azért nem, mert B és O nem lehetnek hatással egymásra. A Minkowski-téridőben jól látható az a négy tartomány, amelyeket a 45 fokos egyenesek határolnak. Ha meg akarjuk védeni az okság elvét, akkor a bal, illetve jobb oldali tartomány egyetlen eseményéből sem juthatnak jelek az O-ba.
A két elválasztó egyenes szerepe leolvasható a téridő diagramokról. Mivel a vízszintes tengely ábrázolja a térbeli távolságot, a függőleges pedig az időbelit, a 45 fokos egyenesek pontjai olyan eseményeknek felelnek meg, amelyek térben ugyanolyan messze (x) vannak O-tól, mint időben (ct). Milyen gyorsan kell haladnia egy O-ból induló jeladásnak ahhoz, hogy befolyással lehessen egy olyan eseményre, amelyik éppen a 45 fokos egyenesen található? Nos, ha ez az esemény 1 másodpercre van az O jövőjében, akkor a jelnek cx (1 másodperc) utat kell megtennie. Ha ez az időbeli távolság 2 másodperc, akkor cx (2 másodperc) a megtett út. A jelnek tehát ilyenkor c sebességgel kell haladnia. Ahhoz pedig, hogy egy jeladás a B-ből jusson el az O-ba, a c-nél nagyobb sebességre van szükség. (A B ugyanis abban a tartományban van, ahol ct nagyobb x-nél.) Megfordítva, a 45 fokos egyenesek által határolt alsó és felső tartományok pontjai és az O esemény közötti kommunikáció a c-nél alacsonyabb sebességű jelek segítségével is megvalósítható.
Megvan tehát a c sebesség jelentése: nem más, mint a kozmikus határsebesség. Semmi sem mozoghat a c-nél nagyobb sebességgel, egyébként ugyanis egy ilyen szupergyors jelként továbbított információ aláásná ok és okozat viszonyát. Jegyezzük meg továbbá, hogy ha a különböző megfigyelők ugyanakkorának látják a téridő bármely két kiszemelt eseményének a távolságát, akkor függetlenül attól, hogy ők maguk hogyan mozognak a téridőben, mindegyiküknek arra a következtetésre kell jutnia, hogy a c kozmikus határsebesség. Ennek a c sebességnek tehát van egy további érdekes tulajdonsága is: teljesen mindegy, hogy két megfigyelő hogyan mozog, a c-t mindig ugyanakkorának kell mérniük. Ez a c egyre határozottabban kezd hasonlítani egy másik különleges sebességre, amellyel ebben a könyvben is találkoztunk: a fény sebességéről van szó, noha mi még nem mutattuk ki e két mennyiség kapcsolatát.
Eredeti sejtésünk köszöni szépen, jól van. Sikerült kidolgoznunk a tér és az idő olyan elméletét, amely alkalmasnak látszik arra, hogy reprodukálja az előző fejezetben leírt fizikai jelenségeket. Ebből a szempontból nagyon ígéretes egy univerzális határsebesség létezése, különösen akkor, ha sikerülne a fény sebességeként értelmeznünk. A téridőben, amelyben dolgozunk, sem a tér, sem pedig az idő nem abszolút többé, a téridő viszont az. Hogy megbizonyosodjunk afelől, hogy ilyen módon a világ egy lehetséges leírását adtuk meg, lássuk, kiadja-e, hogy a mozgó órák lelassulnak, amint ezt a 3. fejezetben láttuk.
Képzeletben üljön fel újra az akkori vonatra és helyezze magát kényelembe az egyik fülkében. Az ön számára az a természetes, ha a távolságokat a saját helyzetéhez képest mért, az időt pedig a karóráján. A következő állomásig két óra az út. Útközben végig a helyén üldögél, így aztán x = 0 távolságot tett meg. Az az elv érvényesül itt, amelyet még a könyv elején mondtunk ki: nem lehet eldönteni, ki mozog és ki áll egy helyben, így a vonaton ülve teljes joggal mondhatja, hogy ön a mozdulatlan fél, így pedig csak az idő múlását kell figyelnie. Az utazás két óráig tart, így, bár az ön szemszögéből csupán időbeli elmozdulásra került sor, a téridőben ez s = ct elmozdulást jelent, ahol t = 2 óra. (Az ön által mért térbeli távolság x = 0.) Ez így világos. Gondoljuk most el, mit lát ebből az utazásból egy jó barátja, aki nincs a vonaton, hanem valahol az árokparton üldögél. (Hogy pontosan hol, az nem számít, az a lényeg, hogy a Földhöz képest mozdulatlan, miközben önnel robog a vonat.) Ő a saját karóráján mérné az időt, a távolságokat pedig a saját helyzetéhez képest. Az egyszerűség kedvéért tegyük még fel, hogy a vonat egyenes vonalú pályán halad. Ha ön 2 óráig utazik mondjuk v = 100 kilométeres sebességgel, akkor a barátja annyit jegyez föl, hogy ön összesen X = vT utat tett meg. A barátja által mért távolságok és időtartamok jelölésére nagybetűket használunk, hogy ne keverjük őket össze az ön által mért hasonló mennyiségekkel (x = 0 és t = 2 óra). A barátja mérései szerint tehát az ön téridőbeli s elmozdulása s2 = (cT2) - (vT2)
Az egész gondolatmenet kritikus része következik: a téridőben mindkettejük számára ugyanolyan hosszúnak kellett lennie az utazásnak. A saját mérései szerint ön nem mozdult (x = 0), az utazása pedig 2 óráig tartott
(t = 2 óra), míg a barátja szerint ön vT utat tett meg (ahol v = 100 kilométer óránként) és T ideig utazott a vonaton. A téridőben kiszámok távolságoknak egyenlőknek kell lenniük, így (ct2) = (cT2) - (vT2). Ha ezt átalakít-juk egy kicsit, akkor azt kapjuk, hogy T = ct / gyök(c2 -v2 ). Így pedig, bár az ön karórája szerint 2 óráig tartott az útja, a barátja eközben úgy találja, hogy valamivel tovább. A két időtartam aránya c/gyök(c2-v2) = 1/gyök(1-v2/c2) , éppen annyi, amennyit az előző fejezetben kiszámoltunk, de akkor ehhez a c-t a fény sebességeként kellett értelmeznünk.
Ugyanazt a formulát vezettük le, amelyet az előző fejezetben a fényórák és a derékszögű háromszögek segítségével kaptunk. A fényórák gondolatához akkor Maxwell briliáns szintézise vezetett, amely Faraday és társai kísérleti eredményei nyomán azt sugallta, hogy a fény sebességének minden megfigyelő számára állandónak kell lennie. Michelson és Morley kísérletet alátámasztották ezt a konklúziót, Einstein pedig tényként fogadta el. Most pedig ugyanerre jutottunk anélkül, hogy akár tudományos előzményekre, akár kísérleti tényekre hivatkoztunk volna. Arra sem volt szükség, hogy a fénynek bármiféle szerepet tulajdonítsunk ebben az ügyben. Ehelyett bevezettük a téridőt, és ahhoz tartottuk magunkat, hogy ebben léteznie kell egy invariáns távolságfogalomnak az események között. Emellett tiszteletben akartuk tartani ok és okozat viszonyát. Ennek alapján elkészítettük a lehetséges távolságmértékek legegyszerűbbikét, és figyelemre méltó módon megkaptuk Einstein eredményét. Ez a gondolatmenet talán az egyik legszebb példa a matematika megmagyarázhatatlan hatékonyságára a természettudományokban. Thalész mindenesetre el lenne bűvölve.
Az előző fejezet „filológiai” jellegű gondolatmenetétől függetlenül meg kellene mutatnunk, hogy ez a c szükségképpen a fény sebessége. A végkifejlethez a következő fejezetben jutunk el, most tegyük félre a matematikát, hagyjuk magára a felindult Thalészt, és örüljünk annak, hogy sikerült egészen újszerű módon megközelítenünk Einstein elméletét. A téridő láthatóan működik - ahogy Minkowski megmondta, értelmes dolog, ha egyesítjük a teret és az időt.
De hogyan lehet elképzelni ? A valóságos téridő négydimenziós, ez pedig komoly akadály a képzeletünk számára, mert az embert elme közvetlenül nem képes megjeleníteni a dolgokat háromnál több dimenzióban. Az pedig kifejezetten rejtélyesen hangzik, hogy e dimenziók egyike az idő. Egy kép talán segíthet oszlatni a titokzatosságot: képzeljünk el egy dimbes-dombos vidéken kalandozó motorkerékpárost. A tájat keresztül-kasul utak hálózzák be, így aztán a motoros szabadon fordul hol erre, hol arra. A téridő valami olyasmi, mint egy ilyen dombvidék. Ha a motoros észak felé indul, ennek egy olyan objektum felelhet meg a téridőben, amelyik mondjuk csak az idő mentén mozdul el, a térben mozdulatlan. Egy efféle kijelentés, mint „a térben mozdulatlan", persze teljesen szubjektív, és azt is látni kell, hogy az „északi irány” és az „időbeli irány” azonosítása csak szemléltetés. Annak teljesen megfelel, csak nem árt észben tartani.
Nos, a téridő vidékét behálózó utak szükségképpen legfeljebb 45 fokos szöget zárhatnak be az északi iránynyal. Egyetlen út sem futhat kelet-nyugati irányba, mert ilyen útra fordulva „téridőmotorosunk” a térben mozogva túllépné a kozmikus határsebességet. Gondoljuk meg: ha a motoros haladhatna közvetlenül keleti irányba is, akkor úgy mozogna a térben, hogy eközben az idő áll: észak felé, az idő mentén ilyenkor nincs elmozdulás. Ez végtelen nagy térbeli sebességet jelentene: a-ból nyomban b-ben teremhetne. Az utak rendszere tehát olyan, hogy a motoros ne mozdulhasson el túl gyorsan keleti vagy nyugati irányba.
Ez az analógia tovább is vihető. Rövidesen megmutatjuk, hogy a téridőben minden mozgásnak ugyanakkora a sebessége. Olyan ez, mintha volna a motoron egy szelep, amelyik szabályozná, hogy a motor mindig állandó sebességgel haladjon a téridő vidékén. Nem árt itt az óvatosság: amikor a téridőbeli sebességről beszélünk, akkor azt nem szabad összetéveszteni a térbeli mozgás sebességével. Ez utóbbi egészen a kozmikus határsebességig bármekkora lehet - a példánál maradva: a motoros tetszőlegesen megközelítheti az északkeleti irányt, és így bármilyen közel kerülhet a kozmikus határsebességhez. Másfelől egy majdnem északi útirány mentén a motor keleti vagy nyugati kitérése kicsiny, és így a térbeli utazás sebessége megnyugtató módon alatta marad a sebességkorlátnak. Nagyon mély állításnak hangzik, hogy a téridőben minden ugyanolyan sebességgel mozog, és kissé talányos is. Azt jelenti, hogy miközben ön ezt a könyvet olvasva üldögél, pontosan ugyanolyan sebesen suhan át a téridőn, mint az univerzum bármelyik objektuma. Ha így fogjuk fel a dolgot, akkor a térbeli mozgás csak az árnyéka a téridőben zajló általánosabb mozgásnak. Megmutatjuk, hogy önre nagyon is ráillik a beállított szeleppel száguldozó motoros szerepe. A könyvet olvasva például úgy motorozik keresztül a téridő vidékén, hogy a szelep nyitott állásban van. Egy helyben ül, tehát egyenesen észak felé utazik az idősztrádán, órájára nézve pedig látja, ahogy múlik az időbeli távolság. No, ez azért igen talányosan hangzik, fejtsük ki egy kissé alaposabban.
Miért állandó a sebesség a téridőben? Gondoljunk újra a motorosra, és képzeljük el, amint a karóráján eltelik 1 másodperc. Ennyi idő alatt megtesz egy bizonyos téridőbeli távolságot. Ezt a távolságot mindenki ugyanakkorának látja, hiszen a téridőbeli távolság abszolút, nem függ a megfigyelő személyétől. Így aztán akár a motorost is megkérdezhetjük, hogy ő maga mekkorának látja a téridővidéken bejárt útját, a válasza lesz az igazság. A motoros pedig dönthet úgy, hogy a térbeli elmozdulásokat a saját helyzetéhez viszonyítva adja meg, az ő térbeli elmozdulása pedig nulla. Mint a repülő utasa az 1. fejezetből, aki nem mászkál el a helyéről, és így azt állítja, hogy végig egy helyben állt. (Illetve ült.) Másokhoz képest persze elmozdulhatott - ilyen például az, aki odalentről nézi a repülőt de most nem erről van szó. Motorosunk úgy tapasztalja, hogy ő bizony az elmúlt másodpercben meg se moccant: ült a motorján. A távolságformula segítségével viszont kiszámolhatja a téridőbeli útját. Az egyenlet szerint s2 = (cT2) - x2, ahol most x = 0 (hiszen térbeli mozgás nincsen) és t = 1 másodperc. Az eredményül adódó távolság: c szorozva 1 másodperccel. A motoros tehát arról fog beszámolni, hogy az óráján eltelt minden egyes másodperc alatt c (szorozva 1 másodperccel) „távolságot” tesz meg, ami ugyanaz, mintha azt mondaná, hogy a téridőbeli sebessége éppen c. Ha gondosan követte az eddigieket, akkor most közbevethetné, hogy ez az 1 másodperc a motoros órája szerint telt el, ha valaki mozog ehhez az órához képest, az más időt fog mérni. Ez így igaz, de a motoros órája különleges, ugyanis önmagához képest mozdulatlan. (Ez persze nyilvánvaló.) Elég az hozzá, hogy ebben az esetben a távolságegyenletbe x = 0 helyettesíthető, a motoros karórája szerint eltelt idő tehát közvetlenül méri a téridőbeli s távolságot. Csinos eredmény: a motoros óráján eltelt idő egyenlő az általa a téridőben megtett útnak és a c-nek a hányadosával. A motoros órája tehát olyan berendezésnek tekinthető, amely közvetlenül méri a téridőbeli távolságot. Mivel mind a téridőbeli távolságnak, mind pedig a c értékének meg
kell egyeznie az összes megfigyelő esetében, azt kapjuk, hogy a motoros, akarva-akaratlan olyan mennyiséget mért az órája segítségével, amelyet mindenki ugyanakkorának talál. Ha ő azt kapja, hogy a téridőbeli mozgás sebessége c, akkor mindenkinek ennyit kell kapnia.
A téridőben tehát csak egyféle sebesség van, mindenki ugyanakkorának találja. A téridőbeli mozgásnak ez az újszerű megközelítése más szemszögből is láttatni engedi, hogy miért járnak lassabban a mozgó órák. A téridőben szemlélve a dolgokat ugyanis azt mondhatjuk, hogy egy mozgó óra a minden szereplő számára ugyanakkora téridőbeli sebességkeret egy részét térbeli mozgásra használja el, így az időbeli mozgására kevesebb jut. Egy mozgó óra tehát lassabban mozog az időben, mint egy mozdulatlan, ami ugyanaz, mintha azt mondanánk, hogy lassabban jár. Egy mozdulatlan óra ezzel szemben c sebességgel száguld az időtengely mentén, térbeli elmozdulás ilyenkor nincs. Olyan gyorsan múlik tehát rajta az idő, amilyen gyorsan ez egyáltalán lehetséges.
A téridő birodalmában már megkísérelhetjük értelmezni a speciális relativitás egyik legizgalmasabb rejtélyét, az ikerparadoxont. Korábban már beszéltünk arról, hogy Einstein elmélete nyomán valóságos lehetőséggé válik az univerzum távoli vidékeire való utazás. Elképzelhető, hogy egy űrhajó a fénysebességtől éppenhogy elmaradva egy szűk emberöltő alatt jut el az Androméda galaxisba, ahová a fény majdnem 3 millió évig utazik. Ebben az állításban egy paradoxon rejlik, amelyet annak idején nem bolygattunk. Képzeljünk el egy ikerpárt, egyikük űrhajósnak áll, és nekivág az emberiség nagy kalandjának, elindul az Androméda-küldetésre, az ikertestvére pedig itthon marad a Földön. Az űrhajós iker a Földhöz képest óriási sebességgel repül, az élete tehát lassabban telik, mint az itt maradó testvéré. Ennek a könyvnek az elején hosszan érveltünk amellett, hogy abszolút mozgás pedig nincs. Arra a kérdésre tehát, hogy „Ki mozog az ikrek közül?”, az a válasz, hogy „Ahogy tetszik: bármelyikük!” Akárki szabadon dönthet úgy, hogy ő maga mozdulatlan, mások pedig hozzá képest nagy sebességgel száguldanak a világűrben. Az űrhajós iker is kijelentheti, hogy ő bizony egy helyben áll, miközben a Föld irtózatos sebességgel távolodik. Ő tehát úgy látja, hogy a Földön maradó testvére öregszik lassabban. Kinek van itt igaza? Lehetséges volna, hogy bármelyik testvér lassabban öregszik, mint a másik? Ennek így kell lennie, ez következik az elméletből. Ez még nem paradoxon, mert lehet ugyan, hogy önnek nem tetszik, hogy mindkét iker a másikat látja lassabban öregedni, de nem ez az igazi probléma. Akkor tűnhet annak, ha ön még mindig ragaszkodik az abszolút idő fogalmához. De az idő nem univerzális; ezt remélhetőleg már megtanultuk, és így semmiféle ellentmondás nincs az eddigiekben. A paradoxon most következik. Mi lesz, ha az űrhajós valamikor visszatér a Földre, és találkozik az itthon maradt ikertestvérével? Most már nincs az a kibúvónk, hogy ekkor mindketten fiatalabbak a másiknál. Mi van ilyenkor? Tényleg idősebb lesz valamelyikük? Ha igen, kicsoda?
A kérdés megválaszolható, ha átgondoljuk, amit a téridőről tudunk. A 8. ábra a két iker útját ábrázolja a téridőben, olyan órák és mérőrudak adatai alapján, amelyek a Földhöz képest nyugalomban vannak. Az itt maradó testvér útvonala lényegében az időtengely mentén vezet, állandó téridőbeli sebességét döntően időbeli elmozdulásra használja fel. Másikuk, az űrhajós viszont közel fénysebességgel száguld a kozmikus határsebesség közelében. A motoros hasonlatnál maradva „északkeleti irányban" indul útnak, téridőbeli sebességét lényegében kizárólag a tér átszelésére fordítja. A 8. ábra téridődiagramja szerint közel 45 fokos irány mentén utazik. Egy ponton azonban meg kell fordulnia, hogy visszatérjen a Földre. Feltételezzük, hogy továbbra is közel fénysebességgel repül, ez látszik az ábrán is, csak most „északnyugati irányban”. Az ikrek tehát különböző utakat járnak be a téridőben, miközben ugyanonnan indulnak el és ugyanoda térnek vissza.
A térbeli távolságokhoz hasonlóan általában a téridőben sem egyenlő két különböző útvonal hossza. Láttuk, hogy a téridőben egy adott elmozdulás hosszát ugyanakkorának találják a megfigyelők, de most nem erről van szó, a különböző elmozdulások téridőbeli hosszának egyáltalán nem kell megegyeznie. Tulajdonképpen ugyanaz a helyzet, mint amikor azt mondjuk, hogy a Chamonix-ból Courmayeur-be vezető út hossza függ attól, hogy a Mont Blanc-alagúton át megyünk-e, vagy az Alpokban túrázva. A hegyen átkelve nyilván hosszabb utat jár be az ember, mint az alagúton keresztül. A téridő vidékén utazgató motorosról szólva megállapítottuk, hogy az ő órája közvetlenül méri az általa bejárt téridőbeli távolságot: ehhez az eltek időt meg kell szorozni c-vel. Ezt az állítást most már meg is fordíthatjuk: ha tudjuk, mekkora utat jártak be az ikrek a téridőben, akkor kiszámolhatjuk, hogy ez mennyi idejükbe került.
Ha az ikrek útját a téridőben szemléljük, akkor a karórájuk méri az általuk bejárt téridőbeli távolságot.
Most jön a lényeg. Vegyük ismét szemügyre a téridőbeli s2 = (cT2) - x2 távolságformulát. A téridőben megtett utak közül az a leghosszabb, amelyre x = 0. (Adott t idő alatt megtett utak esetén.) Minden más útnak rövidebbnek kell lennie, hiszen a pozitív x2 értékével csökken. A Földön maradó iker lényegében csak az időtengely mentén mozog, az ő esetében x közel van a nullához, így az ő útja szükségképpen a lehető leghosszabb útvonal. Igazság szerint ez csak egy másfajta megfogalmazása annak, amit már tudunk: mivel a maradó iker a lehető legnagyobb sebességgel utazik az időtengely mentén, ő öregszik a lehető legnagyobb mértékben.
Az eddigiekben a Földön maradó testvér szempontjából értelmeztük a történteket. Megnyugtatásul, hogy itt valóban nincs ellentmondás, nézzük meg, hogy zajlik a cselekmény az űrhajós forgatókönyve szerint. Ő úgy látja, hogy földi ikertestvére az utazó fél, ő maga pedig a saját időtengelye mentén száguld. Úgy néz ki, hogy nem kerülhető el a paradoxon: a világűrben utazó iker nyugalomban van az űrhajójához képest, a saját időtengelye mentén a lehető legnagyobb a sebessége, így aztán ő öregszik maximális mértékben. De ebben a következtetésben van egy rejtett buktató. A távolságegyenlettel van a baj, ezúttal csődöt mond, ha az űrhajós órái és mércéi segítségével mért időtartamokat és hosszúságokat akarnánk behelyettesíteni. Pontosabban olyankor szűnik meg az érvényessége, amikor az űrhajó a visszaforduláshoz szükséges gyorsuló manővert hajtja végre. Hogy miért? A formula mellett szóló érvek annak idején igen meggyőzőek voltak. Csakhogy amennyiben órák és mércék gyorsuló rendszerében végzünk méréseket, márpedig az űrhajós iker ilyesmire kényszerül, akkor már
nem áll az egyenlet felírásához szükséges azon feltevés, hogy a téridő változatlan, és mindenütt egyforma. A gyorsulási szakaszban fellépő erő az üléséhez préseli az űrhajóst, lényegében az történik vele, mint önnel, ha az autóban rálép a gázra. Ezzel például kijelölünk az űrben egy irányt: a gyorsulás irányát. Az ebben az irányban ható erőt számításba kell venni a távolságegyenlet felírásakor, ez a dolog kulcsa. A matematikai részletekbe itt nem megyünk bele, a lényeg az, hogy amikor az űrhajó hajtóművei beindulnak a visszaforduláshoz, a földi iker ideje felgyorsul az űrhajóséhoz képest, és ez bőségesen ellensúlyozza azt, hogy az expedíció állandó sebességű szakaszában ő, a földi iker öregszik lassabban. Szóval még sincs paradoxon.
Érdemes ebből valamit számszerűsíteni, mert az eredmények igen hatásosak. Az űrutazás úgy a legkényelmesebb a résztvevők számára, ha a hajtóművek folyamatosan dolgoznak, és állandó, 1 g gyorsulással viszik előre az űrhajót. Az utasok így a földi nehézkedést érzékelik az űrhajóban. Képzeljünk el egy ilyen utazást, amelynek első 10 évében az űrhajó eszerint gyorsul, a következő 10 év alatt pedig ugyanilyen ütemben lassul. Ezután az űrhajó visszafordul a Föld felé, 10 évnyi újabb gyorsítás után 10 évig lassít, mielőtt végül hazaérne. Az űrhajó utasai számára összesen 40 évig tart az utazás. Hogy eközben mennyivel öregszik a Föld? Csak közöljük a választ, mert a szükséges matematika (egy kicsit) meghaladja e könyv kereteit. Az eredmény elég látványos: itt, a Földön mindeközben 59 000 év telik el.
Igen mozgalmas fejezetnek értünk a végére, és csak abban bízunk, hogy az Olvasó tartotta velünk a lépést a téridő világában. Most már készen állunk arra, hogy szembenézzünk az E = mc2 kihívásával. A téridővel és a távolság invariáns definíciójával fölvértezve álljon itt még egy egyszerűen hangzó, de annál fontosabb kérdés: vannak-e további olyan invariáns mennyiségek, amelyek valóságos objektumok tulajdonságait írják le a valóságos világban, tehát a téridőben? A térben a távolság mellett más mennyiségeket, illetve tulajdonságokat is használunk. A tárgyaknak tömegük van, lehetnek kemények vagy puhák, melegek vagy hidegek, szilárdak, folyékonyak, avagy légneműek. Most már tudjuk, hogy a tárgyak valójában a téridőben léteznek, jogos tehát a kérdés, hogy vajon leírható-e invariáns módon a világ minden összefüggése. A következő fejezetben kiderül, hogy erre a kérdésre igenlő a válasz. Ennek pedig fontos következményei vannak: ez az út vezet el az E = mc2 egyenlethez.
5. MIÉRT EGYENLŐ E ÉS MC2?
Az előző fejezetből remélhetőleg kiderült, milyen előnyökkel jár, ha egységben szemléljük a teret és az időt. Vizsgálatainkban döntő szerepe volt annak, hogy a távolság fogalma a téridőben invariáns, az univerzumban közmegegyezés tárgya: egy-egy téridőbeli útvonal hosszát ugyanakkorának észleli minden megfigyelő. Ezt akár a téridő meghatározó tulajdonságának is tekinthetnénk. Újra megkaptuk Einstein eredményeit, de ehhez ezt a bizonyos c-t, a kozmikus határsebességet, a fény sebességeként kellett értelmeznünk. Még nem bizonyítottuk be, hogy ennek a c-nek bármi köze volna a fény sebességéhez, ebben a fejezetben viszont igyekszünk körüljárni a jelentését. Ami a fénysebességet illeti, egy bizonyos értelemben nem olyan titokzatos. Mivel megjelenik az E = mc2 egyenletben, azt gondolná az ember, hogy a fény önmagában is fontos szerepet játszik az univerzum szerkezetében. Ha viszont a téridőben szemléljük a dolgokat, akkor már nem olyan különleges. A világ, a maga finom módján, igen demokratikus: a téridőben minden és mindenki ugyanazzal a c sebességgel mozog: ön, a Föld, a Nap és a távoli galaxisok. Ami a fényt illeti, téridőbeli sebességének teljes fejadagját térbeli mozgásra használja el, ilyenformán a kozmikus határ-sebességgel mozog. A fény látszólag kitüntetett szerepe annak a nagyon is emberi látásmódnak a következménye, amely elkülönítve észleli a teret és az időt. Igazság szerint jó oka van, hogy a fény ilyen módon kényszerül fölélni a sebességkvótáját, és ez világos lesz, mihelyt megértjük, miért is egyenlő E és mc2.
Az E = mc2 egy egyenlet. Amint elmondtuk már, az egyenletek a fizikusok rendkívül kényelmes és hatékony gyorsírási eszközei a különböző objektumok között fennálló kapcsolatok kifejezésére. Az E = mc2 esetében ezek az „objektumok” az energia (E), a tömeg {m) és a fény sebessége (c). Egy egyenlet szereplői általában valóságos anyagi mennyiségek, mint a hullámok vagy az elektronok, de lehetnek elvontabb fogalmak is, mint az energia, a tömeg vagy a téridőbeli távolság. Már korábban is beszéltünk arról, hogy a fizikusok igen kényesek a legfontosabb egyenleteikre; ragaszkodnak hozzá, hogy az univerzumban mindenki ugyanolyannak olvassa őket. Ez nagyon erős követelmény, és valamikor a jövőben még azzal is szembesülhetünk, hogy ez az ideális állapot nem tartható. Egy ilyen fordulat megdöbbentené a modem fizikusokat, hiszen az eredeti gondolat rendkívül gyümölcsözőnek bizonyult, amióta a XVII. században megszületett a modem tudomány.
Azt azonban tudóshoz illően kell tudomásul vennünk, hogy a valóság olyan, amilyen. A természetnek nincsenek aggályai, és bármikor keresztülhúzhatja a számításainkat. Egyelőre csak annyit mondhatunk, hogy ez a remény egyelőre még él. A könyvben már érintettük az univerzális közmegegyezésnek ezt az ideálját, és tömören úgy fogalmaztuk meg, hogy a fizika törvényeinek invariáns mennyiségekre kell vonatkozniuk. A fizika ma ismert alapvető egyenletei kivétel nélkül ilyenek, ugyanis téridőbeli objektumok kapcsolatát írják le. Mit jelent ez pontosan? Mifélék azok a téridőbeli objektumok? Nos, mint minden, ami van, ezek is a téridőben léteznek, és amikor valamilyen egyenletet keresünk -amelyik mondjuk leírja, hogy egy objektum miképpen lép kölcsönhatásba a környezetével -, akkor olyan matematikai formára törekszünk, amelyben invariáns mennyiségek szerepeinek. Csak így olvashatja őket ugyanolyannak az univerzum minden lakója.
Jó példa lehet minderre egy madzag, amely kétségtelenül megfogható valami, de az eddigiek szerint kerülnünk kell az olyan egyenleteket, amelyekben a madzagnak csupán a térbeli hosszúsága szerepel. Ennél többre kell vállalkoznunk, és a madzag téridőbeli hosszúságáról kell mondanunk valamit. Érthető, hogy egy földhözragadtabb fizikus kényelmesnek találná az olyan egyenleteket, amelyek a térbeli hosszúság és hasonló mennyiségek kapcsolatáról szólnak, a mérnökök pedig egyenesen az ilyesmiből élnek. Ha egy egyenlet kizárólag térbeli távolságokra és óra segítségével mért időtartamokra vonatkozik, akkor igazság szerint csak közelítésnek tekinthető, amelynek akkor vehetjük hasznát, ha a szóban forgó objektumok nagyon lassan mozognak a kozmikus határsebességhez képest. A mérnöki gyakorlatban ez általában így is van, de azért nem mindig: láttuk, hogy a részecskegyorsítókban például nem ez a helyzet. Ezekben körpályára kényszerített szubatomi részecskék száguldanak a fénysebességet megközelítő tempóban, és ennek következtében megnő az élettartamuk. Ha nem vennénk figyelembe Einstein elméletének következményeit, akkor a részecskegyorsítók többé nem működnének rendeltetésszerűen. A fizikai alapkutatás alapvető egyenleteket keres, és ennek során az objektumoknak csak olyan matematikai reprezentációival dolgozik, amelyeknek a téridőben van univerzális jelentésük. Tér és idő hagyományos szétválasztása a világ olyan szemléletéhez vezet, amelyet ahhoz lehetne hasonlítani, mint amikor egy színházi előadásból csak a színpadi reflektorok fényében kirajzolódó árnyékokat látjuk a padozaton. Miközben a színpad terében hús-vér szereplők mozognak, az árnyak az előadás kétdimenziós vetületét jelenítik meg. A téridő fogalmának bevezetésével végre kitekinthetünk az árnyak világából.
Szócséplésnek tűnhet ez az eszmefuttatás a téridőbeli objektumok természetéről, bár van veleje. Mindeddig csupán egyetlen olyan objektum „matematikai reprezentációjával találkoztunk, amelynek univerzális jelentése van a téridőben”: két esemény téridőbeli távolságával. Vannak mások is.
Mielőtt egy újabb téridőbeli objektum vizsgálatába fognánk, lépjünk vissza a hétköznapok háromdimenziós világába, és vegyük szemügyre itteni megfelelőjét. Senkit sem lep meg - különösen ha eljutott idáig a szövegben hogy a természet leírásának minden komoly kísérlete használja a távolság fogalmát. Mármost a távolság sajátos tulajdonsága, hogy egyetlen számként adható meg. London és Manchester távolsága például 296 kilométer, az ön talpának és a feje búbjának a távolsága (amit közönségesen testmagasságnak neveznek), mondjuk, 175 cm. A szám után álló szó (cm vagy kilométer) megmutatja, mi a számlálás egysége, de mindkét esetben lényegében egyetlen számról van szó. Manchester és London távolságát ismerve például megtudhatjuk, hogy mennyi benzint tankoljunk az útra, de az utazáshoz ez kevés. Térkép nélkül rossz irányban elindulva kiköthetünk például Norwichban.
Meglehetősen bizarr és nagyon kevéssé gyakorlatias megoldás volna, ha rajzolnánk egy hatalmas, 296 kilométer hosszúságú nyilat. A nyíl végét valahol Manchesterben vesszük fel, a hegye pedig Londonra mutat. A fizikusok nagy előszeretettel használnak ilyesfajta nyilakat a világ leírásakor. Azt tudják így kifejezni, hogy valaminek lehet nagysága és ugyanakkor iránya is. A mi gigászi London-Manchester nyilunk persze csak akkor jelenti azt, amit szeretnénk, ha a megfelelő helyzetben rajzoljuk meg; másként még mindig vezethet
Norwichba. Ilyen értelemben mondjuk azt, hogy a nyílnak nagysága és iránya is van. A meteorológusok is ilyesféle nyilakat rajzolnak, amikor azt akarják áttekinteni, hogyan fúj a szél. A nyilak örvénylő sokasága jól ábrázolja a széláramok szerkezetét: amellett, hogy a térkép bármely pontjában mutatják az ottani szélirányt, a szél erejét is láthatóvá teszik: ahol nagyobb a nyíl, ott erősebb a szél. A fizikusok vektornak nevezik a nyilakkal ábrázolható objektumokat. Az időjárási térképeken a szél sebessége vagy az óriási Manchester-London nyíl mind kétdimenziós vektorok, a leírásukhoz elegendő két szám. Eszerint például mondhatunk olyasmit, hogy óránként 64 kilométer sebességű szél fúj délkelet felől. A meteorológusok kétdimenziós nyilai nem mutatják a teljes igazságot - nem árulják el, hogy fölfelé vagy lefelé mozog-e a levegő és hogy milyen szögben; általában ez nem is túl érdekes.
Léteznek három-, sőt magasabb dimenziós vektorok is. Ha például Manchester északi dombvidékének valamelyik településéről indulnánk el a londoni utazásra, akkor a nyílnak enyhén lefelé kéne mutatnia, hiszen London a tenger szintjén található a Temze partján. A minket körülvevő tér vektorai három számmal jelle-
mezhetők. Mostanra talán már gyanút foghatnak, hogy vektorok a téridőben is léteznek, a jellemzésükhöz pedig ilyenkor négy számra van szükség.
Készen állunk rá, hogy megtegyük az utolsó két lépést az E = mc2-hez vezető úton. Az első most már nem meglepetés: vektorokat kell hadrendbe állítani, mégpedig ezúttal a téridő négy dimenziójában. Mondani persze könnyű, de ugyancsak próbára teszi a képzeletünket: meg kell barátkoznunk azzal, hogy ahogyan egy vektor mutathat észak felé, most mutathat például az időtengely irányába. Már megszokhattuk, hogy a téridőt nem nagyon tudjuk elképzelni, de erről nem a természet tehet, hanem mi magunk. Az előző fejezet példája, a téridő dombvidék segíthet egy belső kép, legalábbis egy egyszerűsített modell kialakításában, ahol a térnek csupán egy dimenziója van. A négydimenziós vektorokhoz persze továbbra is négy számra lesz majd szükségünk. Egy tipikus vektor a téridő két pontját köti össze. A 9. ábrán kettőt is megrajzoltunk. Az csupán a mi kényelmünket szolgálja, hogy egyikük az időtengely irányába mutat, illetve hogy közös a kezdőpontjuk. Általában a téridő bármely két pontja kiszemelhető és összeköthető egy-egy nyíllal. Ezek a vektorok nem merő absztrakciók. Ha ön este 10-kor lefekszik és másnap reggel 8-kor fölkel, akkor elalvása és ébredése egy vektort határoznak meg, amely a téridő két eseményét köti össze. A hossza „10 óra szorozva c-vel”, iránya pedig párhuzamos az időtengellyel. Ami azt illeti, a könyv téridővel foglalkozó fejezetében már megjelentek a vektorok, csak még nem hívtuk őket így. Egy nagyon fontos vektorral találkoztunk például a vakmerő motoros bemutatásakor, aki beragadt szeleppel száguldozott a téridő dombvidékén. Megmutattuk, hogy ez a motoros mindig c sebességgel utazik a téridőben, és csak azt választhatja meg, milyen irányba fordítja a motorját. Még ezt sem teheti kedvére, láttuk, hogy az északi iránnyal 45 fokos szöget bezáró egyenesek által határolt tartomány belsejében kell maradnia. A mozgását adott, c hosszúságú vektorral lehet ábrázolni, amely a téridőbeli elmozdulásának az irányába mutat. Ennek a vektornak saját neve van: téridőbeli sebességvektor.
Az elfogadott terminológiát használva ennek a vektornak a hossza mindig c, és a jövőbeli fénykúp belsejébe kell mutatnia. Ez a bizonyos „fénykúp” csupán egy elegáns elnevezés: annak a tartománynak a neve, amelyet az a két 45 fokos egyenes határol, amelyeknek olyan fontos szerepük van az okság megőrzésében. Ezután a téridő bármely vektora leírható, ha megadjuk a tér, illetve az idő irányába eső részét.
Mostanra már megszokhattuk, hogy két esemény tér-, illetve időbeli távolságát különbözőnek mérik a különböző sebességgel mozgó megfigyelők, de ezek az eltérések szükségképpen olyanok, hogy eközben a téridőbeli távolságok egyenlők maradnak. A Minkowski-geometria sajátos szerkezetéből adódóan ez azzal jár, hogy a vektorok csúcsa egy olyan hiperbolán mozoghat, amely a jövőbeli fénykúp belsejében helyezkedik el. A konkrét példánál maradva: ha a sióban forgó két esemény az „aludni megyünk este 10-kor”, illetve „reggel 8-kor felébredünk”, akkor az ágyban fekvő megfigyelő azt érzékeli, hogy a téridő vektora az ő időtengelye mentén fölfelé mutat, ahogy ez a 9. ábrán látható, a hossza pedig egyszerűen az órája szerint eltelt idő (10 óra) szorozva c-vel. Egy nagy sebességgel mozgó megfigyelő viszont minden további nélkül értelmezheti úgy a történteket, hogy az ágy mozog a benne alvóval együtt. így aztán a kettejük által észlelt téridővektoroknak más lesz a térbeli komponense, a mozgó megfigyelő úgy látja, hogy a vektor csúcsa elmozdult az időtengelyről. Mivel a nyíl hossza nem változhat, a hegyének a hiperbolán kell maradnia, ahogy a 9. ábra másik, ferdén álló nyila mutatja. Látható, hogy ennek a vektornak az időtengely irányába eső része hosszabb lett, ennek megfelelően a gyorsan mozgó megfigyelő arra jut, hogy a két esemény között hosszabb idő telt el (a saját órája szerint több mint 10 óra). Íme, az idő nyúlásának különös jelensége a téridőből nézve.
Egyelőre ennyit a vektorokról. Rövidesen újra szükségünk lesz majd a téridőbeli sebességvektorokra. A következő bekezdéseket az E = mc2 feladvány másik szereplőjének szenteljük.
Tegyük fel, hogy ön fizikus, és a világ szerkezetén töpreng. Jó barátságban van a vektorokkal, és olykor egyenleteket ír fel, amelyekben vektorok is előfordulnak. Mit szólna, ha valaki, mondjuk, egy kollégája mesélne egy különleges vektorról, amely soha nem változik, függetlenül attól, hogy mi történik az univerzumnak azon a részén, amelyre ez a vektor vonatkoztatható. Az ön első reakciója várhatóan az érdektelenség - ha valami mindig ugyanolyan, akkor nem várható, hogy a dolgok lényegét ragadja meg. Talán fölkeltené az érdeklődését, ha a kollégája azt is elárulná, hogy ez a különleges vektor sok-sok vektor összege, amelyek mindegyike a világnak egy-egy olyan vonatkozását írja le, amelyeken ön is gondolkodik. Ezek a különböző vonatkozások folyamatos változásban vannak, és így az egyes vektorok is változnak; ez azonban olyan módon történik, hogy az összegük mindig ugyanaz a különleges, állandó vektor. Egyébként a vektorok összeadása nem nagy dolog, pillanatokon beiül megnézzük, hogyan is kell csinálni.
Álljon itt egy egyszerű példa annak érzékeltetésére, milyen hasznosak lehetnek az ilyen állandó vektorok. Mondjuk, arra vagyunk kíváncsiak, mi történik, ha két biliárdgolyó összeütközik. A biliárdgolyók ütközése nem látszik valami falrengető tudományos problémának, de
a fizikusok szívesen hivatkoznak az ehhez hasonló hétköznapi jelenségekre. Nem feltétlenül azért, mintha nem boldogulnának az ilyeneknél bonyolultabb feladatokkal vagy mert odavannak a biliárdért; a nehéz fogalmak gyakran a legegyszerűbb példákon keresztül világíthatok meg. Térjünk is vissza a biliárdhoz: a kollégája azt ajánlja, hogy minden egyes biliárdgolyóhoz rendeljünk egy vektort, amely a golyó mozgásának irányába mutat. Az állítás pedig úgy szól, hogy e két vektor összege (mármint az egyes golyókhoz társított vektoroké) éppen ilyen különleges, állandó vektor. Ez annyit tesz, hogy bárhogyan folyik is le az ütközés, biztosak lehetünk abban, hogy a golyókhoz rendelt vektorok összege az ütközés után pontosan ugyanannyi, mint előtte volt. Ez pedig rendkívül hasznos észrevétel. Egy ilyen különleges vektor megléte nagymértékben korlátozza az ütközés lehetséges kimeneteleit. Ha pedig a kolléga még azt is hozzátenné, hogy ez a „vektormegmaradási elv” az ütköző biliárdgolyóktól a felrobbanó csillagokig az univerzum bármilyen rendszerére érvényes, akkor az ön kezdeti érdektelensége várhatóan izgatott érdeklődésbe fordulna. Talán nem meglepő, hogy a fizikusok nem „különleges vektornak” nevezik az effajta mennyiségeket. Általában impulzusvektorról beszélnek, és vektormegmaradás helyett impulzusmegmaradás! emlegetnek.
Néhány dolgot eddig nyitva hagytunk: milyen hosszúak ezek az impulzusvektorok, és hogyan kell Őket összeadni? Az utóbbi nem nagy ügy: az a szabály, hogy az összeadni kívánt vektorokat egymáshoz fűzzük. Az eredmény egy olyan vektor, amely ebben a láncban a legel-

ső vektor kezdőpontját köti össze a legutolsó vektor végpontjával. A 10. ábra mutatja, hogy megy az ilyesmi, ha három vektorunk van: a nagy nyíl a három kicsinek az összege.
Ami az impulzusvektor nagyságát illeti, ezt kísérleti úton lehet meghatározni, és a tudomány története során valóban ez történt. Maga a fogalom több mint ezeréves, ami nem csoda, hiszen lépten-nyomon felbukkan. Haladjanak bár mindketten óránként 60 kilométeres sebességgel, egyáltalán nem mindegy, hogy egy teniszlabda vagy egy gyorsvonat ütközik össze az emberrel: az impulzusvektor ezt a különbséget mutatja. A vektor nagysága függ a sebességtől, de ahogy a példából elég meggyőzően kiderül, függ a tömegtől is. Einstein előtt egyszerűen a tömeg és a sebesség szorzata volt az impulzusvektor hossza. Az irányáról pedig már elmondtuk, hogy a mozgás irányával azonos. Egyébként, ahogy már beszéltünk erről, az impulzusnak mint megmaradó mennyiségnek a modem felfogása Emmy Noether munkásságához köthető. Kiderült, hogy mély kapcsolat van az impuzusmegmaradás elve és a térbeli eltolás szerinti invariancia között, ennek a kapcsolatnak a bemutatása azonban nagyon messzire vezetne. Az impulzusról most még csak annyit, hogy mai jelölésekkel az m tömegű, v sebességgel mozgó test impulzusának nagysága p = mv alakban írható fel; itt p az impulzus szokásos jelölése.
Eddig nem nagyon beszéltünk arról, mi is valójában a tömeg, most azonban ennek is eljött az ideje. Szemléletesen szólva, egy tárgy tömege a benne foglak anyag mennyisége. Két zacskó cukor kétszer akkora tömegű mint egy zacskó cukor és így tovább. Éppenséggel akár valamennyi tárgy tömegét egy szabvány zacskónyi cukor segítségével lehetne lemérni egy közönséges kétkarú mérlegen. Annak idején így árulták a zöldséget a boltban. Aki egy kiló krumpliért jött, kiegyensúlyozhatta a krumplis serpenyő tartalmát egy zacskó cukorral, és mindenki megnyugodhatott, hogy ilyen módon a megfelelő mennyiségű krumpli került a vevőhöz.
A tárgyak persze sokfélék lehetnek, így pedig „bennfoglalt anyagról” beszélni meglehetősen homályos. íme, egy jobb definíció: mérjük a tárgyak tömegét a súlyuk révén. Nehezebb tárgyaknak tehát nagyobb a tömegük. Ez ilyen egyszerű? Igen is, meg nem is. Itt, a Földön a súlyát lemérve megkapjuk egy tárgy tömegét, erre minden fürdőszobamérleg alkalmas. Nagyjából mindenki tudja, mennyi a testsúlya, hány kiló és hány deka (esetleg hány font és hány uncia). A tudósoknak ez kevés. Igaz ugyan, hogy a súly és a tömeg arányosak egymással, de a Föld felszínén (vagy annak közelében) ez másképp néz ki, mint mondjuk a Holdon. Vajon mit mutatna a fürdőszobamérlege a Hold felszínén? Nos, alig a hatodát annak, amit itt, a Földön. A Holdon tényleg kisebb az ön testsúlya, miközben a tömege ugyanannyi marad. A váltószám lesz más a Holdon, noha bárhol mérjük is, kétszer annyi tömeg súlya kétszer akkora. (Ezt mondjuk úgy, hogy a súly egyenesen arányos a tömeggel.)
A tömeg egy másik definíciója azt használja fel, hogy nagyobb tömeget nehezebb mozgásba hozni. A természetnek ezt a jelenségét a fizika második leghíresebb egyenlete írja le (az E = mc2 után), amely szerint F = ma és amelyet 1687-ben Isaac Newton közölt elsőként a Principia Mathematica című művében. Newton törvénye lényegében azt állítja, hogy ha egy testet F erővel tolunk, akkor a gyorsulással mozog. Az m a tömeget jelenti ebben az egyenletben, amelynek felhasználásával ez a tömeg meg is határozható annak alapján, hogy mekkora erő szükséges ahhoz, hogy a test adott gyorsulást érjen el. Ez a definíció teljesen megfelel a céljainknak, úgyhogy egyelőre ennél maradunk, jóllehet egy kritikus elme feszegethetné, hogy mi is itt az „erő” pontos definí-dója. Ez jogos, de nem megyünk bele. Elég annyit föltennünk, hogy ezt a bizonyos toló vagy húzó hatást, szóval az erőt, meg tudjuk mérni.
Jókora kitérőt tettünk, és noha igazából nem árultuk el, mi a tömeg, a „tankönyvi” definíció végül is elhangzott. Ennél messzebbre csak a tömeg eredetét tárgyaló 7. fejezetben merészkedünk, de most abból indulunk ki, hogy a tömeg létezik mint a tárgyak eredendő tulajdonsága. Létezik tehát a téridőben egy tömegnek nevezett mennyiség, amely mindenki számára ugyanazt jelenti. Ennek megfelelően a tömeg is az invariáns mennyiségek körébe tartozik. Mindeddig semmiféle érvet nem hoztunk fel amellett, hogy ez a mennyiség szükségképpen azonos azzal, amelyik Newton egyenletében is szerepel, de a feltevéseink többségéhez hasonlóan ennek az érvényessége vagy cáfolata is akkor kerül terítékre, amikor kiderítjük a következményeit. Egyelőre térjünk vissza a biliárdgolyókhoz.
Ha két biliárdgolyó összeütközik, és mind a tömegük, mind pedig a sebességük azonos, akkor az impulzusvektoraik egyenlő hosszúak, de ellenkező irányba mutatnak. A két vektor semlegesíti egymást, az összegük nulla. Az impulzusmegmaradás törvénye ekkor azt állítja, hogy ilyenkor, bármi történjék is, az ütközés után a két golyó továbbra is egyenlő sebességgel, ellenkező irányba mozog. Minden más esetben ugyanis nem volna nulla az impulzusvektorok összege. Ahogy elhangzott, az impulzusmegmaradás elve távolról sem csak ütköző biliárdgolyókra érvényes; az univerzum számos jelenségére alkalmazható, azért olyan fontos. Érvényes például, ha egy elsütött ágyú visszacsapódik, és akkor is, amikor egy nagy erejű robbanás szórja szanaszét a részecskéket: mindkét folyamat az impulzusmegmaradás törvényének megfelelően, azzal összhangban zajlik le. Ami azt illeti,
az ágyú példáját érdemes egy kicsit közelebbről szemügyre venni.
A lövés előtt nincsen impulzus, a golyó békésen pihen az ágyúcsőben, maga az ágyú pedig a bástya tetején áll a helyén. Amikor elsütik, a golyó nagy sebességgel kirepül, az ágyú pedig valamelyest visszacsapódik, de a tüzérek szerencséjére nem nagyon. A lövedék impulzusát az impulzusvektora írja le, amelynek hossza a lövedék tömegének és sebességének a szorzata, iránya pedig az az irány, amerre az irányzó ténykedésének megfelelően kirepül az ágyúcsőből. Az impulzusmegmaradás elve azt mondja, hogy ekkor az ágyúnak is meg kell mozdulnia; az impulzusvektora a tétel szerint ugyanolyan hosszú, mint a lövedéké, az iránya viszont azzal éppen ellentétes. Az ágyú tömege persze sokkal nagyobb, ezért aztán sokkal kisebb sebességgel csapódik vissza. Minél nehezebb, annál lassabban. Ezek szerint nagy és lassú, valamint kicsiny és gyors objektumok impuzusa lehet egyenlő. Végül aztán a lövedék is és az ágyú is lelassul (és ennek megfelelően csökken az impulzusuk), a lövedékre ezen kívül hat a gravitáció, így az impulzusának az iránya is változik. Ez persze egyáltalán nem azt jelenti, hogy sérülne az impulzusmegmaradás elve. Ha képesek volnánk számításba venni a golyóval ütköző levegőmolekulák, továbbá a mozgó ágyú molekuláinak impulzusváltozását, valamint azt, ahogyan a gravitáció révén a lövedékkel kölcsönhatásban lévő földgolyó impulzusa is megváltozik egy picit, akkor azt találnánk, hogy a rendszer teljes impulzusának az összege nem változott. Ha a súrlódás és a légellenállás is szerepet játszanak a folyamatban, akkor a fizikusok általában nem tudnak elszámolni az impulzus eltűnésének minden részletével, így aztán az impulzusmegmaradás elvét akkor lehet jól használni, ha a külső hatások elhanyagolhatók. Ez némileg gyengíti a törvény általános felhasználhatóságát, de egyáltalán nem kisebbíti ennek a fizikai alapelvnek a jelentőségét és általános érvényét. Ezek után nézzük, hogyan fejezhetnénk be végre ezt az elhúzódó biliárdpartit.
Hogy egyszerűbb legyen a dolgunk, tekintsünk most el a súrlódástól, és csak az ütköző biliárdgolyókra figyeljünk. Az impulzusmegmaradás imént kimondott elve nagyon értékes, de nem a bölcsek köve. Ha csak annyit tudunk, hogy az impulzus megmarad, továbbá ismerjük a golyók tömegét és az ütközés előtti sebességüket, akkor ebből még nem tudjuk megmondani, mekkora sebességgel mozognak majd az ütközés után. Ehhez még egy fontos megmaradási elvre van szükség.
Eddig arról beszéltünk, hogy a mozgó tárgyak az impulzusvektorukkal jellemezhetők, továbbá hogy az idők során az impulzusvektorok összességének nem változik meg az összege. Éppen ez az állandósága teszi olyan fontossá az impulzust a fizikában. Fontos, hogy ezt tisztán lássuk. Ha önnek netán nem tetszik az „impulzus” kifejezés, akkor választhat ennél rosszabbat is: emlegethet például egy „nyilat, amelyik nem változik”. De a tréfát félretéve, szép lassan kiderül, hogy a fizika telis-tele van ilyesféle megmaradó mennyiségekkel, amelyek rendkívül hasznosak. Azt is mondhatnánk, hogy minél több megmaradó mennyiséget ismerünk, annál könnyebb megtalálni egy probléma megoldását. A megmaradási elvek között azonban van egy, amely a felhasználásának sokoldalúságát tekintve messze kiválik a többiek közül. Hosszú időnek kellett eltelnie ahhoz, hogy a mérnökök, a fizikusok és a vegyészek több nemzedéke felismerje és megfogalmazza; mindez még a XVII. században kezdődött, és a XIX. században zárult le. Az energiamegmaradás elvéről van szó.
Első ránézésre az energia egyszerűbb fogalomnak látszik, mint az impulzus. Ahogy a tárgyak bírhatnak impulzussal, úgy energiával is, ára szemben az előbbivel, az energiának nincsen iránya. E tekintetben inkább a hőmérséklethez hasonlít, amelyet szintén egyetlen számmal lehet jellemezni. De mi az „energia”? Hogyan értelmezzük? Mit fejez ki? E tekintetben határozottan könnyebb dolgunk volt az impulzussal. Egy nyíl, amelyik a mozgás irányába mutat, a hossza pedig a tömegnek és a sebességnek a szorzata. Az energiát nehezebb tetten érni, mert sokféle alakban mutatkozik meg. Egyvalami azonban minden körülmények között teljesül: történjék bármi, az összenergia állandó marad, függetlenül attól, hogy miféle folyamat zajlik. Erre a jelenségre megint Noether adta meg a valódi magyarázatot: az energia azért marad állandó, mert a fizika törvényei az időben állandók, nem változnak meg. Ez nem azt jelenti, hogy maga a változás lehetetlen, ez így butaság. Arról van szó, hogy ha például a Maxwell-egyenletek érvényesek ma, akkor holnap is azoknak kell lenniük. A Maxwell-egyenletek helyett persze a fizika bármely törvényét említhettük volna - akár Einstein posztulátumait is.
Mindezt előrebocsátva térjünk rá a dolog történetére: nos, az impulzusmegmaradáshoz hasonlóan az energiamegmaradás elvéhez is tapasztalati úton jutott el a tudomány. Felfedezésének története az ipari forradalom korának egyik nagy tudományos kalandja. Mesteremberek és mérnökök tevékenysége során derült rá fény, akik a munkájukat végezve számtalan mechanikai és kémiai jelenséggel találkoztak, miközben az ipari „bölcsek kövét” keresték. Például a balszerencsés Rumford grófja (egyébként Benjamin Thompson néven látta meg a napvilágot Massachusetsben, 1753-ban), akit a bajor uralkodó azzal bízott meg, hogy készítsen ágyúkat a számára. Az ágyúcsövek kifúrása közben Rumford felfigyelt arra, hogy mind az ágyúcső, mind pedig a fúró felforrósodik, és ebből arra következtetett -nagyon helyesen hogy a fúró forgó mozgása a súrlódás következtében hővé alakul. Ez éppen a fordítottja annak, amikor a gőzmozdony kazánjának a hője a vonat kerekeinek forgó mozgásává változik át. Természetesnek tűnt az a feltevés, hogy léteznie kell valaminek, egy közös mennyiségnek, amelyik jelen van mind melegedéskor, mind pedig a forgó mozgás során, hiszen ezek a nagyon különböző dolgok láthatóan egymásba alakulnak. Ez a mennyiség az energia. Ami a balszerencsés jelzőt illeti, Rumford azért kapta, mert nőül vette egy másik nagy tudós, Antoine Lavoisier özvegyét, miután Lavoisier a francia forradalom guillotine-ja alatt végezte. Rumford talán abban bizakodott, hogy a hölgy jó felesége lesz, és az ő kísérleti naplóját is kötelességtudóan vezeti majd, ahogy ez elvárható lett volna egy engedelmes XVIII. századi háziasszonytól. Kiderült azonban, hogy ez a nőszemély kizárólag Lavoisier vasakaratának volt hajlandó engedelmeskedni, és ahogy Az abszolút zérus fok című könyvében Kurt Mendehlson olyan tanulságosan elbeszéli, pokollá tette második férje életét. Hagyjuk is ezt a szomorú históriát, és térjünk a tárgyra: az energia minden körülmények között megmarad, és ez teszi olyan érdekessé.
Ha egy járókelőt faggatunk az energia mibenlétéről, akkor többé-kevésbé szakszerű választ éppúgy kaphatunk, mint ezoterikus halandzsát. A szó köznapi jelentése nagyon kitágult, a kifejezés széles körben elterjedt. A tényéknél maradva, az energiának igenis megvan a pontos definíciója, amelynek sem a Ley-vonalakhoz nincs köze, sem a gyógyító kristályokhoz, sem pedig a reinkarnációhoz. Egy józanabb valaki mondhat olyasmit, hogy az energia elraktározható, egy telepben például, kisülésre készen, ha zárul az áramkör; lehet a mozgásmennyiség mérőszáma, ahol a gyorsabban mozgó testnek nagyobb az energiája. Ilyesmire példa a szél—
vagy a vízi energia. Valaki más felhozhatja, hogy a meleg testeknek nagyobb az energiájuk, mint a hidegeké. Egy erőműben hatalmas lendkerekek tárolhatják, és alkalomadtán elektromos áram formájában felszabadítva csillapítható a külvilág energiaéhsége. A nukleáris erőművekben pedig az atommag belsejéből nyerhető az energia. Ezek a példák messze nem merítik ki azokat a lehetőségeket, ahogyan az energia megjelenik körülöttünk; a fizikusok valamennyit számba vették, és minden alkalommal arra jutottak, hogy ha az összes hatást figyelembe veszik, akkor az energia összmennyisége állandó marad.
Nézzük meg ismét, ígérjük, hogy utoljára, a biliárdgolyók ütközését, hogy lássuk, miképpen érvényesül az energiamegmaradás egy egyszerű rendszerben. Az ütközés előtt mindkét golyó energiával rendelkezik, hiszen mozgásban vannak. A fizikusok a mozgási vagy kinetikus jelzőt adták az energia e formájának. Az Oxford English Dictionary a „kinetikus” szót úgy határozza meg, hogy „mozgás nyomán vagy annak eredményeként létrejövő hatás”, az elnevezés tehát találó. Az eddigiekben azt is föltettük, hogy a golyók egyforma sebességgel mozognak, és a tömegük is egyenlő. Ütközés után pedig ugyancsak egyenlő sebességgel pattannak vissza az ellenkező irányba. Ezt mondja az impulzusmegmaradás elve. Pontosabb mérések viszont azt adják, hogy a golyók sebessége az ütközés után valamivel kisebb. Ennek az az oka, hogy az energiájuk egy része elhasználódik az ütközéskor. A legnyilvánvalóbb energiaveszteség az ütközést kísérő hanghatásként észlelhető. Az ütköző golyók mozgásba hozzák a környezetükben a levegőmolekulákat, és ez a zavar eljut a fülünkig. A meglévő energia egy része tehát távozik a rendszerből, a visszapattanó golyók összenergiája kevesebb lesz. Ebben a könyvben valójában nem kell tudnunk, hogy miképpen számszerűsíthető az energia minden egyes megjelenési formája, bár a mozgási energia képletére még szükségünk lesz. Akinek vannak emlékei az iskolai fizikaórákról, az talán fel tudja idézni, hogy a mozgási energia képlete 1/2 mv2. Amit mindenképpen tudatosítanunk kell, az az, hogy az energia számszerűsíthető, és ha minden hatást gondosan könyvelünk, akkor kiderül, hogy egy rendszer energiája állandó marad, amíg világ a világ.
De térjünk vissza a cselekményhez. Bevezettük az impulzust mint olyan mennyiséget, amelyet egy nyíllal jellemzünk; az energiával együtt mindketten megmaradó mennyiségek, ezért olyan hasznosak. Mindez szép és jó, de a háttérben veszély fenyegeti ezt a szép építményt. Az impulzusnyilak csak a mi hétköznapi világunk háromdimenziós rendszerében léteznek. Egy ilyen vektor mutathat fölfelé, lefelé vagy akár délkeletre, de mindenképpen a tér valamelyik irányába. Ez természetes, hiszen maguk a tárgyak mozognak így a térben, az impulzusvektor csak követi a mozgásuk irányát. Az előző fejezet viszont többek között éppen arról szólt, hogy a tér és az idő szétválasztására való hajlamunk szellemi rövidlátás. Olyan nyilakra van szükségünk, amelyek a téridő négy dimenziójában jelölik ki az irányokat; másképpen az egyenleteink nem alkalmasak Einstein konstrukciójának a leírására. Ahogy már több ízben elmondtuk: az alapvető egyenleteknek olyan objektumok kapcsolatát kell leírniuk, amelyek a téridőben léteznek, nem pedig elkülönülve a térben, illetve az időben; egy-egy ilyen korlátozott mennyiség ugyanis elkerülhetetlenül szubjektív. Emlékeztetőül: a térbeli távolságok vagy a két esemény között eltelt idő nem olyan mennyiségek, amelyek minden megfigyelő számára ugyanakkorák: ez a fenti „szubjektív” jelző tartalma. Így aztán, mint a tér egy adott irányába mutató vektor, az impulzus is ilyen. Az időbeli beágyazottságnak ez
a hiánya pedig az egész rendszert fenyegeti. A téridő bevezetéséve! eszerint búcsút kéne mondanunk ezeknek az alapvető fizikai elveknek? Tény és való: ez az új, tágasabb világ komoly kihívást jelent, de egyúttal a továbblépés lehetősége is látszik: egy új, immár invariáns mennyiséggel kéne kiváltanunk a jó öreg háromdimenziós impulzust. Mondandónk veleje pedig az, hogy ilyen mennyiség igenis létezik.
Nézzünk meg közelebbről egy háromdimenziós impulzusvektort. All. ábra nyila egy golyó elmozdulását mutatja az asztallapon. A jegyzőkönyv kedvéért tegyük fel, hogy a golyó pontban délben a nyíl kezdőpontjában tartózkodik, 2 másodperccel később pedig eljut a végpontba, a nyíl hegyéhez. Ha a golyó másodpercenként 1 centiméter sebességgel halad, akkor a nyíl éppen két centiméter hosszú. Ezek után az impulzusvektort könnyen megkaphatjuk: az iránya azonos all. ábra nyiláéval, a hossza viszont más lesz. Ez a hossz a golyó sebességének (amely esetünkben másodpercenként 1 centiméter) és a tömegének a szorzata. Utóbbi legyen, mondjuk, 10 gramm. A fizikusok ekkor azt mondják, hogy az impulzusvektor hossza 10 gramm-centiméter per másodperc (ami az ő gyorsírásukban úgy fest, hogy 10 g cm/s). Ezúttal is érdemes valamivel szárazabb módon további jelöléseket bevezetni ahelyett, hogy a tömeg vagy a sebesség konkrét értékeire hivatkoznánk. Ahogy eddig sem állt szándékunkban, most sem szeretnénk az Olvasó egykori matektanárának a maskarájába bújni, de... ha Δx jelöli a nyíl hosszát, Δt az eltelt időt, m pedig a golyó tömegét (a példában Δx = 2 centiméter, Δt = 2 másodperc, végül m = 10 gramm), akkor az impulzusvektor hossza mΔx/Δt.
Ilyenek tehát a háromdimenziós tér impulzusvektorai.
Most azonban merész vállalkozásba fogunk: megpróbáljuk elkészíteni a téridő impulzusvektorait. A dolog egyfelől nagyon hasonlít majd a háromdimenziós változatra, azzal a nagyon erős megszorítással, hogy kizárólag olyan mennyiségekkel dolgozunk majd, amelyek invariánsak a téridőben.
Most is egy nyíllal kezdjük, de ezúttal a négydimenziós téridőben „rajzoljuk meg” a 12. ábra szerint. A nyíl kezdőpontja azt mutatja, hol tartózkodik a golyó az egyik pillanatban, a végpontja pedig azt, hogy hol van egy kis idővel később. A nyíl hosszát ezúttal a téridőben használatos Minkowski-féle távolságformula szerint kell számolnunk: (Δs)2 = (cΔs)2 - (Δx)2. Emlékeztetőül: a képletben szereplő As olyan mennyiség, amelyet az univerzum minden megfigyelője ugyanakkorának észlel (ami külön-külön határozottan nem áll a Δx és a Δt mennyiségekre), ilyenformán pedig ez az a távolság-mérték, amely a téridőben átveszi Δx-nek a háromdimenziós impulzus kiszámolásakor játszott szerepét. De mi lépjen Δt időtartam helyére? (Emlékeztetőül: az mv = mΔx/Δt formula négydimenziós változatát keressük.) A rossz hír az, hogy most Δt közvetlenül nem használható, hiszen nem téridő-invariáns. Ahogy nem győztük hangsúlyozni, egy időtartam mértéke függ a megfigyelő állapotától, és így közvetlenül nem használható a négydimenziós impulzus értelmezésekor. Mit tegyünk? Mivel kéne elosztanunk a nyíl hosszát, hogy megkapjuk a golyó téridőbeli sebességét?
A jó öreg háromdimenziós impulzus kiterjesztésén dolgozva elvárható, hogy a fénysebességhez képest lassan mozgó tárgyaknak ez az új impulzusa közelítőleg egyenlő legyen a régivel. Ha így van, akkor a téridőbeli vektorunk Δs hosszát valami olyan mennyiséggel kell elosztanunk, amelyik hasonló természetű, mint egy időintervallum, máskülönben az új, négydimenziós impulzus semmilyen kapcsolatban nem lesz a háromdimenziós jogelődjével. Az időt másodpercekben mérjük, így most is olyasmit keresünk, ami másodpercekben mérhető. A téridőben rendelkezésre álló invariáns készletünknek mostanáig csupán két tagja van: a fény sebessége, c és a Δs távolság. Ezekből csak egy épkézláb kombináció hozható össze: osszuk el a vektor Δs hosszát a fénysebességgel. Ha tehát Δs-t méterben, c-t pedig méter/másodpercben mérjük, akkor Δs/c olyan mennyiség, amelyet másodpercben mérünk. Ez tehát alkalmas arra, hogy elosszuk vele a nyilunk hosszát, hiszen ez az egyetlen olyan invariáns mennyiség, amelyet a megfelelő mértékegységgel lehet mérni. Vegyünk egy mély lélegzetet, és osszuk el Δs-t a Δs/c „időtartammal”. Az eredmény éppen c. (Ugyanaz az egyszerű számolás, mint amikor 1-et 1/2-del osztva 2 jön ki.) Ez azt jelenti, hogy a háromdimenziós impulzusformula négydimenziós kiterjesztésében a kozmikus határsebesség, a c játssza a sebesség szerepét.
Az eredmény ismerős lehet, ami nem csoda, hiszen már láttuk. Most annyi történt, hogy kiszámoltuk egy mozgó tárgy (esetünkben egy biliárdgolyó) sebességét a téridőben, és azt találtuk, hogy ez éppen c. A téridő dombvidékén utazó motorost követve szó szerint ugyanerre jutottunk az előző fejezetben. Most viszont többről van szó: megtaláltuk a négydimenziós téridő sebességvektorait, amelyek segítségével értelmezni lehet majd a téridőbeli impulzust. Egy téridőben mozgó objektum sebességvektorának a hossza mindig c, a vektor pedig a mozgás irányába mutat.
A téridőbeli impulzusvektor megszerkesztésének befejező lépéseként ezt a sebességvektort meg kell még szoroznunk m-mel, a mozgó tárgy tömegével. A kínálkozó impulzusvektor hossza tehát mc, és a vektor a téridőbeli mozgás irányába mutat. Első ránézésre meglehetősen egyhangúan viselkedik, hiszen a téridőbeli hossza állandó.
Kezdetnek nem túl ígéretes... De ne riadjunk vissza! Nézzük meg, hogy az így megszerkesztett téridőbeli impulzusvektor mutat-e bármiféle hasonlóságot a hagyományos háromdimenziós impulzussal! Vagy másképpen: vesszük-e valami hasznát a téridő vizsgálata során?
Most mélyebbre ásunk, és külön-külön vesszük szemügyre ennek az új, téridőbeli sebességvektornak a részeit; azt, amelyik a tér, illetve azt, amelyik az idő irányába mutat. Ennek során elkerülhetetlenül szükségünk lesz némi matematikára. A laikus Olvasó elnézését kérjük és ígérjük, hogy fontolva haladunk majd. Másfelől megismételjük az ajánlatunkat: mindig megtehetik, hogy az egyenleteket átugorva egyenesen a végkifejlethez lapoznak. A matematika meggyőzőbbé teszi a gondolatmenetet, de a szöveg nyugodtan olvasható úgy is, hogy valaki nem követi a részleteket. Persze ugyanígy elnézést kell kémünk a beavatott Olvasóktól, tőlük azért, ha szerintük netán túlírnánk a dolgot. Ami azt illeti, nálunk, Manchesterben az a szólás járja, hogy „Vagy elteszed a tortát, vagy megeszed, de a kettő nem megy egyszerre”. Ez a mondás, őszintén szólva, nehezebben emészthető, mint a most következő matematika.
Ott tartottunk, hogy a háromdimenziós impulzusvektor hossza mΔx/Δt. Kiderült, hogy a négydimenziós változatban Δx helyére Δs kerül, Δt helyére pedig Δs/c. Az így kapott négydimenziós vektor hossza nem túl változatos módon mindig mc. Szenteljünk még egy bekezdést a dolognak, és írjuk ki részletesen a Δt helyére kerülő Δs/c mennyiséget: azt kapjuk, hogy ez gyök((cΔt)2 - (Δx)2)/c. Elég ijesztő, de egy kis algebra segítségével egyszerűbben is írható: egészen pontosan Δt/y alakban, ahol y = 1/gyök(1-v2/c2). Közben felhasználtuk, hogy a mozgás sebessége v = Δx/Δt. Ezzel a y-val már találkoztunk a 3. fejezetben; azt mutatja, hogy hányadrészére lassul le az idő egy olyan megfigyelő számára, aki v sebességgel mozog az órához képest.
Most már a célegyenesben vagyunk. Az egész matematikával annak tisztázása volt a célunk, hogy mennyire tér el az impuzusvektor az idő, illetve a tér irányától. Gyorsan idézzük fel, hogyan kezeltük az impulzusvektort három dimenzióban. A 11. ábráról minden leolvasható. A háromdimenziós impulzusvektor egyirányú a 11. ábra nyilával, hiszen a golyó mozgásának az irányába mutat. A hosszát módosítani kell, meg kell szoroznunk a golyó tömegével, és osztanunk az eltek idővel. A négydimenziós eset lényegében ugyanígy intézhető el. Az impulzusvektor most a golyó téridőbeli mozgásának az irányába mutat, a 12. ábra szerint. Ahhoz, hogy az elmozdulásvektorból megkapjuk az impulzust, most is át kell skáláznunk a hosszát. Ezúttal is szoroznunk kell a tömeggel, de most a Δs/c mennyiséggel kell osztanunk. (Ez invariáns a téridőben, és az előző bekezdésben kiderült, hogy az értéke Δt/y.) Ha közelebbről megnézzük a nyilat a 12. ábrán, látható, hogy ha meg akarjuk változtatni a hosszát, akkor ahhoz, hogy az iránya ne változzék, mind a tér (Δx), mind pedig az idő irányú részét (cΔs) ugyanazzal a számmal kell megszorozni. Így pedig az impulzusvektor térirányú része nem más, mint Δx szorozva m-mel és osztva Δt/y-val, ami éppen ymΔx/Δt. Ha meggondoljuk, hogy a mozgó tárgy térbeli sebessége v = Δx/Δt, akkor meg is van az eredmény: a téridőbeli impulzusvektor térbeli részének a hossza ymv.
Ez a mi frissen elkészült téridőbeli impulzusvektorunk módfelett izgalmas jószág. Ha a tárgy a fénysebességnél sokkal lassabban mozog, akkor y értéke gyakorlatilag 1, ilyenkor visszakapjuk a régi impulzust, a tömeg és a sebesség p = mv szorzatát. Ez biztatóan hangzik, folytassuk! Sokkal több történt itt, mint hogy egyszerűen átplántáltuk a régi impulzusvektort az új, négydimen-
ziós környezetbe. A formulánk például pontosabb lett, hiszen y csak akkor 1, ha a sebesség nulla.
Már az sem akármi, hogy sikerült finomítanunk a p = mv formulát, de ennél is érdekesebb dolgok történnek az időtengely mentén. A befektetett munka most busásan megtérül: nyomban adódik az impulzusvektor időirányú részének a hossza, az eredmény a 13. ábráról leolvasható. Ennek a komponensnek a hosszát úgy kapjuk, hogy cΔt és m szorzatát újfent elosztjuk Δt/y-val: az eredmény pedig ymc.
Emlékeztetőül: azért olyan fontos az impulzus, mert megmaradó mennyiség. Az volt a célunk, hogy olyan új, négydimenziós impulzust értelmezzünk, amelyre immár a téridőben érvényes a megmaradási elv. Képzeljünk el egy csomó impulzusvektort a téridőben, mindenféle irányban, például ütköző részecskék impulzusvektorait. Az ütközés után a részecskék mozgásának megfelelően új, a korábbiaktól várhatóan különböző impulzusvektorokat kapunk. Az impulzusmegmaradás elve viszont azt állítja, hogy ezeknek az új vektoroknak az összege szükségképpen egyenlő a régiek összegével. Ez pedig azzal jár, hogy a vektorok térbeli összetevői összegének
is állandónak kell maradnia, csakúgy, mint az időirányú összetevőké. (Ez a vektorok egyik alapvető tulajdonsága: a „részek” arányosan, külön-külön követik a teljes vektor változását.) Ha tehát minden egyes részecskére összesítjük a ymv mennyiségeket (ezek háromdimenziós vektorok), akkor az ütközés előtti összegnek meg kell egyeznie az ütközés után kapott összeggel. Ugyanez áll az időirányú összetevőkre is (ezek számok), ezúttal a részecskénként kiszámolt ymc értékek összege marad ugyanakkora. Ezzel éppenséggel két új fizikai törvényt is kaptunk: mind ymv, mind pedig gmc megmaradó mennyiségek. De mi a jelentésük? Első közelítésben nem túl izgalmas a dolog: ha a sebességek kicsik, akkor y nagyon közel van az 1 -hez, és ymv lényegében mv. Visszakaptuk a megmaradó impulzus hagyományos alakját. Ez megnyugtatóan hangzik, mert azt azért reméltük, hogy a viktoriánus kor fizikusai ráismernek az eredményre. Brunel és a XIX. század többi kiváló mérnöke remekül elvoltak a téridő nélkül is, a mi új definíciónk nyomán pedig ugyanazokat a válaszokat várnák a saját kérdéseikre, mint annak idején az ipari forradalom korában, feltéve, hogy a szereplők sebessége nincs a fénysebesség közelében. Végül is a cliftoni függőhíd sem omlott össze attól, hogy Einstein előállt a relativitáselmélettel.
Hogy állunk a ymc mennyiség megmaradási elvével? Mivel a c értéke univerzális állandó, minden megfigyelő számára ugyanannyi, ymc megmaradásáról beszélve nem mondunk se többet, se kevesebbet, mint hogy a tömeg is megmaradó mennyiség. Nem olyan nagy meglepetés, elvártunk ilyesmit, de azért mégis figyelemre méltó, ahogyan kipottyant az eddigiekből. Eszerint ha például a szén elég a kályhában, akkor a megmaradó hamu (továbbá a füstnek és mindannak, ami még távozik a kéményen) az össztömegének egyenlőnek kell lennie a kályhába bekészítecc szén tömegével. Az pedig, hogy a y értéke nem pontosan 1, nem befolyásolja érdemben a dolgokat, és így a jól végzett munka örömével dőlhetnénk hátra. Sikerült definiálnunk a téridőben a2 impulzust, ez a mennyiség határozott jelentéssel bír, megkaptuk a XIX. századi impulzusfogalom (tipikusan kicsi) korrekcióját, emellett igazoltuk a tömegmegmaradás elvét is. Kinek kell ennél több?
Hosszú történet vége felé járunk, de a csattanó még hátravan. Ha alaposabban szemügyre vesszük az impulzusvektor időirányú részét, akkor innen, mintegy varázsütésre, ölünkbe pottyan Einstein leghíresebb formulája. Következzék tehát a finálé! Milétoszi Thalész a fürdőjében kinyújtózva várja az elragadtatás végső pillanatát. Amíg idáig eljutottunk, az Olvasó több szellemi zsonglőr-mutatványnak lehetett szemtanúja. Nem csalás, nem ámítás, sokat elleshetett a profi fizikusoktól, megismerkedett a négydimenziós vektorokkal és a Minkowski-féle téridővel. Jöhet a végkifejlet.
Megállapítottuk, hogy a gmc mennyiségre érvényesnek kell lennie a megmaradási törvénynek. Pontosan kell látnunk, hogy ez mit jelent. Ha elképzelünk egy biliárdpartit, ezúttal a relativisztikus biliárdasztalon, akkor minden egyes golyóhoz tartozik egy saját ymc érték. Ha ezeket összegezzük, akkor bármi legyen is ez az összeg, állandó marad. Módosítsuk a játékot, egy első ránézésre értelmetlen szabállyal. Ha ymc megmarad, akkor ugyanígy megmarad ymc2 is, egyszerűen azért, mert c értéke konstans. Hogy erre mi szükség van, az mindjárt kiderül. Tudjuk, hogy y értéke nem pontosan 1, és azt állítjuk, hogy kicsiny sebességek esetén igen pontosan közelíthető ay - 1+ Vi(v2/c2) formulával.13 Ezt akár egy kalkulátorral is lehet ellenőrizni: a c-hez képese kicsiny sebességekre ez a közelítés rendkívül pontos. (Ez azt jelenti, hogy majdnem ugyanazt az értéket számolja ki, mint a pontos 1/gyök(1-v2/c2) formula.)
Ha nincs az olvasó keze ügyében kalkulátor, akkor az alábbi 5.1 táblázat remélhetőleg meggyőzi.
5.1 táblázat
Figyeljük meg, milyen pontos ez a közelítő formula (ezzel számoltuk ki a harmadik oszlop számait), még olyan, viszonylag nagy sebességekre is, mint a fénysebesség 10 százaléka (v/c = 0,1, másodpercenként 30 millió méter), amely, a gyorsítókat kivéve, messze túl van mai technikai lehetőségeinken.
Ezzel az egyszerűsítéssel ymc2 közelítőleg mc2 + 1/2mv2. Most térül meg mindaz, amit eddig kiszámoltunk. A fénysebességhez képest kicsiny sebességekre eddigi eredményeink azt adják, hogy az mc2 + 1/2 mv2 mennyiségre érvényes a megmaradási törvény. Igazság szerint a ymc2 mennyiségről van szó, de most az előbbi forma sokkal többet mond. Hogy miért? Ahogy korábban már megjegyeztük, az 1/2mv2 szorzat az a mozgási energia, amellyel az ütköző biliárdgolyók példája során találkoztunk. Azt mutatja meg, mekkora energiára tesz szert egy m tömegű test, ha v sebességgel mozog. Találtunk valamit, ami megmarad, egy rejtélyes mennyiségnek (mc2) és a mozgást energiának 32 összegét. Minden amellett szól, hogy ezt a teljes „megmaradó valamit” tekintsük energiának. Ez a mennyiség tehát két részből áll: egyikük 1/2mv2, a másik pedig mc2. Hogy itt szoroztunk c-vel, azon nem kell fennakadni. Azért tettük, hogy a végső eredményben az 1/2 mv2/c2 kifejezés helyett megjelenjen a fizikusok nemzedékei által mozgási energiaként ismert 1/2 mv2 tag. Akinek tetszik, akár „kinetikus tömegnek” is hívhatja 1/2 mv2/c2-et, vagy bárminek, amit elég kifejezőnek talál. Nem a név a fontos (még akkor sem, ha, mint esetünkben, az „energia”, gazdag jelentéssel bír). Az a lényeg, hogy a „téridőbeli impuzusvektor időirányú komponenseként” ez a valami megmaradó mennyiség. És valljuk be, hogy egy olyasféle kijelentésnél, miszerint a „téridőbeli impuzusvektor időirányú komponensének értéke mc ", sokkal kifejezőbb az E = mc2 forma, noha a fizikai jelentésük ugyanaz.
Ez igen! Sikerült kimutatnunk, hogy a téridőbeli impulzus megmaradásából nemcsak a háromdimenziós impulzus megmaradásának pontosabb alakja, hanem az energiamegmaradási törvény javított változata is levezethető. Kiderült, hogy ha egy részecskékkel teli rendszerben összegezzük az egyes részecskék mozgási energiáját, továbbá a részecskék tömegének a c2-szeresét, akkor az így adódó összeg invariáns, az értéke minden körülmények között állandó. A viktoriánus fizikusok körében például nagy tetszést aratott volna egy olyan természeti törvény, mely szerint a mozgási energia összege nem változik, és azzal is meg lettek volna elégedve, hogy a tömegek összege állandó. (Ha figyelembe vesszük, mi is a valójában megmaradó mennyiség, akkor látható, hogy itt a c2-tel való szorzásnak nincs jelentősége.) A mi szép új törvényünk mindezzel összhangban van, de sokkal több jön ki belőle. Nevezetesen az, hogy igenis megtörténhet, hogy a tömeg egy része mozgási energiává alakul át, vagy éppenséggel fordítva. Ez mindaddig lehetséges, amíg állandó marad a két mennyiség összege. Ez a fölismerés másképpen úgy fogalmazható, hogy a tömeg és az energia képesek egymásba alakulni, illetve hogy egy nyugalomban lévő m tömegű testből (ilyenkor y értéke 1) nyerhető energia mértékét az E = mc2 egyenlet írja le.
Lássuk, mire is jutottunk. Olyan mennyiséget kerestünk a téridőben, amely a háromdimenziós térben impulzusként értelmezhető. Tettük ezt azért, mert megmaradó mennyiségként az impulzus fontos szerepet játszik a fizikában. Ezt a mennyiséget sikerült invaráns alkotórészekből összeraknunk, olyanokból tehát, amelyeket minden megfigyelő ugyanakkorának észlel. A téridőbeli távolság, az univerzális határsebesség, végül a tömeg voltak ezek az alkotórészek. A térbeli komponens vizsgálata során újra fölfedeztük a jó öreg impulzusmegmaradási törvényt, amely jelenlegi formájában arra is érzékeny, ha a mozgás a fénysebességhez közeli tartományban zajlik. De akkor került a kezünkbe az igazi kincs, amikor a téridőbeli impulzusvektor időirányú komponensét vettük szemügyre. Ennek során ugyanis az energiamegmaradás törvényének egy újszerű alakjára bukkantunk. Megjelent a mozgási energia, mint a jól ismert 1/2mv2, de egy vadonatúj taggal, mc2-tel kiegészülve. Ebből kiviláglik, hogy a nyugalomban lévő testek is rendelkeznek energiával, ezt az energiamennyiséget pedig E = mc2, Einstein híressé vált egyenlete adja meg.
Mit jelent ez? Láttuk, hogy megmaradó mennyiségként az energia rendkívül fontos fogalom. „Az energia nőhet emitt, ha másutt alkalmasan csökken.” Most viszont az derült ki, hogy a tárgyakban a puszta tömegük révén is energia testesül meg. Ha veszünk egykilónyi valamit, bármit, akkor némi ügyködéssel ez a kilónyi anyag megsemmisíthető. Nem úgy, hogy darabokra tö-
rik, hanem szó szerint: volt, nincs! Szélsőséges esetben akár a teljes mennyiség eltűnhet (meg még amennyit ennek az ügyködésnek a során elhasználtunk), miközben az egykilónyi anyagnak megfelelő energia keletkezik. Sőt az energia maga is az anyag egy megjelenési formájának tekinthető, egy a fentihez hasonló folyamat során például pár száz grammnyi új anyag jöhet létre, a különbözet pedig mondjuk az újonnan keletkezett részecskék mozgási energiájaként jelenik meg. Ez így persze csak egy elképzelt forgatókönyv, azt kell fel-és elismernünk, hogy Einstein elméleti spekulációi nyomán mindez igenis lehetséges. Korábban álmában sem jutott volna eszébe senkinek, hogy megsemmisülése során az anyag energiává alakulhat, a két dolog között nem volt semmiféle fogalmi kapcsolat. Einstein után viszont mindenkinek szembesülnie kellett azzal, hogy itt bizony ugyanannak a valaminek a kétféle megjelenési formájáról van szó. Számunkra mindez abból a konstrukcióból derült ki, melynek révén az energia, a tömeg és az impulzus egyetlen téridőbeli objektummá voltak ötvözhetők, amelyet mi téridőbeli impulzusvektornak neveztünk. Ami az elnevezést illeti, fizikuskörökben inkább energiaimpulzus négyesvektorként szokták emlegetni. Az, hogy a tér és az idő immár nem szemlélhetők elkülönülten, azt jelenti, hogy valamilyen értelemben az energia, illetve az impulzus egy átfogóbb mennyiségnek, az energiaimpulzus négyesvektornak a megjelenési formát. Illúzió volt őket különálló, eltérő természetű mennyiségként szemlélni, ennek az illúziónak pedig az volt a forrása, hogy az intuíciónk, nagyon is emberi módon, arra hajlik, hogy szétválassza a teret és az időt. Az pedig sző szerint életbe vágó, hogy a természetben mindez meg is valósul: az anyag ténylegesen képes rá, hogy átalakuljon energiává. Mi magunk sem létezhetnénk, ha ez nem volna lehetséges.
Mielőtt ezt a súlyos állítást kifejtenénk, érdemes elgondolkodni azon, milyen értelemben beszéltünk itt egy tárgy - az a bizonyos egykilónyi valami - megsemmisüléséről? Nem olyasmire gondoltunk, mint amikor feldől és darabokra törik egy értékes váza. Egy ilyen baleset után szomorúan összesöpörhetjük a cserepeket, és - veszett fejsze nyele - megmérhetjük az együttes tömegüket: nem találnánk észrevehető tömegváltozást. A váza olyan megsemmisülését próbáljuk elképzelni, amikor a maradványokban ténylegesen kevesebb atom található, mint az eredeti vázában: a tömeg mérhetően csökken. Ez azért elég hihetetlenül hangzik. Azt a rendkívül meggyőző és mély elgondolást, hogy az anyag parányi, elpusztíthatatlan részecsékből épül fel, hogy egy tárgyat összetörhetünk, majd a részecskéket hiánytalanul újrarendezhetjük, az ókori görög gondolkodó, Démokritosz fogalmazta meg elsőként. Einstein elmélete felborítja ezt a világképet; az ő számára az anyag sokkal elmosódottabb, képes arra, hogy ingázzon a lét és a nemlét között. Az viszont tény, hogy ilyen átváltozások manapság rutinszerűen mennek végbe a nagy részecskegyorsítókban. A maga idején erre majd visszatérünk.
Eljött az aratás ideje! A jólneveltség tiltja, hogy itt belebocsátkozzunk Thalész elragadtatásának részleteibe, de azért így is elbűvölő fejleményekről számolhatunk be. Először is nézzük meg, miért is azonosítható a c a kozmikus határsebességgel. Ahogyan több ízben hangsúlyoztuk, a téridőben szemlélve a dolgokat a c nem a fény sebességeként jelenik meg, hanem mint az univerzális határsebesség. Az előző fejezetben aztán sikerült kimutatnunk, hogy a kettő egy és ugyanaz, de csak azután, hogy felhasználtuk a 3. fejezet eredményeit. Erre most ismét módunk nyílik, de ezúttal nem kell kilépnünk a téridő fogalmi keretei közül. Ehhez az E = mc2 egyenlet c-vel jelölt tagját kíséreljük meg másképpen, a kozmikus határsebességtől eltérő módon értelmezni.
Ezt az alternatív értelmezést az Einstein-féle tömeg-energia egyenlet egy különös, rejtett vonatkozása teszi lehetővé. Hogy ezt földerítsük, fel kell hagynunk a közelítő formulák használatával, és az energiaimpulzus négyesvektor tér-és időbeli komponensét pontos alakban kell felírnunk. Egy test energiája az energiaimpulzus négyesvektor időkomponense (pontosabban annak c-szerese), az értéke pedig ymc2. Az energiaimpulzus négyesvektor térkomponense, az impulzus pedig ymv. Most pedig tegyünk fel egy első hallásra értelmetlen kérdést: mi van akkor, ha egy testnek nulla a tömege? Semmi, mondhatnánk, világos, hogy ilyenkor az energia és az impulzus is nulla, nem lép föl semmilyen hatás, az ilyen test mintha nem is létezne. De matematikailag nem egészen így áll a dolog. A kulcsszereplő itt a y-val jelölt mennyiség. Emlékeztetőül: y = 1/gyök(1-v2 /c2 ). Ha most egy test c sebességgel mozog, akkor ez a y végtelen naggyá válik, hiszen ilyenkor az 1-et nullával kell elosztanunk (a nulla négyzetgyöke is nulla). Ha tehát egy nulla tömegű test c sebességgel mozog, akkor különös helyzetbe kerülünk. Mind az impulzusának, mind pedig az energiájának kiszámításakor a végtelent és a nullát kell összeszoroznunk, ez pedig matematikailag értelmezhetetlen. Ilyenkor tehát használhatatlanok az egyenleteink, de - és ez a lényeg - ebből nincs okunk arra következtetni, hogy a tömeggel nem rendelkező részecskék impulzusa, illetve az energiájuk szükségképpen nulla. Sőt megnézhetjük, hogyan alakul ennek a két mennyiségnek, az impulzusnak és az energiának az aránya! Ha az E = ymc2 ésa p=ymv egyenleteket elosztjuk egymással, akkor E/p =c2 /v adódik, ebből pedig a v = c speciális esetben azt kapjuk, hogy E = cp, ennek pedig van értelme. A konklúzió most már az, hogy egy nulla tömegű testnek sem az energiája, sem pedig az impulzusa nem kell hogy nulla legyen, de ilyesmire csakis akkor kerülhet sor, ha ez a test c sebességgel mozog, mégpedig a térben. Einstein tehát megengedi olyan részecskék létezését, amelyeknek nincsen tömegük. És itt tesznek felbecsülhetetlen szolgálatot a kísérleti eredmények. Sikerült kimutatni, hogy a fény olyan részecskékből áll - fotonnak nevezik őket -, amelyeknek jelenlegi tudásunk szerint nulla a tömegük. Így viszont c sebességgel kell mozogniuk. Valaki közbevethetné, és igaza lenne, hogy mihez kezdenénk abban az esetben, ha egy majdani kísérlet mégis kimutatná, hogy a fotonok is rendelkeznek, talán nagyon-nagyon kicsiny tömeggel. Nos, azt reméljük, hogy ezt a kérdést ön is meg tudja válaszolni, itt és most. A válasz úgy szól, hogy ebben az esetben nincs más dolgunk, mint visszalapozni Einstein második posztulátumához a 3. fejezetben, és akként módosítani, hogy „a tömeggel nem rendelkező részecskék sebessége univerzális állandó”. Az új kísérleti tapasztalatok bizonyosan nincsenek hatással a kozmikus határsebesség értékére; annyi lenne a változás, hogy ezt már nem lehetne a fény sebességével azonosítani.
Ezek nagyon komoly dolgok. Az E = mc2 -beli c kizárólag annak a kísérleti tapasztalatnak az alapján hozható kapcsolatba a fény sebességével, hogy a fotonoknak nincsen tömegük. Történetileg ez rendkívül fontos, mert a Faraday-féle kísérletezők és a Maxwell-féle teoretikusok így találhattak rá egy olyan jelenségre, amelyben megjelent az univerzális határsebesség: ezek voltak az elektromágneses hullámok. Mindez döntő hatással volt Einstein gondolkodására; ha nincs ez az egybeesés, akkor talán nem is fedezte volna fel a relativitást. Ezt persze nem tudhatjuk. Helyénvalónak látszik itt „egybeesésről” beszélni, mert ahogy a 7. fejezetben látjuk majd, a részecskefizika nem tud olyan elvről, amely
garantálná, hogy a fotonoknak ne legyen tömegük. Ennél többről is szó van, egy Higgs-mechanizmusnak nevezett elméleti konstrukció szerint ugyanis egy másfajta világegyetemben lehetséges, hogy a fotonok tömeggel rendelkezzenek. Így aztán még az a legpontosabb, ha az E = mc2 egyenletben úgy tekintünk erre a c-re, mint a tömeggel nem rendelkező részecskék sebességére, amelyek másképpen nem is mozoghatnak az univerzumban. A téridőben dolgozva azért vezettük be a c mennyiséget, hogy definiálhassuk az időirányú elmozdulások nagyságát. Ebben a minőségben pedig a c szervesen beépül a világegyetem szövedékébe.
Nyilván nem kerülte el az Olvasó figyelmét, hogy az anyag adott mennyiségében megtestesülő energia kifejezésében a fénysebesség négyzete szerepel. Miután pedig a fénysebesség sokkal nagyobb, mint a szokványos hétköznapi sebességek (az 1/2 mv2 formulában a v-vel jelölt sebesség), nem lehet meglepetés, hogy az anyagnak már egészen parányi mennyiségében is elgondolhatatlanul sok energia van elraktározva. Még nem állítottuk, hogy ez az energia közvetlenül hozzáférhető. De ha így van, akkor irdatlan mennyiségű energián ücsörgünk, mégpedig szó szerint. Utána is lehet számolni, ehhez megvannak a szükséges formulák. Tudjuk, hogy ha egy m tömegű test v sebességgel mozog, akkor a mozgási energiája nagyjából 1/2 mv2, maga az m tömeg pedig mc2 energiával egyenértékű. (Most föltételezzük, hogy a v a c-hez képest kicsiny; ellenkező esetben a komplikáltabb ymc2 formulára volna szükség.) Játsszunk el egy kicsit a számokkal, hogy ráérezzünk, mit is mondanak ezek az egyenletek a világról.
Egy villanyégő nagyjából 100 joule energiát sugároz ki másodpercenként. Egy joule, az energia egysége, James Joule-nak, az ipari forradalom egyik vezéralakjának a nevét viseli. Másodpercenként 100 joule a skót fizikus, James Watt tiszteletére 100 watt. Egy százezer lakosú város áramszükségletét becsülve nagyjából 100 millió watt (100 megawatt) reálisnak tűnik. Pedig akár csak 100 joule energia létrehozása is jelentékeny mechanikai munkát igényel. Ez nagyjából annyi, mint egy körülbelül 220 kilométeres sebességgel süvítő teniszlabda mozgási energiája; a profi teniszezők nagyjából így ütik meg az adogatást, utána lehet nézni a statisztikákban. Egy teniszlabda tömege 57 gramm körül van (ez 0,057 kilogramm), az óránként 220 kilométer pedig többé-kevésbé 60 métert jelent másodpercenként. Ha beírjuk ezeket a számokat az 1/2 mv2 képletbe, akkor a teniszlabda mozgási energiájára 1/2 x 0,057 x 60 x 60 joule adódik. Egyetlen joule a definíció szerint egy másodpercenként 1 méter sebességgel haladó 2 kilogramm tömegű test mozgási energiája. A fenti szorzást ön is elvégezheti. Kiderül, hogy még egyetlen izzólámpa üzemeltetéséhez is nagy sebességű teniszlabdák valóságos pergőtüzére van szükség. Igazság szerint még ennél is gyorsabban vagy ennél is sűrűbben kell érkezniük a labdáknak, ugyanis a mozgási energiájukat ki kell nyerni, át kell alakítani elektromos energiává (mondjuk egy generátor segítségével), és el kell juttatni az égőhöz. Még azért is alaposan meg kell dolgozni, hogy egyetlen izzó világíthasson.
Nézzük, mekkora tömegre volna szükség mindehhez akkor, ha ki tudnánk használni az Einstein felkínálta elméleti lehetőséget, és a teljes tömeget energiává tudnánk alakítani. Ezt a tömeget úgy kapjuk meg, hogy az energiát elosztjuk a fény sebességének a négyzetével: a 100 joule-t kétszer egymás után el kell osztani 300 millió méter per szekundummal. Ez valamivel több mint 0,000 000 000 001 gramm, vagy szavakban az 1 gramm milliomodrészének a milliomodrésze (1 billiomod gramm), így tehát másodpercenként 1 mikrogrammnyi anyag megsemmisítése fedezi egy város energiaszükségletét. Száz év körülbelül 3 milliárd másodpercből áll, vagyis 3 kilónyi anyag 100 éven át láthatna el energiával egy egész várost. A lényeg az, hogy az anyagban elzárt energia mennyisége egészen más nagyságrendű, mint bármi, amivel a hétköznapok során találkozhatunk. Ha pedig sikerülne fölszabadítani, akkor egyszer s mindenkorra megoldódnának a világ energiaproblémái.
Mielőtt új fejezetbe kezdenénk, tegyünk még egy utolsó megjegyzést. Számunkra, akik itt élünk a Földön, megrendítő lehet az anyagba zárt energia csillagászati mértéke. Hajlamosak lehetnénk ezt annak tulajdonítani, hogy persze, a fény sebessége nagyon nagy, a dolog azonban éppen fordítva áll: a mozgási energia, 1/2 mv2 törpül el mc2-hez képest, mégpedig azért, mert a földi folyamatok sebessége elhanyagolhatóan kicsiny a kozmikus határsebességhez mérve. Az, hogy egész létezésünk viszonylag alacsony energiaszinten zajlik, végső soron a természetben működő erőhatások nagyságrendjén múlik, nevezetesen azon, hogy az elektromágnesesség és a gravitáció viszonylag gyenge kölcsönhatások. A 7. fejezetben belépünk a részecskefizika világába, és tüzetesen megvizsgáljuk ezt a kérdést.
Einstein után még legalább fél évszázad kellett ahhoz, hogy az emberek kimesterkedjék, hogyan vonható ki az anyagból a tömeg formájában megtestesülő energia jelentékeny része. A nukleáris erőművekben éppen ez történik. Ehhez képest a természet évmilliárdok óta hasznosítja azt, hogy E = mc2. Nagyon is valóságos értelemben ez az élet kulcsa, hiszen enélkül nem világítana a Nap, a Föld pedig örökös homályba borulna.
6. MIRE JÓ EZ AZ EGÉSZ? ATOMOK, EGÉRFOGÓK ÉS A CSILLAGOK SZÍVE
Láttuk, hogy Einstein nevezetes egyenlete nyomán mindenestül át kell értékelnünk, amit a tömegről gondolunk. Lényege szerint az immár nem elsősorban a testekben foglalt anyag mennyisége, hanem sokkal inkább a bennük elraktározott energia mértéke. Arról is beszéltünk, hogy ha sikerülne hozzáférni, akkor elképesztő mennyiségben állna rendelkezésünkre. Ebben a fejezetben földerítjük azokat a lehetőségeket, amelyekkel az anyagba zárt energia kiszabadítható. De mielőtt belefognánk ennek az elsősorban gyakorlati problémának a vizsgálatába, szánjunk még egy kis időt újonnan talált egyenletünk, az E = mc2 + 1/2 mv2 behatóbb elemzésére.
Emlékeztetünk arra, hogy ez az egyenlet csupán a közelítése a pontos E = ymc2 alaknak, bár ebben a minőségben még a fénysebesség 20 százaléka körüli nagy sebességek esetében is igen jó eredményt ad. A fenti formában mindenesetre szétválik az energiának a tömegben, illetve a mozgásban megtestesülő része, úgyhogy a továbbiakban nem akadunk fenn minden egyes alkalommal azon, hogy itt csupán közelítésről van szó. Hogy jutottunk ehhez az egyenlethez? Sikerült olyan téridőbeli vektort szerkesztenünk, amelynek a térbeli komponense, pontosabban ennek a komponensnek a hossza megmaradó mennyiség; ez a tény az impulzusmegmaradás régi törvényének új olvasata, legalábbis a fényéhez képest kicsiny sebességekre. A térbeli komponens nagyságához hasonlóan az időirányú komponens hosszának is megmaradó mennyiségnek kell lennie, és mc2 + 1/2 mv2 éppen ez a hosszúság. A tudósok régóta ismerik az összeg második tagját: 1/2 mv2 a mozgási energia; így aztán a teljes összeget is energiaként értelmeztük, annál is inkább, mert megmaradó mennyiségnek bizonyult. Jegyezzük meg, hogy mi magunk egyáltalán nem kergettük az energia megmaradását; az ölünkbe hullott, miközben az impulzusmegmaradás törvényének a téridőbeli formáját kerestük.
Képzeljünk el egy láda beélesített egérfogót; a csapdák megfeszülő rugói energiát raktároznak. Erről meg is bizonyosodhatunk: amikor egy egérfogó működésbe lép, csattanást hallunk: a hanghatással energia szabadul fel, a szerkezet pedig felpattan a levegőbe (a mozgási energia hatására). Mi történik, ha a lecsapódó egérfogó a többit is működésbe hozza? A rugókban tárolt energia felszabadul, mi pedig a saját szavunkat se halljuk a csattogásban. Az energiamegmaradás törvénye szerint a felhúzott egérfogókban tárolt energiának egyenlőnek kell lennie a rendszernek a szerkezetek működése utáni energiájával. Mivel az egérfogók nyugalomban voltak, mielőtt lecsapódtak, kezdetben a rendszer teljes energiája mc2, ahol m a kibiztosított egérfogók össztömege. Mire minden elcsendesedik, ott maradnak a bezárult egérfogók, továbbá a felszabadult energia. A rendszer kétféle állapotában ugyannyinak kell lennie a teljes energiának: ez csak úgy lehetséges, ha a felhúzott egérfogók össztömege nagyobb, mint a bezárultaké. Nézzünk most egy újabb példát, ezúttal arra, ahogyan a mozgási energiából tömeg származhat. Egy konténer forró gáznak igenis nagyobb a tömege, mint lehűlés után. A hőmérséklet azt fejezi ki, milyen gyorsan mozognak a molekulák a konténerben; minél forróbb a gáz, annál gyorsabban. Miután a nagyobb sebesség nagyobb mozgási energiát jelent (a molekulánként kiszámolt 1/2 mv2 mennyiségek összege nagyobb, ha a gáz forróbb), ezért aztán a konténerben lévő tömeg is nagyobb, és ez a tömeg a lehűléssel csökken. Bármilyen formában tárolódjék is az energia, ez az okoskodás minden esetben működik. Egy vadonatúj telepnek nagyobb a tömege, mint egy lemerült telepé, egy csésze forró kávé tömege csökken, ha kihűl, és ha egy ködös novemberi délutánon gőzölgő húsos tésztát kérünk a futballmeccs szünetében, akkor a meccs végére az érintetlenül hagyott tészta tömege kisebb lesz, mint forró korában volt.
A tömeg és az energia tehát képes egymásba alakulni, és ez egyáltalán nem valami egzotikus jelenség: lépten-nyomon bekövetkezik. Ha a kályhánál melegszünk, akkor az égő szén energiája hasznosul, ennek az energiának a forrása pedig maga a szén. Ha pedig reggel, mire a tűz kialudt, a legutolsó per yedarabkáig összesöpörnénk a hamut, és egy ma még elképzelhetetlen finomságú mérlegen lemérnénk, azt találnánk, hogy kevesebbet nyom, mint a kályhába előző este bekészített szénmennyiség, még akkor is, ha minden egyes atomot sikerülne begyűjtenünk. Az E = mc2 egyenlet szerint a különbözet éppen a felszabaduló energiának és a fénysebesség négyzetének a hányadosa, m = E/c2. Számoljunk utána, milyen csekély a tömegnek ez a változása, amely egész éjjel melegen tartja a szobánkat. Ha a tűz 8 órán át 1000 watt teljesítménnyel melegít, akkor a teljes energiakibocsátás mértéke 1000 x (8 x 60 x 60) joule (ahhoz, hogy joule-ban kapjuk az energiát, másodpercekben kell mérnünk az időt, nem pedig órákban), ez pedig valamivel kevesebb, mint 30 millió joule energia. Az ezt fedező tömegveszteség kiszámolásához tehát ezt a 30 millió joule-t kell elosztanunk a fénysebesség négyzetével: az eredmény kisebb, mint egyetlen gramm egymilliomodrésze. Ez az elenyésző mértékű tömegváltozás egyenes következménye az energiamegmaradás törvényének. A kályha begyújtása előtt a rendszer teljes energiája a bekészített szén tömegének és a fénysebesség négyzetének a szorzata. A szén égésekor energia távozik a rendszerből. Reggelre a tűz kialszik, a kályhában pedig ott marad a hamu. Az energiamegmaradás törvénye szerint a hamu tömegében tárolt energia kevesebb, mint az eredeti szénmennyiségé, és végső soron ez a különbözet tartja melegen a szobát. A hamu energiája hasonló módon a tömegének és a fénysebesség négyzetének a szorzata. Ez a tömeg pedig éppen a fenti számítással kapott mennyiséggel lesz kevesebb, mint volt szén korában.
A tömegnek energiává, illetve az energiának tömeggé való átváltozása tehát a természet legalapvetőbb folyamata; szünet nélkül zajlik. Ahhoz, hogy akármi végbemehessen az univerzumban, elkerülhetetlen az anyagnak és az energiának ez a kölcsönös metamorfózisa. Hogyan voltak képesek a tudósok bármiféle magyarázatot találni akár egyetlen olyan jelenségre is, ahol energiaátalakulás történik, mielőtt még világosan látták volna a természet e legalapvetőbb mozgatóját? Az a világ, amelyben Einstein 1905-ben először írta le, hogy E = mc2, sok szempontból rendkívül fejlett, mondhatni modem volt. Az első városközi utasszállító vonat 1830-ban indult el Liverpool és Manchester között. A széntüzelésű óceánjárók már több mint hetven éve közlekedtek az Atlanti-óceánon, fénykorukat élték a gőzgépek, ekkorra már olyan méltóságteljes gőzhajók épültek, mint a Mauritánia vagy a vízre bocsátásra váró Titanic. A viktoriánus technológia igen jó hatásfokkal és látványos eredményekkel tudta hasznosítani az égő szén energiáját. De vajon hogyan tekintettek Einstein előtt a tudósok a tűzből kinyerhető energiára? A XIX. század mérnöke azt mondta volna, hogy a szénben, akár egy halom parányi egérfogóban, energia van bezárva, az égés során végbemenő kémiai reakciók pedig bekattintják ezeket a csapdákat, és ennek során szabadul föl az energia. Ez a modell jól használható, erre alapozva elvégezhetők azok a számítások, amelyek nyomán olyan nagyszabású gépezetek szerkeszthetők, mint egy óceánjáró vagy egy gőzmozdony. Az Einstein utáni világkép nem veti el ezt a modellt, csak alaposan kitágítja. Ennek a tágabb modellnek a keretei között érthetjük meg, hogy a bezárt energia szétválaszthatatlanul összekapcsolódik a tömeg fogalmával. Minél több rejtett energiát tartalmaz egy test, annál nagyobb a tömege. Einstein elődeiben fel sem merülhetett, hogy kapcsolat lenne az energia és tömeg között, egyszerűen semmi nem késztette őket arra, hogy így gondolkodjanak. A világképük elegendően pontos volt ahhoz, hogy magyarázattal szolgáljon a megfigyelhető jelenségekre, meg tudták oldani a fölmerülő problémákat. Ez azért volt lehetséges, mert a tömeg olyan csekély mértékben változott meg ezeknek a folyamatoknak a során, hogy soha nem kellett figyelembe venni.
Mindez jól tükrözi a tudomány valódi arcát. A megismerés egymást követő szakaszaiban mind pontosabban látjuk a világot. Az éppen aktuális világkép sohasem tarthat igényt arra, hogy a birtokában van az abszolút igazság, abban a tudományos gondolkodásra nagyon jellemző értelemben, hogy a természettudományban ilyesmi nem létezik. A mait is beleértve egyetlen korszak tudományos világképe sem egyéb olyan elméletek és nézetek együttesénél, amelyeket még senki nem tudott megcáfolni.
A tömeg a fenti példák mindegyikében csak jelentéktelen mértékben változik meg, de a változás közben felszabaduló energiára ez már nem feltétlenül igaz. A tűznél megmelegszünk, a meleg lepény pedig sokkal ízletesebb.
Az égő szénből felszabaduló energia kémiai eredetű. A szenet alkotó molekulák hamuvá rendeződnek át annak a vegyi láncreakciónak a során, amelyet egy meg-gyújtott gyufa indít be. A molekulák közötti kötések felbomlanak és újak létesülnek, az atomokból új molekuIák formálódnak, eközben energia keletkezik, a tömeg pedig csökken. A kémiai energia forrása az atomok szerkezete. A legegyszerűbb példa egy magányos hidrogénatom, amelyben egyetlen elektron kering egy proton körül. Elég egyszerű ahhoz, hogy a fizikusok a kvantumelmélet segítségével utána tudjanak számolni, hogyan kell megváltoznia az atom tömegének, amikor egy elektron másképp kezd mozogni benne. Létezik a hidrogénatom tömegének egy minimális értéke: ez csupán 0,00000000000000000000000000000000002 kilogrammal kevesebb, mint az elektron és a proton együttes tömege abban az esetben, ha ezek távol kerülnek egymástól. De ha ez az elenyésző különbség energiává alakul, akkor nagy dolgok történhetnek. Faggassanak ki erről egy vegyészt, vagy ha a saját bőrükön akarják tapasztalni, üljenek oda a befutott kályha mellé.
A részecskefizikusok is szeretik a kényelmet, így aztán nem nagyon lelkesednek a rengeteg nulláérc, amelyekre a nagyon kicsiny számok felírásakor szükség lehet. Ebben az esetben úgy segítenek magukon, hogy nem kilogrammban mérik a tömeget. Az elektronvoltnak nevezett egységhez folyamodnak, amely igazság szerint az energia mérőszáma. Egy elektronvolt az az energiamennyiség, amelyet egyvoltnyi feszültségkülönbség gyorsító hatására vesz föl az elektron. Lehet, hogy ez így töményen hangzik: mintha megint a fizikatanár szólalt volna meg. Hétköznapibb nyelven azt mondhatjuk, hogy ha például egy 9 voltos elemmel akarnánk működtetni egy parányi részecskegyorsítót, akkor egyetlen elektront 9 elektronvoltnyi energiára tudnánk felgyorsítani. Ha pedig elosztjuk c2-tel, akkor az elektronvoltban kifejezett energia tömeggé konvertálható. (Emlékszünk még? E = mc2.) Ezen a sokkal kényelmesebb nyelven a hidrogénatom legkisebb tömege 13,6 eV/e2, ami kisebb a proton (938270013 e V2), illetve az elektron (510998 eV/e2) együttes tömegénél. (Az 1 eV az 1 elektronvoltnyi energia rövidítése.) Vegyük észre, hogy c2 értékét az egységekben tartva azonnal adódik, mekkora energiát tárol egyetlen, nyugalmi állapotban lévő proton. Ehhez a tömegét kell megszoroznunk c2-tel, amely tehát kiesik, és azt kapjuk hogy ez az energiamennyiség 938270013 eV/e2. Hadd hívjuk fel ismét a figyelmet arra, hogy a hidrogénatom tömege kisebb az őt alkotó részecskék össztömegénél, nem pedig nagyobb. Mintha az atomban valamiféle negatív energia lenne elraktározva. Ebben az úgynevezett negatív energiában nincsen semmi titokzatos. Azt fejezi ki, hogy az atom részekre bontásához munkát kell végezni. Ezt az energiafajtát általában „kötési energiának” nevezik. A hidrogénatom tömegére adódó második legkisebb érték 10,2 eV/c2-tel kisebb, mint az őt alkotó részecskék tömegének az összege. A titokzatos hangzású és gyakran félreértett kvantumelmélet éppen onnan kapta a nevét, hogy a kicsiny tömegekre kizárólag ilyesfajta diszkrét (más szóval kvantált) értékek adódhatnak. Nem létezhet például olyan hidrogénatom, amelynek a tömege éppen 2 eV/c2-tel volna nagyobb a minimális tömegnél. Lényegében ez a „kvantum” kifejezés tartalma. A különböző tömegek pedig az elektron különböző pályáinak felelnek meg, amelyeken az atommag, a hidrogén esetében egyetlen proton, körül kering.
Ezzel együtt az elektronnal kapcsolatban fenntartásokkal kell használnunk a „pálya” elnevezést, ezek ugyanis nem olyasféle pályák, mint amelyek mentén a bolygók keringenek a Nap körül. Csak annyit mondhatunk, hogy a minimális tömegű hidrogénatomban az elektron közelebb van a protonhoz, mint a következő legkisebb lehetséges tömegű atomban, és így tovább. Ha az elektron a lehető legközelebb van a protonhoz, akkor azt mondjuk, hogy a hidrogénatom „alapállapotban" van. Ha az elektron megfelelő mennyiségű energiához jut, átlép a következő elérhető pályára, az atom pedig valamivel nehezebb lesz, egyszerűen azért, mert energiát vett föl. Ilyenformán ha energiát közlünk egy atommal, az olyasmi, mint amikor a rugóját felhúzva beélesítünk egy egérfogót.
Az Olvasó persze joggal kérdezheti, honnan van tudomásunk a hidrogénatom magánéletének e finom részleteiről. Ezeket a parányi tömegkülönbségeket bizonyára nem patikamérleggel méricskélik. A kvantumelmélet lelke egy egyenlet, a Schrödinger-féle hullámegyenlet, amelynek segítségével meghatározhatók a szóba jöhető tömegek. A pletyka szerint Schrödinger egy téli vakáció során fedezte föl a modem fizikának ezt az egyik legfontosabb egyenletét, miközben az Alpokban üdült a barátnőjével. Történt pedig mindez 1925 karácsonya és szilvesztere között. Arra nem térnek ki a tankönyvek, hogy mit szólt mindehhez Schrödinger felesége. Ami a barátnőt illeti, csak remélhetjük, hogy ő éppen úgy részesült a vakáció örömeiben, mint ahogy annak gyümölcse azóta is elgyönyörködteti a fizikushallgatók generációit, akik kívülről fújják a nevezetes egyenletet. Maguk a számítások az egyszerű felépítésű hidrogénatom esetében nem is túl bonyolultak, az egyetemi vizsgadolgozatok
bán rendszeresen felbukkannak a hallgatók nagyobb örömére. A matematikai kezelhetőség azonban nagyon keveset nyom a latban, ha az eredmények mögött nincsenek kísérleti bizonyítékok. Szerencsére a világ atomi szintjének kvantumos szerkezetét igen könnyű megfigyelni. Igazság szerint nap mint nap a tanúi lehetünk. Létezik a kvantumelméletben egy általános elv, amely nagyjából úgy szól, hogy egy magára hagyott részecske a nehezebb állapotból a könnyebb állapotba megy át, amennyiben ilyen könnyebb állapot egyáltalán létezik. Ez elég meggyőzően hangzik. Ha egy részecskét békén hagyunk, akkor nem várható, hogy növekedjék a tömege, ehhez ugyanis energiára van szüksége. Az viszont bármikor megtörténhet, hogy némi energiát leadva veszít a tömegéből. Van persze egy harmadik lehetőség is, nevezetesen hogy minden marad a régiben, és olykor valóban így alakulnak a dolgok. A hidrogénatomra nézve mindez annyit tesz, hogy egy nehezebb példány végül elveszíti tömegének egy részét, és ennek során egy fényrészecskét bocsát ki, a már emlegetett fotont. A második legkisebb tömegű hidrogénatomban például egyszerre csak spontán módon megváltozik az elektron pályája, és ennek következtében az atom a minimális tömegű állapotba jut, az energiatöbblet pedig egy foton alakjában távozik. A folyamat az ellenkező irányban is végbemehet. Ha van a környékén egy hidrogénatom, akkor egy foton itt elnyelődhet, az atom pedig magasabb energiaállapotba kerül, mert az elnyelt energia külsőbb pályára kényszeríti az elektront.
A legegyszerűbb módon úgy közölhetünk energiát az atomokkal, ha melegítjük őket. Ennek hatására külső pályára kerülnek az elektronok, aztán ismét visszaugor
va fotonokat bocsátanak ki. (Ezen az elven működnek a nagynyomású nátriumégők.) Ezek a fotonok éppen a pályáik energiakülönbségének megfelelő energiát hordoznak, és ha észlelni tudnánk őket, akkor közvetlen ablak nyílna az anyag szerkezetére. Szerencsére folyamatosan észleljük is őket, mert a szemünk nem egyéb, mint egy fotondetektor, amely közvetlenül, mégpedig színekként észleli a fotonok energiáját. A trópusi óceán szigetekkel pettyezett azúrkékje, a Van Gogh festményein lüktető csillagok élénksárgája, a vérünk vasvöröse mind-mind az anyag kvantumos szerkezetének a lenyomatai ebben a mi fotondetektorunkban. A forró gázok által kibocsátott színek eredetének kutatása volt a XX. század fordulóján a kvantumelmélet kidolgozásának egyik fő mozgatórugója. Hosszú éveken át szorgos tudósok légiója bíbelődött a legkülönbözőbb forrásokból érkező fény vizsgálatával. Ennek emlékét őrzi annak a gáznak a neve, amellyel megtöltik a léggömböket egy-egy kerti mulatságon. A gáz neve „hélium”, a szó eredete pedig a görög „helios”, amely „napot” jelent. A névadásra úgy került sor, hogy 1868-ban egy napfogyatkozáskor észlelt fénysugár elemzése közben egy Pierre Janssen nevű francia csillagász rábukkant ennek az atomnak az „ujjlenyomatára”. Így esett, hogy még azelőtt fedeztük föl, hogy a mi csillagunkban hélium található, mielőtt a saját Földünkön rátaláltunk volna. Manapság, amikor az élet jeleit kutatják az univerzumban, a csillagászok az oxigén lenyomatát keresik a távoli csillagoknak a körülöttük keringő bolygók atmoszféráján keresztülhatoló fényében. Spektroszkópiának nevezik ezt a tudományt, amely a világegyetem beható vizsgálatának egyik leghatásosabb eszköze.
A természetben minden egyes atom az energiaszintek (vagy éppenséggel a tömegértékek) széles skáláján fordulhat elő attól függően, hogy hogyan rendeződnek el bennük az elektronok. Mivel a hidrogénatom kivételével mindegyikük több elektront is tartalmaz, az atomok a szivárvány minden színében, sőt még azon túl is sugározhatnak fényt; végső soron ezért olyan színgazdag a természet. A kémia, nagyon leegyszerűsítve, azt vizsgálja, mi történik, ha egy csomó atom összezsúfolódik. (De nem túlságosan.) Ha például két hidrogénatom egymás közelébe kerül, akkor érvényesül a protonok közötti taszító erő, mert mindketten pozitív töltést hordoznak. Ezt a taszítóerőt azonban legyőzi az az ellenkező irányú erő, amellyel a két atomban lévő elektron és a másik atom protonja vonzzák egymást. Így aztán optimális esetben olyan elrendezés jöhet létre, amelyben a két atom egyetlen hidrogénmolekulává kapcsolódik össze. A molekulában egyesülő atomokat hasonló természetű kötés fűzi egymáshoz, mint a hidrogénatom protonmagját és a körülötte keringő elektront. Ez a „kötés" egyszerűen azt jelenti, hogy meg kell dolgozni az ilyen módon összekapcsolódott atomok szétválasztásáért. Ez a „meg kell dolgozni” meglehetősen pongyola megfogalmazása annak, hogy a molekulával energiát kell közölnünk. Ha pedig energia szükséges a bomláshoz, akkor a molekula tömegének éppúgy kisebbnek kell lennie az őt alkotó atomok össztömegénél, ahogyan egyetlen hidrogénatom tömege is kisebb, mint a részei tömegének az összege. A mindkét esetben érvényesülő kötési energia forrása pedig nem más, mint az az elektromágneses erő, amellyel a könyv elején megismerkedtünk.
Akik annak idején végigcsinálták a kémiai kísérleteket az iskolában, talán emlékeznek rá, hogy elég egy doboz gyufa és egy elábrándozó tanár, hogy bizonyos kémiai reakciók során jelentékeny mennyiségű energia szabaduljon fel. A szénnel megrakott kályha példája mutatja, hogy az efféle folyamatokat kézben is lehet tartani; az égő gyufa lángja nyomán órákon át többé-kevésbé stabil mennyiségű energia termelődik. Drámaibb példa egy felrobbanó dinamitrúd; a robbanáskor nagyjából annyi energia szabadul fel, mint amikor a szén elég a kályhában, de összehasonlíthatatlanul gyorsabban. A forrás nem a gyufa lángja, sem pedig a gyújtózsinór, hanem a belső, kémiai energia. A lényeg mindkét példában az, hogy ha a reakció során energia szabadul fel, akkor a végtermék tömegének kevesebbnek kell lennie, mint kezdetben volt.
Az alábbi végső példánk tovább árnyalhatja a kémiai reakciók során felszabaduló energiáról elmondottakat. Mondjuk egy szobában üldögélünk, amelyet hidrogén-és oxigénmolekulák töltenek ki. Elsőre a helyzet idilli és biztonságos, hiszen az egyes molekulákat alkotó két hidrogénatom szétválasztásához energiára van szükség. Így aztán, vélné az ember, a molekuláris hidrogén szerkezete stabil. Az igazság viszont az, hogy egy ártalmatlannak tűnő kémiai reakció szétfeszítheti ezeket a molekulákat, és ennek során jelentékeny mennyiségű energia felszabadulása válik lehetségessé; a hidrogéngáz bizony nagyon veszélyes. A levegővel érintkezve rendkívül gyúlékony: egy kicsiny szikra elegendő a katasztrófához. Megszerzett ismereteink alapján utána is számolhatunk, mi mehet végbe ilyenkor. Hidrogén-és oxigénmolekulákból álló gáz keverékében két-két hidrogén, illetve oxigénatom kapcsolódik össze egy-egy megfelelő molekulává. Ha ön egy ilyen szobában üldögélve tudomást szerez arról, hogy két hidrogén-és egy oxigénmolekula együttes tömege nagyobb, mint azé a két vízmolekuláé, amelyek mindegyike két hidrogén-és egy oxigénatomból áll, akkor pánikba eshet, és erre bizony minden oka megvan. Az eredeti molekuláris állapot négy hidrogénatomja plusz a két oxigénatom nagyobb tömegű, mint a két H20-molekula, a többlet pedig nagyjából 6 eV/e2. Az eredeti szereplőkben, a hidrogén-és az oxigénmolekulákban tehát komoly hajlandóság van arra, hogy vízmolekulákká rendeződjenek. Ez az átrendeződés csak annyiból áll, hogy ugyanazok az atomok (és a körülöttük keringő elektronok) másképpen kapcsolódnak össze. A molekulánként felszabaduló energia csekély, de ez ne nyugtasson meg senkit: egy szobányi gáz irdatlan mennyiségű, mintegy 1026 molekulát tartalmaz, ami körülbelül 10 millió joule energia felszabadulását jelenti; ez több, mint elegendő ahhoz, hogy mintegy mellékhatásként, fenekestül felforgassa az ön molekuláris szerkezetét. A jó hír az, hogy kellő óvatossággal elkerülhető ez a kínos halál. Az persze igaz, hogy a végtermék tömege csökken a kiinduló állapothoz képest, de ahhoz, hogy ezeket a gázmolekulákat az elektronjaikkal együtt kritikus helyzetbe hozzuk, némi befektetésre van szükség. Mint amikor egy autóbuszt próbálunk áttolni egy szakadék peremén; nem könnyű odáig eljuttatni, de ha egyszer túljut egy bizonyos ponton, akkor nincs, aki megállítsa. Legyen elég annyi, hogy egy ilyen keverékkel töltött szobában botor dolog gyufát gyújtani, mert az így keletkező energia elegendő a folyamat beindításához és aztán nincs megállás: nagy csim-bumm közepette megállíthatatlanul zajlik a víztermelés.
Az atomok átrendezésével kémiai, nagy tömeg mozgatásával (például a vízi erőművek turbináin nagy mennyiségű víz áramoltatásával) pedig gravitációs energia szabadítható fel. Civilizációnk régóta képes arra, hogy ilyen módon állítsa elő és fogja munkára az energiát. Egyre növekvő szakértelemmel hasznosítjuk a természetben bőségesen rendelkezésre álló mozgási energiát. A fújó szélben örvénylő levegőmolekulák útjába szél
erőműveket építve hasznosítani tudjuk ezt a zabolátlan mozgási energiát. A turbina lapátjainak ütközve a molekulák lelassulnak, miközben átadják mozgási energiájukat a turbinának, amely forogni kezd (újabb példát szolgáltatva ezzel az impulzusmegmaradási törvényre is). A szél mozgási energiája így a forgó turbina energiájává alakul át, ezzel pedig meghajthatunk egy generátort. Valami hasonló dolog történik akkor is, amikor a tengervíz energiáját fogjuk hámba, a különbség csupán ott van, hogy ezúttal a vízmolekulák mozgási energiája hasznosul. Ha a relativitáselmélet szemüvegén keresztül vesszük szemügyre, akkor az energia minden fajtája tömegként jelenik meg. Ha egy nagy röptetőben madarak röpdösnek, és egy alkalmas mérlegen sikerülne megmérni az egész rendszer tömegét, akkor megkapnánk a röptető súlyát a madarakkal együtt. Amikor a madarak röpködnek, a mozgási energiájuk hozzáadódik a rendszer tömegéhez, amely így valamivel nagyobb, mint amikor a madarak alszanak.
Az emberiség történetében ősidők óta a kémiai reakciók biztosították a civilizáció energiaellátását. Hogy adott mennyiségű szénből, olajból vagy hidrogénből mennyi energia szabadítható fel, az végső soron az elektromágneses erőkön múlik, hiszen ezek határozzák meg az atomok közti kötések erejét a molekulákban, amelyek a kémiai reakciók során felbomlanak és átrendeződnek. Létezik azonban a természetben egy másfajta erő is, amelynek a révén elvben sokkal több energia nyerhető, egész egyszerűen azért, mert nagyobb; sokkal nagyobb.
Az atom belsejében, annak legmélyén bújik meg az atommag - egy rakás összetapadó proton és neutron, amelyeket az erős kölcsönhatásnak nevezett magerők kovácsolnak egybe. Alaposan össze vannak zárva, így aztán az atommag felbontásáért is meg kell dolgozni; hasonlóan ahhoz, ahogyan a molekulákba rendeződött atomok kiszabadításáért is munkát kell végezni. Ha ez sikerül, és kiszabadulnak az atommagba zárt protonok és neutronok, akkor az együttes tömegük nagyobb lesz, mint atommag korukban volt. Megvan tehát az elvi lehetőség arra, hogy ez a tömegkülönbség energia formájában szabaduljon fel, ha sikerül elérni, hogy két atommag egyesüljön egymással valahogy úgy, ahogy a hidrogén-és az oxigénatommal történt az előbbi kémiai példában. Ezt a folyamatot, amelyet magfúziónak (vagy röviden csak fúziónak) hívnak, egy kicsit később tárgyaljuk majd ebben a fejezetben. Először egy másik lehetőséget vizsgálunk meg, a maghasadást, amelyet technikailag sokkal egyszerűbb megvalósítani, mint a fúziót, megmagyarázni azonban egy kicsit körülményesebb. A helyzet ugyanis az, hogy ha egy nehéz atommagot két kisebb súlyú atommagra (nem protonokra és neutronokra!) hasítunk szét, akkor a két könnyebb atommag súlyát kisebbnek találjuk, mint amekkora az eredeti nehéz atommag volt. (A tömegkülönbség a bomlástermékek mozgási energiájában realizálódik.) A magyarázattal adósak maradunk. Elégedjünk meg annyival, hogy az atommag összes részecskéje között ható vonzó magerők és a csak protonok között ható taszító Coulomb-erő versengése miatt az összesen kb. hatvan protont és neutront tartalmazó atommagok, például a vas és a nikkel, a periódusos rendszer legerősebb kötésű atommagjai. A tőlük jobbra és balra elhelyezkedő atommagok kötési energiája ennél a maximális értéknél kisebb, és különösen kicsi a periódusos rendszer végén, a legnehezebb atommagok esetében.
Mint látjuk, a nehéz magok hasadásánál ugyanúgy tömegcsökkenés következik be, mint két könnyű atom
mag fúziójánál, és ezért mindkét folyamat energiafelszabadulással jár. Ehhez az energiához azonban sokkal nehezebb hozzáférni, mint a kémiai folyamatokban keletkező energiához, és a kinyeréséhez általában fejlett technológiára van szükség. Azért nem mindig ez a helyzet; a nukleáris energia bizonyos esetekben spontán módon, természetes körülmények között is felszabadul, ennek pedig rendkívül fontos és váratlan következményei vannak a Föld nevű bolygóra nézve.
Az urán nevű nehézfém magja 92 protonból, valamint - a természetben előforduló legstabilabb formájában - 146 neutronból épül fel. Ennek a változatnak nagyjából 4,5 milliárd év a felezési ideje; ez mindössze annyit jelent, hogy adott mennyiségű urán atommagjainak a fele spontán módon ennyi idő alatt bomlik könnyebb részekre. Ezen részek legnehezebbike az ólom, a bomlás során pedig energia szabadul fel. Az E = mc2 egyenlet nyelvén az uránmag kisebb atommagokra esik szét, amelyek együttes tömege valamivel kisebb, mint az eredeti atommagé. Ez a tömegveszteség most nukleáris energiaként jelenik meg. A folyamat neve - mint már mondottuk - maghasadás, amelynek során tehát egy nehéz atommag könnyebbekre esik szét. A leggyakrabban előforduló, atomonként 146 neutront tartalmazó forma mellett létezik a természetben az uránnak egy kevésbé stabil változata is. Ebben csak 143 neutront tartalmaznak az atommagok, és az ilyen atomok spontán bomlásakor az ólomnak egy másik stabil formája jön létre; a felezési idő ebben az esetben 704 millió év. Ennek a folyamatnak a segítségével igen pontosan lehet meghatározni négy és fél milliárd éves bolygónkkal csaknem egyidős ősöreg kövületek életkorát.
Maga az eljárás csudamód egyszerű. Van egy cirkon nevű ásvány, amelynek a kristályszerkezetébe természetes módon épül be az urán, az ólom viszont nem. Így aztán feltehető, hogy az ásványban található ólom az urán spontán bomlásának a terméke. Ez a körülmény lehetővé teszi, hogy nagy pontossággal megbecsülhessük a cirkonkristály keletkezésének az időpontját: az urán felezési idejét ismerve elég megszámlálni az ásványban lévő ólomatomokat. Az urán bomlásakor felszabaduló hőmennyiségnek Földünk hőháztartásában is kulcsszerepe van. Ez a hőenergia mozgatja a tektonikus lemezeket, és ezek mozgása gyűri föl a hegységeket. Ha nem volnának jelen ezek a feszítő erők, amelyeket tehát a nukleáris energia táplál, akkor a természetes erózió a tengerekbe morzsolná a szárazföldjeinket. Ezzel le is zárjuk a maghasadásról szóló fejtegetéseinket. Áttérünk az atommagra és a benne tárolt energiára, továbbá arra a másik fontos folyamatra, amelynek során ez az energia felszabadulhat: ez pedig a magfúzió.
Vegyünk két protont (elektronok most nincsenek a környéken, így aztán protonjainknak semmi esélyük arra, hogy hidrogénatommá egészüljenek ki). Ha nem zaklatják őket, akkor távolodnak egymástól, egyszerűen azért, mert pozitív töltéssel rendelkeznek. Ha pedig így áll a dolog, akkor nem sok remény van arra, hogy egymás közelébe kényszeríthessük őket. Ennek ellenére próbáljuk elképzelni, mi történik, ha ez valahogy mégis sikerül, mondjuk például úgy, hogy egyre nagyobb sebességgel mozgatjuk őket egymás felé. Miközben közelednek egymáshoz, a két proton egyre erősebben taszítja egymást; ez a taszító erő éppen megnégyszereződik, ha a protonokat elválasztó távolság a felére csökken. Ez azt sugallná, hogy protonjainknak ítéletnapig biztonságos távolságban kell maradniuk egymástól. Ez nem is volna másképp, ha az elektromos taszítás mellett nem működnének további erők a természetben. De vannak versenytársak: az erős és a gyenge nukleáris kölcsönhatások. Amikor a két proton „tapintható” közelségbe kerül
(a protonok valójában nem szilárd gömböcskék, még az is elképzelhető, hogy részlegesen egymásba folynak), különös dolog történik. Ha két proton ilyen állapotba jut, akkor ha nem is mindig, de olykor megesik, hogy egyikük spontán módon neutronná alakul, elektromos töltésétől pedig (a neutron ugyanis elektromosan semleges, innen a neve) egy pozitron nevű részecske kibocsátásával szabadul meg. A pozitronok az elektronok hasonmásai, az egyetlen különbség az, hogy a töltésük pozitív. A folyamat során ezen a bizonyos pozitronon kívül még egy neutrínónak nevezetett részecske is megjelenik. A pozitron és a neutrínó ki is lépnek a színjátékból, hátrahagyva a hozzájuk képest nehézsúlyú, nagyjából hasonló tömegű párost, a protont és a neutront. Ma már behatóan ismerjük ennek az átváltozásnak a természetét. Az elméleti magyarázatot a gyenge kölcsönhatások vizsgálata során dolgozták ki a részecskefizikusok a XX. század második felében. Minderről részletesen beszámolunk majd a következő fejezetben. Most elég annyit tudnunk, hogy a folyamat elvileg lehetséges, és valóságos körülmények között végbe is megy. Ami a megmaradó szereplőket illeti, miután megszűnt köztük az elektromos taszítás, a happy-endet immár az erős nukleáris kölcsönhatás vezényli, a proton és a neutron pedig egy deutérium nevű részecske alakjában kezdi meg közös, új életét. A folyamat, melynek során egy proton neutronná alakul, miközben kibocsát egy pozitront (vagy ennek a fordítottja, amikor egy elektron kiválik egy neutronból) a radioaktív béta-bomlás nevet kapta.
Hogyan illik mindez az energiáról alkotott képünkbe? Nos, a két eredeti proton tömege egyenként 938,3 MeV/c2. A kétféle mértékegység -mindkettő a tömeget méri - között egyszerű az átváltás: a 938,3 MeV/c2 pontosan 1,673 x 10-27 kilogrammnak felel meg. A két eredeti proton együttes tömege tehát 1876,6 MeV/c2, a deutériumé pedig 1875,6 MeV/c2. A maradék 1 MeV energiát a pozitron és a neutrínó viszi el. Ennek mintegy a fele fordítódik a pozitron létrehozására, mivel ennek a részecskének 1/2 MeV/c2 tömege van (a neutrínónak szinte egyáltalán nincs tömege). Amikor tehát ez a két proton átváltozik deutériummá, akkor az eredeti tömeg egy kicsiny része (az 1 százalékának a negyvenede) megsemmisül, és a megjelenő pozitron és neutrínó mozgási energiájává alakul át.
Két proton deutériummá történő összekapcsolódása egy lehetséges példa a magfúziónak nevezett folyamatra. Fúzióról akkor beszélünk, amikor két vagy több részecske egyesítése nyomán energia szabadul fel. A kémiai reakciók során felszabaduló energia forrása az elektromágneses kölcsönhatás; ez azonban semmiség az erős nukleáris kölcsönhatás által létrehozott belső kötésekbe zárt energia mennyiségéhez képest. Elég egybevetni a deutérium létrejöttekor felszabaduló 1/2 MeV-nyi energiát a korábban emlegetett hidrogén-oxigén-robbanás molekulánkénti 6 eV energiájával. Általában is ez a helyzet: a nukleáris reakciók során tipikusan milliószor annyi energia szabadul fel, mint a kémiai reakciók alkalmával. Hogy itt, a Földünkön nem vagyunk nap mint nap tanúi a nukleáris fúziónak, annak az az oka, hogy az erős kölcsönhatások hatótávolsága rendkívül kicsiny. Csak akkor lépnek akcióba, ha a szereplők nagyon közel kerülnek egymáshoz, és erejük a távolság növekedésével drámaian csökken. Ha a részecskék távolsága jelentősen meghaladja az 1 femtométert (ami nagyjából egy proton mérete), akkor gyakorlatilag nem hat. Mivel pedig a protonok taszítják egymást, egyáltalán nem könnyű elérni, hogy ilyen közelségbe kerüljenek. Ennek az egyik módja az, ha nagyon gyors mozgásra bírjuk őket, amit nagyon magas hőmérséklettel érhetünk el; a hőmérséklet ugyanis valójában a részecskék átlagsebességének a mértéke. Egy csésze forró teában gyorsabban cikáznak a molekulák, mint egy pint jó hideg sörben. A fúzió beindulásához legkevesebb 10 millió fokra van szükség, de az az igazi, ha még ennél is sokkal nagyobb az anyag hőmérséklete. Az a szerencsénk, hogy vannak olyan helyek az univerzumban, ahol a hőmérséklet eléri, sőt meg is haladja a nukleáris fúzió beindulásához feltétlenül szükséges határt. Ezek a helyek a csillagok szívében találhatók.
Időutazásra invitáljuk az Olvasót a messzi múltba, a kozmosz gyermekkorába. Alig félmilliárd évvel az ősrobbanás után csupán hidrogén, hélium és a könnyebb elemek foszlányai vannak jelen az univerzumban. Lassan, miközben az univerzum tágul és hűl, a gravitáció hatására ezek az ősgázok megsűrűsödnek, és a részecskék mind nagyobb sebességgel zuhannak a formálódó csomók felé, ahogy ez a könyv is mind nagyobb sebességgel hullik le, ha elhajítja. Gyorsabban mozgó hidrogén és hélium egyre melegebb hidrogént és héliumot jelent, így aztán ezek az óriási gázgömbök mind forróbbak és mind sűrűbbek lesznek. A 10 000 fokos hőmérsékletet elérve az elektronok leszakadnak az atommag körüli pályájukról. A protonok és elektronok megmaradó masszáját plazmának nevezik. Ebben az állapotban a részecskék tovább zuhannak befelé, egyre gyorsuló tempóban, így aztán a forró plazmagömb mind sebesebben zsugorodik. Az elkerülhetetlennek látszó összeomlás azonban megáll, amikor a hőmérséklet eléri a 10 millió fokot; ekkor valami nagyon fontos dolog történik, ami az élet és a fény forrásává változtatja a protonoknak és elektronoknak ezt az izzó elegyét: a különálló protonok deutériummá préselődnek, ami egy újabb protonnal héliummá képes kiegészülni, és mindemez átváltozások során értékes kötési energiák szabadulnak fel: egy csillag születik. A csillag pedig eredeti tömegének kicsiny töredékét energiává alakítva felfűti saját magját, megfékezve és néhány milliárd évre megállítva ezzel a további gravitációs összeomlást. Ennyi haladék pedig bőségesen elegendő ahhoz, hogy a dermedt, sziklás bolygók hidege fölengedjen, megeredjenek a vizek, megjelenjen és kifejlődjön az élet, és kialakuljon a civilizáció.
Ilyen csillag a mi Napunk is, amely életének jelenlegi megnyugtató szakaszában héliummá égeti el a benne lévő hidrogént. Ennek során minden egyes évezred minden egyes napjának minden egyes másodpercében 4 millió tonnányi tömeg semmisül meg, miközben másodpercenként 600 millió tonna hidrogén változik át héliummá. Egy efféle kozmikus bőségszaru, amely létezésünk alapja, előbb-utóbb elapad, és ez a sors vár a mi saját plazmagömbünkre is, legyen bár akkora, mint egymillió Föld együttvéve. Mi történik akkor, ha egy csillag elégeti a hidrogénállományát? A nukleáris forrásból fenntartott stabilizáló ellennyomás megszűntével ismét zsugorodni kezd, és közben tovább nő a hőmérséklete. Amikor eléri a 100 millió fokot, a hélium kap lángra, és a csillag összeomlása ismét megáll. Égésről és lángokról beszélünk itt, de ez megtévesztő. Nukleáris fúzió zajlik, melynek során a keletkező részecskék össztömege kisebb, mint a fúzióban részt vevő részecskéké, a tömegveszteség pedig energiává alakul az E = mc2 egyenlet szerint.
A hélium elégetésének folyamatát érdemes alaposabban szemügyre venni. Két héliumatom egyesülésekor a berilliumnak egy speciális változata jön létre, amelynek atommagja négy proton mellett négy neutront tartalmaz. Ez a berillium-8 nevű formáció csupán a másodperc egymilliárdod részének a százmilliomod részéig létezik, azután elbomlik, és újra két héliumatom bukkan fel a helyén. Ez a képtelenül rövid élettartam gyakorlatilag kizárja, hogy a berillium-8 más részecskékkel fuzionálhasson. Külső beavatkozás nélkül valóban így áll a dolog, a csillagok szívében láthatóan nincs idő arra, hogy nehezebb elemek jöhessenek létre. 1953-ban, amikor még gyerekcipőben járt a csillagok nukleáris fizikájának az elmélete, egy Fred Hoyle nevű csillagász úgy gondolta, hogy a csillagok belsejében szénnek is kell keletkeznie. Minden ellenkező vélekedés dacára állította ezt, szerinte ugyanis ilyesmi sehol másutt nem képzelhető el az univerzumban. Azzal a hipotézisével kiegészítve, miszerint a csillagászok mint olyanok léteznek, föltételezte, hogy erre csak úgy kerülhet sor, ha mégiscsak létezik a szénatomnak egy nehezebb változata, amely jó eséllyel alakulhat ki a kérészéletű berillium-8 és egy harmadik héliumatommag fúziójával. Hoyle utánaszámolt, és arra jutott, hogy ennek a fajta szénnek 7,7 MeV/c2-tel kell nehezebbnek lennie a közönséges szénatomnál. Ha pedig ez a különleges szén megjelenik a csillagok szívében, akkor már megnyílhat az út a nehezebb elemek kialakulása felé. Akkoriban senki nem látott még ilyen szénatomot, de Hoyle hipotézise alapján a tudósok késlekedés nélkül hajtóvadászatba kezdtek. És valóban, alig pár nappal azután, hogy nyilvánosságra hozta az elképzelését, a Caltech Egyetem Kellog Laboratóriumának atomfizikusai minden kétséget kizáróan megerősítették Hoyle hipotézisét. A történet rendkívül tanulságos, többek között azért is, ahogyan növeli az önbizalmunkat: jó úton járunk a csillagok természetének a megértésében, hiszen egy gyönyörű elmélet legmeggyőzőbb bizonyítéka mindig az, ha egy-egy következtetését sikerül kísérletileg igazolni.
Manapság már számos bizonyíték támasztja alá a csillagok evolúciós elméletét. A neutrínók vizsgálata egy a látványos eredmények között. Emlékszünk: ez a részecske akkor jön lécre, amikor a magfúzió során egy proton átalakul neutronná. A neutrínók a részecskevilág fantomjai, gyakorlatilag senkivel nem érintkeznek, így aztán a legtöbbjük akadályoztatás nélkül áramlik a Nap belsejéből, miután a világra jött. Az a helyzet, hogy ez a neutrínósugárzás rendkívül erős: másodpercenként 100 milliárd ilyen részecske halad át a Föld felületének minden egyes négyzetcentiméterén. Ilyesmit könnyű leírni, de próbálják meg elképzelni a dolgot. Emeljék fel a kezüket, és jól nézzék meg a hüvelykujjukon a körmöt. Minden egyes másodpercben 100 milliárd szubatomi részecske érkezik ide közvetlenül a csillagunk szívéből. Az a szerencsénk, hogy a neutrínók a legtöbb esetben akadálytalanul hatolnak át rajtunk, és valójában a teljes földgolyón is, mintha nem is léteznének. Mindazonáltal olykor-olykor egy-egy neutrínó mégiscsak kapcsolatba kerül a környezettel, és így a kihívás az volt, sikerül-e létrehozni olyan kísérleti körülményeket, amelyek során mégis észlelhető ez a hallatlanul ritka esemény. Éppen ezzel a kihívással nézett szembe a Szuper-Kamiokande nevet viselő kísérlet, amelyet Japánban végeztek el a Hida város közelében lévő Mozumi bánya mélyén. Ez a bizonyos Szuper-Kamiokande egy óriási, 40 méter magas és 40 méter átmérőjű henger, amelyet 50 000 tonna tiszta vízzel töltöttek meg. A hengert több mint 10 000 fotonsokszorozó veszi körül, amelyek együttesen képesek észlelni azokat a nagyon gyenge fényvillanásokat, amelyek olyankor jönnek létre, amikor egy, a vízen áthatoló neutrínó egy elektronnal ütközik. A kísérlet mintegy „láthatóvá tette” a Nap belsejéből áramló neutrínósugárzást, és az érkező neutrínók számára kapott becslés fényesen egyezik az elméleti várakozásokkal, amelyeket azon az alapon számoltak ki, hogy a neutrínók valóban a Nap belsejében végbemenő magfúzió melléktermékei.
A csillag végül felemészti a héliumtartalékait is, és tovább zsugorodik. Amikor a mag hőmérséklete túllépi az 500 millió fokot, akkor jut szóhoz a szén, lehetségessé válik az ő fúziója is, ennek nyomán aztán kialakulnak a nehezebb elemek is, egészen a vasig. A vérünket a benne lévő vas, a csillagok fúziós életszakaszának végső terméke festi pirosra. Vasnál nehezebb elemek nem keletkezhetnek a fúziós folyamatok során, mert mint korábban már volt szó róla, a vasnál nehezebb atomok fúziója tömegnövekedéssel jár, és így ez a folyamat fogyasztja az energiát, nem pedig termeli. Másképpen fogalmazva: ha egy vas atommag újabb protont vagy neutront vesz föl, akkor a végtermék ahelyett, hogy könnyebb lenne az alkotórészek össztömegénél, ami a fúziós energia forrása, nehezebb lesz. A vasnál nehezebb elemek ehelyett tipikusan protonokat vagy neutronokat bocsátanak ki, ahogy már láttuk az urán esetében. Ilyenkor a végtermékek össztömege kisebb mint a kiinduló atommagé, így egy nehéz atommag bomlásakor energia keletkezik. A vas azonban - rendkívüli stabilitásának köszönhetően - különleges eset.
Miután a vasban dús csillagnak elapadtak az erőforrásai, a tömegvonzás könyörtelen szorításában halad tovább azon az úton, ahonnan nincs visszatérés. Egy ilyen csillag már csak egyetlen módon kerülheti el a gravitációs összeomlást. Olyan sűrű lett, hogy akcióba lépnek a szabadon kavargó elektronok, amelyek még a csillag megszületése előtt szakadtak le a hidrogénatomokról, és most, engedelmeskedve a Pauli-féle kizárási elvnek, akadályozni kezdik a további zsugorodást. Maga az elv a kvantummechanika egyik fontos tétele, és kulcsszerepe van az atomok stabilitásában. Lényegében azt mondja ki, hogy elektronokat nem lehet korlátlanul összezsúfolni. Egy sűrű csillagban tehát az elektronok a gravitáció ellenében kezdenek dolgozni, annál erőteljesebben, minél kisebbre zsugorodna a csillag. Egy határt elérve az így fellépő erők gátat szabnak a gravitációs összeomlás folytatódásának. Ebben a kimerült, ámde igen hosszú élettartamú állapotban a csillag mintegy „megmerevedik”. Nincs már elégethető üzemanyaga (végső soron ez felelős a gravitációs összeomlásért), de az elektronok ellenállása miatt nem zsugorodhat tovább. Az ilyen csillagokat - a hajdani bőség kíméletlen enyészetre ítélt, lassan halványuló emlékműveit - fehér törpéknek nevezik. Az életnek ezek a kiszáradt forrásai egy kisebbfajta bolygó méretére aszalódnak. A kozmosz jelenlegi életkoránál sokkal hosszabb idő múlva ezek a fehér törpék majd kihűlnek, és eltűnnek a szemünk elől. Georges Lamaitre, aki kidolgozta az ősrobbanás elméletét, igen költőien beszélt arról a pályáról, amely a dicsőséges ragyogástól elkerülhetetlenül vezet a mélységes sötétségig, és amelyről még a csillagok sem térhetnek le: „A kozmosz evolúciója hasonlatos egy éppen véget ért tűzijátékhoz: nem marad más, csak pöfögés, hamu és füst. Kihűlő salak mindenütt, mi pedig még látni véljük az elhamvadt csillagok emlékét, és talán sikerül felidézni a fiatal világok letűnt ragyogását.”
E könyv írása közben mindig arra törekedtünk, hogy világosan elmagyarázzuk, mi miért van úgy, ahogy van, hogy érvekkel és kísérleti bizonyítékokkal támasszuk alá a mondandónkat. A csillagok életútjától szóló tömör beszámolónk igen olvasmányosra sikeredett, írás közben itt láthatóan eltértünk a korábbi, kifejtve magyarázó stílustól. Valaki még azt is felhozhatná, hogy mivel a csillagokon közvetlenül nem végezhetők laboratóriumi kísérletek, nincs jogunk ilyen magabiztosan nyilatkozni arról, milyenek is valójában. De nem ezért írtuk meg
ilyen elnagyoltan az előző részt. Ha belementünk volna a részletekbe, nagyon sok kitérőt kellett volna tennünk. Ami a bizonyítékokat illeti, be kell érniük a Hoyle érdekfeszítő eredményeire és a Szuper-Kamiokande kísérlet sikerére történő hivatkozással, illetve mégsem egészen; befejezésül még ideiktatjuk az indiai származású fizikus, Subrahmanyan Chandrashekar egy bravúros eredményét. Még a harmincas évek elején, már jó nevű fizikusként azt a hipotézist fogalmazta meg, hogy léteznie kell egy olyan korlátnak, amelyet egyetlen (nem forgó) fehér törpe mérete sem léphet túl. Chandrashekar ezt a korlátot kezdetben 1 naptömegként határozta meg (itt a mi Napunk tömegéről van szó), majd a későbbiekben, pontosabb számítások alapján ezt 1,4 naptömegre módosította. Amikor kidolgozta az elméletét, a csillagászok még csak néhány fehér törpét tudtak azonosítani. Ma mintegy tízezerre tehető a ténylegesen megfigyelt fehér törpék száma, a tömegük pedig tipikusan a mi Napunk tömege körül ingadozik. Nincs köztük egy sem, amelynek a tömege túllépné a Chandrashekar-féle korlátot. A fizika egyik valódi öröme és elégtétele, hogy itt, a Földön, a laboratóriumok félhomályában kigondolt és elvégzett kísérletek alapján képes eljutni az univerzum általános érvényű törvényeihez. Chandrashekar eredménye éppen ilyen univerzális törvénynek látszik; 1983-ban ezekért az eredményekért kapott fizikai Nobel-díjat. Hipotézisének eddigi igazolódása azon bizonyítékok közé tartozik, amelyek jogos önbizalommal töltik el a fizikusokat: jó úton járnak a csillagok természetének kutatásában.
Vajon minden csillag fehér törpeként végzi? A fentiek szerint igen, de ez nem a teljes történet, és erre nézve még útmutatással is szolgáltunk. Ha nem létezhet 1,4 naptömegnél nehezebb fehér törpe, akkor mi lesz az ennél nagyobb csillagokkal? Ha eltekintünk attól a lehetőségtől, hogy a nagyobb csillagok olyan nagy mennyiségű anyagot sugároznak szét, hogy a tömegük végül a Chandrashekar-féle korlát alá csökken, akkor két végkifejlet marad. Ami közös a két változatban, az az, hogy a kezdeti nagy tömeg hatására az elektronok egyre gyorsuló mozgásba jönnek, olyannyira, hogy a gravitációs összeomlás során megközelítik a fény sebességét. Ha ez bekövetkezik, akkor már nincs menekvés, nem marad semmi, ami a gravitáció ellenében dolgozhatna. Életük következő szakaszát a nagy tömegű csillagok neutroncsillagként töltik: az ilyenekben egyszer s mindenkorra befejeződött a nukleáris fúzió. A protonok és a neutronok olyan elképesztő sebességgel áramlanak, hogy egy ponton elegendő energiára tesznek szert ahhoz, hogy elinduljon egy másik szintű fúzió, a protonoké és az elektronoké, amelynek során egy neutron jön létre. A reakció éppen a fordítottja a korábban emlegetett radioaktív béta-bomlásnak, amikor egy neutron bomlik spontán módon egy protonra és egy elektronra, miközben kiszabadul egy neutrínó. Most viszont a protonok és az elektronok állnak össze neutronná, és az eredmény egy neutronokból álló gömb. Megrendítő az ilyen neutroncsillagok sűrűsége: egy kávéskanálnyi anyaguk többet nyom, mint egy egész hegy. A neutroncsillagok tömege nagyobb, mint a mi Napunké, de olyan kicsik, mint egy város. Az azonosított neutroncsillagok nagy része elképesztő sebességgel forog, és energianyalábokat sugároz a világűrbe, akár egy kozmikus világítótorony. Pulzárnak is nevezik ezeket a csillagokat, amelyek az univerzum valódi csodái közé tartoznak. Ismerünk
olyanokat, amelyek tömege majdnem kétszer akkora, mint a Napé, alig 20 kilométer az átmérőjük, és másodpercenként több mint ötszázszor fordulnak körbe a tengelyük körül. Felmérhetetlen erők működnek egy ilyen csillagban. A megismerés minden képzeletet képes túlszárnyalni.
A neutroncsillag csak az egyik lehetséges végkifejlet; a nagyobb csillagok egy részére másfajta végzet vár. Ahogyan az elektronok egy fehér törpecsillagban megközelíthetik a fénysebességet, a neutroncsillagok neutronjai is átléphetnek egy olyan határvonalat, amelyet Einstein jelölt ki a számukra. Ebben az állapotban ugyanis nincs erő, amely megállíthatná a neutroncsillag teljes gravitációs összeomlását; a csillag fekete lyukként végzi. Hogy milyen a tér és az idő fizikája a fekete lyukak belsejében, arról meglehetősen hiányosak az ismereteink. Az utolsó fejezetben elmondjuk majd, hogy tömeg jelenlétében a téridő elgörbül a jó öreg Minkowski-féle téridőhöz képest, és ez a görbület olyan méreteket ölthet, hogy még a fény sem jut ki a szorításából. Ilyen szélsőséges körülmények között a fizika törvényei is érvényüket vesztik abban a formában, ahogy ma ismerjük őket, és az így fölvetődő kérdések a XXI. századi tudomány legnagyobb kihívásai közé tartoznak: csak a válaszok ismeretében tehetünk pontot a csillagok történetének végére.
7. AZ ANYAG EREDETE
Az E = mc2 összefüggés fölfedezése fordulópontot jelentett: ezek után a fizikusok más szemmel tekintettek az energiára. Ez az egyenlet világított rá arra, hogy az anyag önmagában is hatalmas mennyiségű energiát tárol, és hogy ez az energiaforrás sokszorta bőségesebb, mint korábban bárki el tudta volna képzelni. Egyetlen proton tömege közel egymilliárdszor annyi energiával egyenértékű, mint amennyi egy tipikus kémiai reakció során fölszabadul. Így aztán elsőre úgy tűnt, hogy akár hosszú távon is megoldódhatnak Földünk energiagondjai. Van azonban az éremnek egy másik oldala: az anyagot nagyon nehéz teljes egészében megsemmisíteni. A maghasadást hasznosító erőművekben az eredeti üzemanyagnak igazából csupán a töredéke válik semmivé, a túlnyomó hányad könnyebb elemekké alakul át, és ezek egy része erősen mérgező. A tömeg még a Nap belsejében zajló fúziós folyamatok során is meglepően rossz hatásfokkal alakul át energiává. Nem csupán azért, mert a megsemmisülő anyag aránya kicsi; annak is elenyésző az esélye, hogy egy kiszemelt proton bekapcsolódjék a fúziós folyamatba. Ennek a folyamatnak az első fázisa ugyanis, melynek során a proton neutronná alakul át, hihetetlenül ritkán következik be. Olyannyira ritkán, hogy átlagosan 5 milliárd évnek kell eltelnie, amíg egy-egy proton a Nap belsejében egy másikkal kapcsolatba lépve deuteronná alakul; márpedig éppen ilyenkor szabadul föl az energia. Erre az átváltozásra tulajdonképpen nem is kerülhetne sor, ha az érintett részecskék mikrovilágát nem a kvantumfizika törvényei szabályoznák. A korábbi elképzelések szerint még a Nap sem volt elég forró ahhoz, hogy a protonok elegendően közel préselődjenek egymáshoz, és így végbemehessen a fúzió. Akkoriban úgy vélték, hogy ehhez a mag mostani 10 millió fokos hőmérsékletének nagyjából az 1000-szeresére van szükség. Amikor a brit fizikus, Sir Arthur Eddington 1920-ban elsőként vetette föl annak a lehetőségét, hogy a Napot a magfúzió fűti, a kortársak rögvest felhívták a figyelmet erre a problémára. Eddington viszont meg volt győződve arról, hogy mindezek ellenére mégis a hidrogén-hélium fúzió az energia forrása, és hogy az alacsony hőmérséklet rejtélye hamarosan megoldódik. „Annak a héliummennyiségnek, amit sikerült kimutatnunk, valamikor és valahol létre kellett jönnie - mondta. - Nem vitatkozunk a kritikusokkal, akik szerint a csillagok nem elég forrók az ilyesmihez, hanem felszólítjuk őket: találjanak olyan szegletet, amelyik elég forró!”
A protonok olyan kínkeservesen változnak át neutronná, hogy például kilogrammokra vetítve az emberi test több ezerszer hatékonyabban alakítja át a tömeget energiává, mint a Nap. Egyetlen kilogrammnyi anyagból a Nap belsejében átlagosan csupán 1/5000 watt energia keletkezik, míg ugyanez a mennyiség az emberi testben meghaladja az 1 wattot. A Nap hatalmas tömege persze bőségesen ellensúlyozza ezt a viszonylag alacsony hatásfokot.
Nem győztük elégszer ismételni ebben a könyvben, hogy a természet működését törvények szabályozzák. Így aztán az E= mc2 és a hasonló formulák, amelyekből kiderül, mi az, aminek fennáll az elvi lehetősége, önmagukban még nem kell hogy lázba hozzanak. Egy világ választja el a lehetségest attól, ami ténylegesen bekövetkezik, így aztán a várakozásokon túl, amelyeket ez a formula ébreszt, pontosan meg kell értenünk, hogy milyen módon teszik lehetővé a természet törvényei a tömeg megsemmisülését és így az energia felszabadítását. Maga az egyenlet még logikailag sem garantálja, hogy tetszés szerint alakítgathatjuk a tömeget energiává, ha éppen úgy hozza a kedvünk.
Az elmúlt évszázad egyik nagyszabású tudományos áttörése volt az a felismerés, hogy a fizika egésze alig néhány törvénnyel szinte teljes mértékben leírható -legalábbis elméletben. Ez látszólag már Newtonnak is sikerült, amikor a XVII. század végén felírta mozgástörvényeit. A következő két évszázadban nagyon kevés tudományos bizonyíték szólt a rájuk épülő világkép ellen. Maga Newton meglehetősen szerényen annyit mondott eredményeiről, hogy „...olyan vagyok, mint a tengerparton játszó gyermek, aki játék közben imitt-amott egy, a szokottnál laposabb kavicsot vagy szebb kagylót talál, míg az igazság nagy óceánja egészében felfedezetlenül terül el tekintetem előtt.” Az alázat hangja ez és az elragadtatásé; ezek az érzések a fizika beható tanulmányozásának természetes hozadékai lehetnek. A világ csodáinak láttán szükségtelen, sőt egyenesen ostobaság azzal kérkedni, hogy megtaláltuk a végső magyarázatokat. A tudós Newton teljesen érthető visszafogottsága ellenére az utódok meg voltak győződve róla, hogy a világ valóban parányi részecskékből épül fel, amelyek valamennyien engedelmeskednek a fizika newtoni törvényeinek. Volt ugyan néhány válaszra váró kérdés, például hogy mi tartja össze a dolgok részeit, illetve hogy mifélék ezek a részecskék, de kevesen kételkedtek abban, hogy Newton elmélete mindenre magyarázatot ad, különösen ha néhány ilyen részlet is tisztázódik. A XIX. században azonban olyan jelenségekre bukkant a tudomány, amelyek nem illeszkedtek a Newtonra alapozott világképbe, és amelyek végül megnyitották az utat Einstein relativitáselmélete és a kvantumelmélet előtt. Newtonon pedig annak rendje és módja szerint túllépett a tudomány, pontosabban kiderült, hogy az ő törvényei csupán közelítései a természet egy pontosabb leírásának. Száz évvel később pedig újra itt állunk, és arról beszélünk, hogy - lényegében
- a kezünkben van minden természeti jelenség elméleti magyarázata: mintha nem tanultunk volna a múltból. Valószínűleg most sincs igazunk, és ez egyáltalán nem baj. Nem csak azt érdemes észben tartanunk, hogy az elbizakodottság a tudományban is gyakran bizonyult ostobaságnak, hanem azt is, hogy a meggyőződés, amely szerint valamilyen értelemben eleget, vagy akár mindent tudunk, ami a természet működéséről tudható, kártékony volt, és talán mindig is az marad az emberi lélek számára. 1810-ben egy nyilvános előadáson Humphry Davy ezt gyönyörűen megfogalmazta: „Semmi sem olyan végzetes az emberi gondolkodásra, mint az a meggyőződés, hogy a természetről való tudásunk immár végleges, hogy a természetben nincsenek új rejtélyek, hogy a diadalunk immár teljes, hogy nincsenek új, felfedezésre váró világok.”
Lehet, hogy az egész fizika úgy, ahogy ma ismerjük, csupán a jéghegy csúcsa, de az is elképzelhető, hogy tényleg közel járunk a „minden elméletéhez”. Bárhogy legyen is, egy dolog bizonyos: a kezünkben van egy elmélet, amely a jelenségek nagyon széles körére alkalmazható, és amely a világ minden részében dolgozó számtalan tudós fáradságos munkájának eredményeként kísérletileg bizonyítottnak tekinthető. Egy lenyűgöző, nagyon sok mindent magában foglaló elmélet, a központi egyenlete viszont ráfér egy borítékra.
Ezt a hallatlanul fontos egyenletet főegyenletnek fogjuk nevezni; ez a részecskefizika Standard Modellnek nevezett fejezetének az alapja. Bár első ránézésre az
Olvasók többségének valószínűleg nem sokat mond, nem tudtunk ellenállni a kísértésnek, és beiktattuk a szövegbe.
Az egyenlet részleteit persze csak a hivatásos fizikusok értik, de mi nem az ő kedvükért másoltuk ide. Egyrészt az a véleményünk, hogy az Olvasónak látnia kell a fizika egyik legcsodálatosabb egyenletét; rövidesen meg is próbáljuk elmagyarázni, hogy mitől az. Másrészt tényleg érzékeltethetjük majd a dolog lényegét, úgy, hogy csak az egyes szimbólumokról mesélünk, mindenféle matematikai körítés nélkül. Bemelegítésként nézzük meg a főegyenlet hatáskörét: mit is mond egyáltalán? Hogyan működik? Nos, ez az egyenlet végső soron azon szabályok együttese, amelyek szerint bármelyik részecske kölcsönhatásba lép az univerzum többi részecskéinek összességével. Az egyetlen kivétel, mindenki legnagyobb bánatára, hogy a gravitáció jelenségére nem ad magyarázatot. Az egyenlet érvényességi köre így is nagyszabású, kisilabizálása pedig kétségkívül a fizika történetének egyik csúcsteljesítménye.
Tisztázzuk, hogy mi is két részecske kölcsönhatása. Azt a jelenséget nevezzük így, amelynek során valami történik a részecskék mozgásállapotával, miközben valamilyen módon kapcsolatba kerülnek. Két részecske találkozásakor például megváltozhat a mozgásuk iránya. Vagy egymás körüli pályára állva kölcsönösen foglyul ejthetik egymást: ezt egyébként a fizikusok „kötött állapotnak” nevezik. Az utóbbira példa az atom; a hidrogén
esetében egyetlen elektron és egyetlen proton alkot kötést a főegyenletben meghatározott elvek szerint. Sok szó esett az előző fejezetben a kötési energiáról, a főegyenlet pedig magában foglalja azokat a szabályokat, amelyek alapján ki lehet számolni egy atom, egy molekula vagy akár egy atommag kötési energiáját. Ennek a „szabálykönyvnek” az ismerete bizonyos értelemben azt jelenti, hogy a legelemibb szinten le tudjuk írni az univerzum működését. Melyek hát azok a részecskék, amelyekből felépül a világ, és pontosan hogyan lépnek egymással kölcsönhatásba?
A Standard Modell abból indul ki, hogy az anyagi világ létezik. Pontosabban szólva hatféle „kvark”, három „töltéssel rendelkező lepton” - egyikük az elektron valamint háromféle „neutrínó" létezését feltételezi. Ezek az anyagi részecskék megjelennek az egyenletben: őket a ψ (pszi) szimbólum jelöli. Mind a hatféle részecsketípusnak szükségképpen létezik egy ellenpárja, a megfelelő antirészecske. Az antianyag nem a tudományos-fantasztikus szerzők képzeletének szülötte, a léte bele van kódolva az univerzum szerkezetébe. Elsőként a brit elméleti fizikus, Paul Dirac ismerte föl az antianyag megkerülhetetlenségét; még a húszas évek végén megjósolta, hogy az elektronnak van ilyen ikertestvére, a pozitron, amelynek pontosan ugyanakkora tömeggel, de ellentétes elektromos töltéssel kell rendelkeznie. A pozitronokkal már találkoztunk: annak a folyamatnak a melléktermékei, amelynek során két proton fúziójakor létrejön a deuteron. A sikeres tudományos elméletek egyik lenyűgöző vonása, hogy képesek megjósolni olyasmit, amit még senki sem látott. Ha pedig ezek után ezt az „olyasmit” kísérleti eszközökkel is sikerül kimutatni, akkor ez meggyőzően bizonyítja, hogy valamit megértettünk az univerzum működéséből. Kissé továbbmenve, minél többet képes előre jelezni egy elmélet, annál több okunk lehet az elégedettségre, ha a későbbi kísérletek megerősítik ezeket a jóslatokat. Megfordítva, ha a kísérletek nem mutatják ki a megjósolt jelenségeket, akkor az elmélet nem lehet helyes, és sutba kell dobni. Ebben a tudományos modellben nincs helye vitának: a végső döntés a kísérleti bizonyítékokon múlik. Dirac megdicsőülésére alig néhány évet kellett várni. Első alkalommal Carl Andersonnak sikerült megfigyelnie pozitronokat közvetlenül, miközben a kozmikus sugárzást vizsgálta. Erőfeszítéseik elismeréseként Diracnak 1933-ban, Andersonnak pedig 1936-ban adományoztak Nobel-díjat, mindkettőjüknek megosztva. Bármilyen földöntúli szellemlénynek tűnik is a pozitron, manapság iparszerűen használják a világ kórházaiban. A PET-szkennerek (a pozitronemissziós tomográfia rövidítése) a pozitronok segítségével állítanak elő háromdimenziós felvételeket az emberi testről. Nem valószínű, hogy Diracnak ilyen orvosdiagnosztikai alkalmazások jártak volna a fejében, amikor az antianyag ideája felötlött benne. íme egy újabb adalék: az univerzum belső működésének megértése nem várt haszonnal is járhat.
A tudósok egy további részecske létezését is feltételezik, de erről a részecskéről még korai beszélni. Ezt a részecskét a φ (fi) görög szimbólum jelöli, amely a főegyenlet harmadik és negyedik sorában jelenik meg. Ez az egyedüli kivétel, mostanra az összes többit sikerült kimutatni a kísérletek során: a hatféle kvarkot, a töltéssel rendelkező leptonokat és a neutrínókat, továbbá mindegyikük antianyag párját is. Természetesen nem szabad szemmel azonosították őket, hanem a legújabb részecskegyorsítók belsejében, amelyek, akár a nagy felbontású fényképezőgépek, képesek pillanatfelvételeket készíteni ezekről a nyúlfarknyi élettartamú elemi részecskékről. Egy-egy részecske azonosítása többnyire
Nobel-díjjal járt. Utolsónak a tau neutrínót fedezték fel 2000-ben, teljessé téve ezzel a tizenkét megjósolt anyagi részecske listáját. Ezek a tau neutrínók egyébként az elektron neutrínók földöntúli rokonai, és a fúziós folyamat során áramlanak ki a Napból.
A két legkönnyebb kvark az u-kvark és a d-kvark nevet kapta; a protonok és a neutronok épülnek fel belőlük. A protonok általában két u-és egy d-kvarkból, míg a neutronok két d-és egy u-kvarkból állnak. A hagyományos anyag atomokból áll, az atomok pedig a protonokból és neutronokból felépülő atommagból, amelyet elektronok vesznek körül, a magtól meglehetősen távol. A hagyományos anyag összetevői tehát túlnyomó részben u-és d-kvarkok, illetve elektronok.
További három kvark felfedezése a t-kvarkkal zárult 1995-ben. Fényesen beigazolódott az a hipotézis, hogy a protonok és neutronok kisebb objektumokból épülnek fel: 1968-ban, négy évvel Gell-Mann elméleti jóslata után végre meg is pillantották a kvarkokat a kaliforniai Stanford Egyetem egyik részecskegyorsítójában. Később ezért Gell-Mann Nobel-díjat kapott azokkal a kísérleti fizikusokkal együtt, akik rátaláltak a kvarkokra.
A fenti részecskék és a rejtélyes φ mellett továbbiakról is kell beszélnünk. Ezek a W, illetve a Z részecskék, valamint a foton és a gluon. Ismerkedjünk meg velük, illetve a szerepükkel. Ők felelnek az összes többi részecske között fellépő kölcsönhatásokért. Ha nem lennének, akkor kölcsönhatásokra sem kerülhetne sor az univerzumban, amely így meglehetősen sivár hely volna. Közvetítik a különböző hatásokat, amikor az anyagi részecskék interakcióba lépnek egymással. A foton a töltéssel rendelkező részecskék, például az elektron és a kvarkok között fellépő erőhatásokat továbbítja. Nagyon is kézzelfoghatóan igazolja Faraday és Maxwell fizikáját, másfelől, mintegy kitüntető kegyként meg is mutatkozik, mint a látható fény, a rádióhullámok, az infravörös-és mikrohullámok, a röntgensugarak és a gamma-sugarak. A villanykörtéből valóban fotonok
áramlanak ki, a könyvnek erről a lapjáról visszaverődve bejutnak az ön szemébe, amely lényegében egy igen bonyolult fotondetektor. Egy fizikus úgy fogalmazna, hogy a foton révén terjed az elektromágneses erő. A gluont nem úgy érzékeljük a hétköznapok során, mint a mindenütt jelen lévő fotonokat, de a szerepe nem kevésbé fontos. Minden egyes atom mélyén ott rejtőzik az atom magja. Ez egy pozitív elektromos töltéssel rendelkező gömb (mint tudjuk, a protonok rendelkeznek elektromos töltéssel, a neutronok viszont nem), és mint amikor két azonos mágneses pólust közelítünk egymáshoz, a protonok is taszítják egymást. Így aztán a gluonok nélkül eszük ágában sem lenne összetapadni, szanaszét szórná őket az elektromágneses erő. Szerencsére ez a hatás most nem érvényesül, ezért létezhetnek az atomok. A gluon közvetíti az erőt, amely az atommagon belül „összeragasztja” a protonokat, ez a furcsa név eredete. A gluon felelős azért is, hogy a protonon és neutronon belül együtt maradnak a kvarkok. Ennek az erőnek elegendően nagynak kell lennie ahhoz, hogy legyőzze a protonok között fellépő elektromágneses taszítást, így aztán erős kölcsönhatásnak nevezik. Ez a névadás valóban nem mondható kockázatosnak.
A másik két részecske, a W és Z lényegében azonosnak tekinthetők. Nélkülük nem ragyognának a csillagok. A W részecske a főszereplője annak a folyamatnak, melynek során a Nap magjában neutronná alakul a proton, és létrejön a deuteron. De ennél többről van szó: a gyenge kölcsönhatás nem csupán protonokat alakít neutronná (és vissza). Az elemi részecskék között létrejövő számtalan interakció mindegyike a gyenge kölcsönhatás közvetítésével valósul meg. Ezek közül sokakat megvizsgáltak, olyasféle kísérletekben, mint amilyeneket például a CERN gyorsítóiban végeznek. Azonkívül, hogy a Nap süt, sem a W, sem pedig a Z részecske nem mutatható ki közvetlenül, ebből a szempontból ezek a részecskék olyanok, mint a gluon. A neutrínók pedig csak a W és Z részecskék közvetítésével képesek (egymással is) interakcióba lépni, ezért olyan megfoghatatlanok. Az előző fejezetben beszéltünk arról, hogy minden pillanatban milliárdszám hatolnak keresztül rajtunk anélkül, hogy ebből bármit érzékelnénk. Ennek az az oka, hogy a W és Z részecskék által közvetített kölcsönhatás rendkívül gyenge. Talán már ki is találták: gyenge kölcsönhatásnak keresztelték el.
Ezzel felsoroltuk a főegyenletben előforduló részecskéket: ők a szereplői ennek a „végtelen történetnek”. Arra, hogy miért pont ez a tizenkét részecske jelenik meg az elméletben, nincs magyarázat; nem tudjuk, miért vannak éppen ennyien. A kilencvenes években a CERN-ben behatóan tanulmányozták, hogyan alakulnak át a Z részecskék neutrínó-antineutrínó párrá, és ennek nyomán kiderült, hogy nem lehetnek többen tizenkettőnél, de mivel úgy tűnik, hogy az univerzum felépítéséhez csak négyükre van szükség (az u-és a d-kvarkra, az elektronra és az elektron neutrínóra), a további nyolc létezése némiképp rejtélyes. Azt gyanítjuk, hogy az univerzum életének nagyon korai szakaszában jutottak szerephez, de hogy pontosan miféléhez, illetve hogy milyen módon vesznek részt jelenlegi létezésünkben, az a fizika nagy, megválaszolatlan kérdései közé tartozik. Humphry Davy egyelőre nem forog a sírjában.
A Standard Modell szerint ez a tizenkét részecske elemi, vagyis nem bonthatók tovább: ezek a legkisebb építőkockák. Ez ellentmondani látszik annak a mindennapi tapasztalatnak, hogy még a legapróbb dolgok is félbevághatok, legalábbis elméletben. A kvantumelmélet viszont nem így működik - a mindennapi tapasztalatokra hivatkozó józan ész ezúttal is megbízhatatlan kalauz, ha a fizika alapjairól van szó. A Standard Modellben ezeknek a részecskéknek nincsen belső szerkezetük. „Pontszerűnek" mondják őket, és ezzel a dolog el is van intézve. Az ugyan nem zárható ki, hogy a fizikusoknak egyszer majd sikerül olyan kísérletet tervezniük, amelyben a kvarkok kisebb részekre bomlanak, de a lényeg az, hogy ennek már nem kell feltétlenül így lennie. Ezek a pontszerű részecskék valóban a történet végét jelenthetik, ha pedig így van, akkor a belső szerkezetükre vonatkozó kérdéseknek nincs értelme. Itt vannak tehát ők tizenketten, belőlük épül föl az Univerzum, a főegyenlet pedig az a rejtjelkulcs, amellyel megfejthető, hogyan lépnek egymással kapcsolatba.
Egy finom részletre itt nem tértünk ki: részecskékről beszéltünk, de ez némiképp félrevezető. Ezek ugyanis nem úgy részecskék, ahogy az ember gondolná. Nem olyanok, mint a parányi biliárdgolyók, amelyek ütközéskor visszapattannak egymásról. A kölcsönhatásuk leginkább a víz felszínén fodrozódó hullámokéhoz hasonlítható, amelyek árnyképeket hoznak létre egy medence alján. Hullámszerű tulajdonságaik vannak, miközben valahogy mégis részecskék maradnak. Egy ilyen létforma lehetősége megint csak ellentmond a hétköznapi tapasztalatoknak, és csupán a kvantumelmélet világában van létjogosultsága. A főegyenlet az ilyen hullámszerű kölcsönhatások pontos természetét önti szigorú matematikai formába. De honnan vették ezt az egyenletet? Miféle végső alapelvekből vezették le? Mielőtt megpróbálnánk választ adni ezekre a nyilvánvalóan nagyon fontos kérdésekre, vegyük szemügyre közelebbről, és próbáljunk némi képet alkotni arról, hogy mit is mond.
Az első sor a W és a Z részecskék, továbbá a foton és a gluon által hordozott mozgási energiáról beszél. Az egyenletnek ez a része mondja el, hogy ezek a részecskék hogyan lépnek kölcsönhatásba egymással. Ezt a lehetőséget eddig nem említettük, de a gluonok kapcsolatba léphetnek más gluonokkal, a W és a Z részecskék pedig egymással is, a W pedig még a fotonnal is képes kölcsönhatásba lépni. A lehetőségek listáján nincs ott a fotonok kölcsönhatása egymással; jó okkal, fotonok között ugyanis nem kerülhet sor ilyesmire. Ez nem olyan nagy baj, egyébként ugyanis nem volna lehetséges a látás mechanizmusa. Bizonyos értelemben rendkívül különös, hogy ön egyáltalán olvasni tudja ezt a könyvet. Ez azért lehetséges, mert a könyv lapjairól az ön szeme felé visszaverődő fényt nem térítik el a máshonnan érkező fénysugarak, például azok, amelyek olyan tárgyakról verődnek vissza, amelyek szemléléséhez el kell fordítania a tekintetét. Útjuk során a fotonok a szó szoros értelmében nem vesznek egymásról tudomást, mintha a többi ott se lenne.
A főegyenlet második sorában kibontakozik a cselekmény. Ez a sor mondja meg, hogy az univerzum anyagi részecskéi - mind, az összes - hogyan lépnek kölcsönhatásba az összes többi részecskével. Ez a sor magában foglalja mindazokat a kölcsönhatásokat, amelyeket a fotonok, a W és Z részecskék és a gluonok közvetítenek. A második sor az összes anyagi részecske mozgási energiáját is tartalmazza. Az utolsó két sorral még várjunk.
A korábbiakban már beszéltünk arról, hogy a főegyenlet a gravitáció kivételével a fizika valamennyi általunk ismert alaptörvényét magában foglalja. Az elektrosztatikus taszítás jelenségét Charles Augustin de Coulomb öntötte matematikai formába a XVIII. század végén: ez a törvény éppen úgy kiolvasható az egyenletből (az első két sorban van elrejtve), ahogyan az elektromosság és a mágnesesség teljes elmélete is. Rendre megjelennek Faraday kísérleti eredményei és Maxwell szépséges egyenletei is: ehhez nem kell mást tennünk,
mint vallatóra fogni az egyenletet arról, hogyan lépnek kölcsönhatásba egymással az elektromos töltéssel rendelkező részecskék. A teljes struktúra szilárd talapzata pedig Einstein speciális relativitáselmélete. A Standard Modellnek azt a részét, amely a fény és az anyag kölcsönhatását írja le, kvantum-elektrodinamikának nevezik. A „kvantum" jelző' emlékeztethet arra, hogy a kvantumelmélet megjelenésével módosítani kellett Maxwell egyenleteit. Ezek a módosítások általában kicsinyek, és olyan finom jelenségekkel állnak kapcsolatban, amelyeket Richard Feynman és mások vizsgáltak először a XX. század közepén. Már beszéltünk arról, hogy a főegyenlet az erős és a gyenge kölcsönhatás fizikáját is magában foglalja; éppen a természet e három kölcsönhatásának mechanizmusát írja le, mindenféle kétértelműség és egyetlen fölösleges szó nélkül, matematikai pontossággal foglalva össze a játékszabályokat. Úgy tűnik, a gravitációt leszámítva valamiféle nagyszabású, egységes elmélet felé közeledünk. Az mindenesetre tény, hogy sem a laboratóriumokban, sem pedig a kozmoszt pásztázva nem találtak még olyan bizonyítékot, amely egy ötödik kölcsönhatás létezésére utalna az univerzumban. A legtöbb hétköznapi jelenség megnyugtatóan leírható az elektromágnesesség és a gravitáció törvényei alapján. A gyenge kölcsönhatás biztosítja, hogy a Nap égethesse az üzemanyagát, de itt, a Földön nem nagyon találkozunk vele. Az erős kölcsönhatás tartja össze az atommagot, de alig terjed ezen túl, így aztán hatalmas ereje nem ér el a makrovilágba. Az elektromágneses kölcsönhatás a forrása például annak az illúziónak, hogy a tárgyak, mint például egy asztal vagy egy szék, szilárdak. Az anyag legnagyobbrészt valójában űr. Képzeljenek el egy atomot kinagyítva: akkorára, hogy a magja borsónyi méretű. Az elektronok ilyenkor olyanok, akár egy-egy homokszem. Nagy sebességgel száguldanak a magtól körülbelül egy kilométeres távolságban, minden mást űr tölt ki. A „homokszem” hasonlat persze sántít, hiszen, ahogy már mondtuk, az elektronok inkább hullámokként, mint homokszemekként viselkednek, de a példa elsősorban az atom relatív méretét szemlélteti a középen nyugvó atommaghoz képest. Az kelti a szilárdság képzetét, hogy az atommag körül száguldó elektronok felhőjét nem tudjuk átpréselni egy szomszédos atom elektronfelhőjén. Az elektronok ugyanis elektromos töltéssel rendelkeznek, a felhők taszítják egymást. Ez az oka annak, hogy bár legnagyobb részüket űr tölti ki, az atomok nem képesek egymáson áthatolni. Az anyag alacsony sűrűségét közvetlenül tapasztalhatjuk, ha kinézünk egy ablakon. Bár szilárdnak érzékeljük, a fény gond nélkül hatol át az üvegen, és láthatóvá teszi számunkra a külvilágot. Bizonyos értelemben éppen az a meglepő, hogy egy fadarab nem átlátszó!
Lenyűgöző, hogy mi minden fér el egyetlen egyenletben. Ez mindent elmond arról, amit Wigner Jenő „a matematika ésszerűtlen hatékonyságának” nevezett. Azt várná az ember, hogy a természet ennél sokkal bonyolultabb. Miért lehet ennyire összesűríteni a fizikát? Miért nem kellenek ehhez hatalmas adatbázisok és enciklopédiák? Senki sem tudja igazán, miért hagyja magát a természet ilyen tömör formában kifejezni, és kétségkívül ez az alapvető elegancia és egyszerűség vonz oly sok fizikust erre a pályára. Az ember ugyan tisztában van azzal, hogy a természet nem feltétlenül veti majd alá magát ennek a varázslatos egyszerűségnek, de legalább hátradől egy kicsit és rácsodálkozik mindarra, ami mostanra a birtokába került.
Mindezzel együtt még nem végeztünk. Nem beszéltünk ugyanis a Standard Modell ékkövéről. A modell nem csupán tartalmazza az elektromágneses, az erős és a gyenge kölcsönhatásokat, de közülük kettőt egyesít.
Első ránézésre az elektromágnesesség és a gyenge kölcsönhatás jelenségének semmi köze egymáshoz. Az elektromágnesességről mindannyiunkban él valamilyen kép, része mindennapjainknak, míg a gyenge kölcsönhatás csupán az atommag legmélyén jut szóhoz. A Standard Modell figyelemre méltó módon mégis azt mondja, hogy ez a kétféle hatás ugyanannak a dolognak a két különböző megjelenési formája. Ha vetnek egy pillantást a főegyenlet második sorára, akkor mindenféle matematika nélkül is „megláthatják” az anyagi részecskék közötti kölcsönhatásokat. A második sor W, B és G (gluon) szimbólumokat tartalmazó részét két anyagi részecske, ψ fogja közre. Itt van tehát a főegyenletnek az a szakasza, amely megmondja, hogyan kapcsolódnak az anyagi részecskék a közvetítő részecskékkel, de van még egy csattanó. A fotont részben a „W”, részben pedig a „B” szimbólum tartalmazza, de ugyanez áll a Z részecskére is! A W részecske viszont csak az egyenlet „W” szimbólumban fordul elő. A matematika tehát külön kezeli aWésB alapobjektumokat, de ezek összekeverednek, hogy előteremthessék a fotont és a 2 részecskét. Ennek megfelelően fonódik össze a kétféle kölcsönhatás, az elektromágneses (amelyet a foton továbbít) és a gyenge (amelynek a W és a Z részecskék a közvetítői). A kísérletekre nézve ez azt jelenti, hogy az elektromágnesességgel kapcsolatos tulajdonságokra vonatkozó méréseknek meg kell felelniük a gyenge kölcsönhatással kapcsolatos tulajdonságokra vonatkozó méréseknek. Ez a Standard Modell egyik legfigyelemreméltóbb jóslata. Valóban jóslatként hangzott el: a Standard Modell kidolgozói, Sheldon Glashow, Steven Weinberg és Abdus Salam megosztott Nobel-díjat kaptak, mivel elméletük alapján jóval azelőtt meg lehetett jósolni a W és a Z részecskék tömegét, hogy felfedezték volna őket a CERN-ben a nyolcvanas években. A részletek lenyűgöző egésszé álltak össze. De vajon honnan tudta Glashow, Weinberg és Salam, hogy mit írjanak az egyenletbe? Hogyan jöttek rá, hogy a „W és a B keverékeként kapjuk meg a fotont és a Z részecskét”? A válasz nyomán bepillantást nyerhetünk a modern részecskefizika lényegébe. Nem egyszerűen találgattak: tudták, hogy a dolog kulcsa a természet szimmetriája.
A szimmetriával lépten-nyomon találkozhatunk. Ha közelről megnézzük a hópelyheket, a természet e műremekeit, akkor kiderül, hogy ugyanaz az alakzat ismétlődik bennük, matematikai szigorúsággal, mintha egy kaleidoszkóp tükörrendszere hozná létre őket. Hétköznapibb példa egy labda: akárhogyan forgatjuk, ugyanolyannak látjuk. Ha egy négyzetet átfordítunk az átlója vagy egy, a középpontján átmenő tengelye körül, akkor ezt az állapotát nem tudjuk megkülönböztetni az eredetitől. Ha elszakadunk a látványtól, akkor kiderül, hogy a fizikai szimmetria is hasonló természetű. Ha egy egyenletben valamilyen átalakítást végzünk, és ennek nyomán mégsem változik meg, akkor ezt az átalakítást az egyenlet - egyik - szimmetriájának nevezzük. Ez így elég ködösen hangzik, de mit tehetünk: a fizikusok egyenletekkel dolgoznak, ezen a nyelven beszélnek a valóságos dolgok között fennálló kapcsolatokról. A fizika fontos egyenletei kivétel nélkül rendelkeznek egy egyszerű, de fontos szimmetriával. Ez a szimmetria azt fejezi ki, hogy ha mozgó vonaton hajtunk végre egy kísérletet, akkor a kísérlet ugyanúgy zajlik le, mintha a vonat állna, feltéve, hogy a vonat nem gyorsul. Erről már esett szó: ez a Galilei-féle relativitási elv, amely Einstein elméletének is a kiindulópontja. A szimmetria nyelvén úgy szól, hogy a kísérletet leíró egyenletek nem függenek attól, hogy a kísérletező az állomás peronján ügyködik-e, vagy pedig a vonaton. A helyszín és a zajló kísérlet elmozgatása tehát a megfelelő egyenleteknek
egy szimmetriája. Amint láttuk, Einsteint ez az egyszerű tény végül a relativitáselmélet felfedezéséhez vezette. Gyakran megesik az ilyesmi: egyszerű szimmetriáknak mély következményei lehetnek.
Miféle szimmetriát használt ki Glashow, Weinberg és Salam a részecskefizika Standard Modelljének kidolgozásakor? Hangzatos neve van: mértékszimmetriának hívják. Mi ez a „mérték”? Mielőtt megkísérelnénk elmagyarázni, nézzük, hogyan működik a rá vonatkozó szimmetria. Képzeljük magunkat Glashow vagy Weinberg vagy Salam helyébe, amint a kölcsönhatások elméletén töprengenek. Kiindulópontunk az, hogy ennek az elméletnek parányi, oszthatatlan részecskék viszonyáról kell szólnia. A kísérletekből pontosan tudjuk, milyen részecskékre számíthatunk, így aztán, ha nem akarunk félmunkát végezni, elméletünknek mindegyikükről mondania kell valamit. Ugyanezzel az erővel persze azon is elmélkedhetnénk, hogy miért éppen ezekből a részecskékből épül fel a világegyetem, vagy hogy miért kéne oszthatatlannak lenniük, de ez félrevinné a dolgokat. Nem mintha ezek nem volnának fontosak, igazság szerint ezekre a súlyos kérdésekre még ma sem ismerjük a választ. A jó tudós viszont többek között arról ismerszik meg, hogy meg tudja különböztetni azokat a kérdéseket, amelyeket mindenképpen föl kell tennie azoktól, amelyek elodázhatok. Fogadjuk el tehát, hogy ezek a részecskék olyanok, amilyenek, és próbáljuk kideríteni, hogyan léphetnek kölcsönhatásba egymással. Ha nem kerülne sor ilyen kölcsönhatásokra, akkor a világ sivár lenne és egyhangú: a dolgok áthatolnának egymáson, nem különülnének el és nem állnának össze, nem volnának atommagok, sem atomok, sem pedig csillagok. De még a fizikában is hasznos lehet a „lassan járj...” elve, ezt követve pedig első lépésként nem túl nehéz összehozni olyan elméletet, amely egy ilyen világot ír le: ez éppen a főegyenlet második sora, ha elhagyjuk a W, a B és a G részecskéket. Az eredmény egy olyan egyszerűsített kvantumelmélet, amely a kölcsönhatások leírásától eltekintve teljes. Az első lépés megvolt, következzék a bűvészmutatvány: tételezzük fel, hogy a világ és így az egyenletünk is rendelkezik a mértékszimmetriával. Az eredmény lenyűgöző: ölünkbe hullik a második sor hiányzó része a teljes első sorral együtt. Más szavakkal: úgy kell módosítanunk az elmélet „kölcsönhatások nélküli" változatát, hogy eleget tegyen a mértékszimmetria követelményének. A világ legunalmasabb elméletéből egy csapásra kibomlik a teljes spektrum: megjelenik a foton, a W, a Z és a gluon, és az is kiderül, hogy éppen ezek felelősek a részecskék között fellépő valamennyi kölcsönhatás közvetítéséért. Ezzel a különös módszerrel olyan elmélethez jutunk, amely alkalmas az atomok struktúrájának és a csillagok fényének a leírására, és végül, de nem utolsósorban még az olyan bonyolult létformákról is lényeges dolgokat mond el, mint az ember. Mindössze a szimmetria fogalmára támaszkodva megkapjuk a majdnem minden elméletének első két sorát. Már csak azt kéne tisztáznunk, mi lehet ez a varázslatos szimmetriafajta, no meg hogy mit tartalmaz a második két sor.
A hópelyhek geometriai szimmetriája látványként mutatkozik meg. A Galilei-féle relativitási elv hátterében lévő elvont szimmetriából már nem látni semmit, de nem nehéz megérteni a lényegét. A mértékszimmetria hasonlóan absztrakt, mint a Galilei-elvnek ez a formája, megértése pedig alaposan próbára teszi a képzelőerőt. Az eddigiekben a főegyenletből indultunk ki, majd az elbeszélő leírás és a háttérben lévő matematika között próbáltunk egyensúlyozni. Most is valami hasonló következik. Ahogy mondtuk, hogy az anyagi részecskéket a görög ψ szimbólum képviseli az egyenletben.
Ideje némiképp árnyalni ezt a kijelentést. A ψ-t mezőnek nevezik (gondoljunk az elektromágneses mezőre). Lehet elektronmező, egy u-kvark-mező, a Standard Modell bármelyik részecsketípusához tartozik ilyen mező. (Megfordítva, az egyes mezőtípusokhoz adott részecske tartozik. Például az elektromágneses mezőhöz rendelt részecske a foton.)
Ahol a mező egy adott értelemben a legintenzívebb, ott található meg a legnagyobb valószínűséggel a részecske. A mi mesénk elektronokról szól, de lényegében hasonló forgatókönyv szerint viselkednek a többiek is, a kvarkoktól a neutrínókig. Ahol a mező intenzitása nulla, ott hiába keressük a részecskét, azon a helyen nem található. Ha erről a mezőről egy zöld rét jut az Olvasó eszébe, az nem is olyan nagy baj. Talán annyival érdemes kiegészíteni, hogy ez a terep most lankás, nem pedig sík. Az intenzitása pedig a domborzatnak megfelelően változik, nő vagy csökken. Mi köze van egy ilyen békés tájnak az elektronhoz? Nos, a főegyenlet nem kötelezi el magát: nem bizonyosságról beszél, nem követi nyomon az elektront. Csak annyit állít, hogy nagyobb eséllyel lelhetünk rá itt (a dombtetőn), és kisebbel ott (lent a völgyben). Számok mutatják, mekkora valószínűséggel lesz az elektron itt vagy ott, ez minden, amit mondhatunk. Az az oka ennek a bizonytalanságnak, hogy ha az elgondolható legkisebb léptékben vizsgálódunk, akkor a kvantumelmélet veszi át a kormányrudat, amely csak a dolgok bekövetkezésének a valószínűségéről beszél. Úgy tűnik, hogy kicsiny távolságok esetén a bizonytalanság mintegy be van építve az olyan fogalmakba, mint a hely és a lendület. Amúgy Einsteinnek nem nagyon tetszett, hogy a világ a valószínűség-számítás törvényei szerint működik, ez vezetett híres kijelentéséhez, hogy „Isten nem kockajátékos”. Ezzel együtt tudomásul kellett ven—
nie a kvantumelmélet meggyőző sikereit. Ez az elmélet megmagyarázza az atomok belső szerkezetét vizsgáló összes kísérlet eredmények, nélküle például semmit sem tudnánk arról, hogyan működnek a mikrocsipek a modern számítógépekben. Lehet, hogy egyszer majd előáll valaki egy átfogóbb elmélettel, de jelenleg a kvantumelméletnél nincs jobb. Ebben a könyvben már több alkalommal felhívtuk a figyelmet: semmi nem kényszeríti a természetet, hogy a mi józan eszünket kövesse, különösen olyankor, ha a hétköznapi tapasztalatokon kívül eső területekre merészkedünk. Az evolúció során nem a kvantummechanika törvényeihez kellett alkalmazkodnunk, hanem a makrovilág mechanikájához.
A mi mérkőzésünk viszont olyan pályán folyik, ahol a kvantumelmélet diktálja a szabályokat, így aztán kénytelenek vagyunk elektronmezőkről beszélni. Legyen tehát rét és domborzat, de ez még nem elég: az állóképet mozgásba kell hozni. Ehhez újabb eszközre van szükség. A háttérben lévő matematika szerint nem csak a mező értékét kell ismernünk a domborzat minden pontjában, legyen az hegy vagy völgy (erre az értékre nyugodtan gondolhatnak tengerszint feletti magasságként), mint annak a valószínűségét, hogy a részecske éppen az adott pontban található. Ezenkívül szükség van még egy mennyiségre, amit a mező „fázisának” neveznek. Képzeljen el egy órát, amelyen csak egyetlen mutató van. Ha ez 12 órán áll, az egy lehetséges fázis, ha 6 órán, az egy másik. Úgy kell elgondolnunk a dolgot, mintha a rét minden egyes pontjában volna egy-egy ilyen apró számlap, amely a mező fázisát mutatja ebben a pontban. Ezek nem valódi órák (és persze nem is az időt mérik). A kvantumfizikusok már jóval Glashow, Weinberg és Salam fellépése előtt tisztában voltak a fázis létezésével. Azt is tudták, hogy a fázisnak nem a tényleges értéke a fontos, hanem a mező különböző pontjai közötti fáziseltérések. Semmi sem változik, ha például az összes apró órát tíz perccel előbbre állítjuk. Az a lényeg, hogy az összes órát ugyanannyival kell átállítani. (Egy másik hasonlatban egy rádióhullám fázisára is hivatkozhatnánk, amelyet a mezőn sétálva zsebrádióval fogni is lehetne. Ha ennek a hullámnak a fázisát helyről helyre (azaz lokálisan!) másképp állítanánk be, hangzavar keletkezne.)
Ha egyikükről megfeledkezünk, akkor már egy másik elektronmező leírását kapjuk. Úgy tűnik tehát, hogy van valamelyes önkényesség a világ matematikai leírásában.
Ugorjunk vissza az időben, egészen 1954-ig, a brookhaveni laboratóriumba. Ekkor még híre-hamva sem volt Glashow, Weinberg és Salam Standard Modelljének. Az egyik szobában két fizikus, Chen Nin Yang és Róbert Mills azon töprengett, mi lehet a jelentősége annak, hogy a fázis önkényesen választható meg. A fizika gyakran lép előre úgy, hogy lényegében minden ok nélkül eljátszik a fogalmakkal, éppen úgy, ahogyan azt Yang és Mills tették. Eltűnődtek azon, mi történne, ha a természet nem törődne a fázissal, és megpróbálták végiggondolni ennek a következményit. Komoly tudósokról lévén szó ez különös időtöltésnek látszik, de higgyék el, ha összezárnak néhány fizikust azzal, hogy csinálják, amihez kedvük van, hamarosan ilyesmivel kezdenek foglalatoskodni. Visszatérve a domborzat hasonlathoz, minden további nélkül elgondolható, hogy a mezőn sétálva önök átállítgatják a kicsiny órákat, egyiküket így, a másikat úgy: összevissza, ahogy az eszükbe jut. Mi sülne ki ebből a garázdálkodásból? A dolog első látásra egyszerű: ellentmondásba kerülnének a természet egyik szimmetriájával.
A részletekhez vegyük szemügyre a főegyenlet második sorát és töröljük ki a W, B és G szimbólumokat tartalmazó részeket. Ami marad, az a legegyszerűbb világ
elmélete: ebben a világban a részecskék csak ücsörögnek, anélkül hogy kölcsönhatásba lépnének egymással. A főegyenletnek ez a szakasza bizonyosan megváltozik, ha fogjuk magunkat és átállítjuk az összes órát, mindegyiket ugyanannyival. (Nem várjuk el az Olvasótól, hogy az egyenletet nézegetve ezt átlássa.) Yang és Mills tudták ezt, de továbbgondolták a dolgokat. Feltettek egy remek kérdést: miféle változtatások eszközölhetők a „lebutított” egyenleten, hogy a fázistranszformáció után az mégis ugyanolyan maradjon? A válasz meghökkentő. Pontosan a főegyenletnek az imént kihúzott részeit kell visszatennünk, ez jó lesz, más lehetőség pedig nincsen. Ezzel életre keltjük a kölcsönhatások közvetítőit, és csenevész teóriánk életerős elméletté izmosodik, amelyik alkalmas lehet mindannak a tényleges leírására, ami van. Nos, éppen ezt nevezzük mértékszimmetriának, azt, hogy amíg azok összhangban vannak, a főegyenlet érzéketlen a számlapokon lévő értékekre. Mindebben az a rendkívül figyelemre méltó, hogy ha ezt megköveteljük, akkor nincs is választásunk: a mértékszimmetria elkerülhetetlenül vezet a főegyenlethez. Úgy is mondhatnánk, hogy azért léteznek a világunkat mozgásban tartó kölcsönhatások, mert a mértékszimmetria a természet egyik szimmetriája. Utóiratként még annyit, hogy amikor Yang és Mills belefogtak ebbe a vállalkozásba, akkor elsősorban a dolog matematikája érdekelte őket, még jóval azelőtt, hogy a fizikusok tudták volna, milyen részecskéket kellene az elméletnek leírnia. Glashow, Weinberg és Salam szellemi bátorsága kellett ahhoz, hogy a meglévő spekulációkat a valóságos világ leírására alkalmazzák.
Láttuk tehát, hogyan kapható meg a főegyenlet első két sora, amely a részecskefizika Standard Modelljének alapjául szolgál. Talán sikerült némi ízelítőt adnunk az értelméről és tartalmáról. Kiderült, hogy ez az egyenlet korántsem önkényes, a mértékszimmetriát követve szükségszerűen jutunk el hozzá.
Most, hogy egy kicsit megbarátkoztunk az egyenletek eme legfontosabbikával, visszatérhetünk az eredeti kérdéshez: milyen mértékben teszik lehetővé a természet törvényei, hogy az anyagot ténylegesen energiává lehessen alakítani, vagy éppen megfordítva. A dolog kulcsa most már a főegyenlet, hiszen, ahogy mondtuk, ez tartalmazza az összes játékszabályt. De vonzóbb módja is van annak, hogy lássuk, mi történik, és megértsük, hogyan lépnek egymással kölcsönhatásba a részecskék. Ezt a megközelítést Richard Feynman vezette be a fizikába; igen látványos és ezt szó szerint kell érteni: képekben beszél.
Mi történik, amikor két elektron közel kerül egymáshoz? Vagy két kvark? Vagy egy neutrínó és egy antimüon? A két részecske kölcsönhatásba lép, pontosan a főegyenletben meghatározott módon. A két elektron taszítja egymást, mert ugyanolyan elektromos töltéssel rendelkeznek, az elektron és az antielektron pedig vonzzák egymást, mert az elektromos töltésük ellentétes. Mindez ott van a főegyenlet első két sorában, és össze-


foglalható néhány szabályban, amelyeket le is rajzolhatunk.
Elvileg nagyon egyszerű a dolog, a részletek értelmezéséért viszont alaposan meg kell dolgozni. Mi megmaradunk az alapoknál.
Az egyenlet második sora szerint amikor a kvarkok az erős kölcsönhatáson keresztül lépnek interakcióba, akkor csak a két ψ és a G szimbólumot tartalmazó tag számít. Azt mondja erről a főegyenlet, hogy két kvark-mező és egy gluon a téridő egyazon pontjában lépnek kölcsönhatásba. Ennél több igaz: más lehetőségük nincs is erre. A főegyenletnek ez a részlete megmondja, hogyan hatnak egymásra a kvarkok és a gluonok, és ha egyszer letettük a garast az elmélet mértékszimmetriája
mellett, akkor minden pontosan elő van írva. Semmi beleszólásunk nincs a dologba. Feynman világosan látta, hogy az alapvető kölcsönhatások a lényegüket tekintve egyszerűek, és egy-egy rajzot készített minden egyes kölcsönhatásról, amely az elmélet szerint lehetséges. A 14. ábra azt mutatja, hogyan szokták lerajzolni a részecskefizikusok a kvark-gluon kölcsönhatást. A hullámvonal felel meg a gluonnak, az egyenes összekötés pedig egy kvarkot vagy antikvarkot ábrázol. A 15. ábrán felrajzoltuk a Standard Modellben megengedett összes további kölcsönhatást; ezek a főegyenlet első két sorából kaphatók meg. Ne aggódjanak a részletek miatt, a lényeg az, hogy minden információ elfér ezeken a rajzokon és hogy nincs belőlük túl sok. A fény részecskéinek (ezek a fotonok) a y szimbólum felel meg, a W és Z részecskéknek pedig a megfelelő betű. A hatféle kvarkot általánosan a q, a neutrínókat pedig a v (nü) szimbólum jelöli. Az elektromos töltéssel rendelkező leptonokat (hárman vannak, az elektron, a müon és a tau) közösen l betű jelöli, az antirészecskéket pedig a megfelelő fölülhúzott szimbólum. Most kezdődik a tánc! A részecskéket ábrázoló különböző típusú vonalaknak a találkozási pontjai az érintett részecskék lehetséges kölcsönhatásait jelenítik meg. Ezeket az ún. kölcsön-
hatási vertexeket nagyobb diagramokká lehet összefűzni és a lehetséges vertexekből álló diagramok egy-egy olyan folyamatot ábrázolnak, amely meg is valósulhat a természetben. Megfordítva, ha egy diagramot nem lehet így lerajzolni, akkor a megfelelő folyamat nem lehetséges.
Ezeket a diagramokat tehát Feynman vezette be, de ő ennél sokkal többet tett. Minden egyes vertexnek megfeleltetett egy matematikai szabályt, amely közvetlenül a főegyenletből vezethető le. Több szabály együttes alkalmazása egy összetett diagramként ábrázolható, amely lehetővé teszi, hogy a fizikusok kiszámítsák a megfelelő folyamat bekövetkezésének a valószínűségét. A 16(a) ábrán látható diagram két elektron találkozásának egy lehetséges forgatókönyve. Az epizódot úgy nevezik, hogy a két elektron egy fotont cserélve szóródik egymáson. Ez a diagram két elektron-foton vertex összefűzésével kapható meg. A dolgot el lehet képzelni úgy, hogy az elektronok balról belépnek, a fotoncsere hatására szóródnak egymáson, majd „jobbra el”. Valójában egy másik szabályt is becsempésztünk. Nevezetesen megengedett, hogy egy részecskét a megfelelő antirészecskére cseréljünk ki (és megfordítva). A 16(b) ábra egy másik lehetőséget ábrázol, ahogy két vertex összefűzhető. Kicsit komplikáltabb, mint az előző, de itt is két elektron egy lehetséges interakcióját látjuk. Az a helyzet, hogy az ilyen diagramok száma végtelen: mindegyikük egy lehetséges lefolyását ábrázolja annak, ahogy két elektron szóródik egymáson.
Szerencsénkre, akiknek ki kell számolniuk, hogy mi történik, a végtelen sok diagram közül némelyik fontosabb a többinél. Ez nem csoda: lényegében arról van szó, hogy azok a legfontosabb diagramok, amelyekben a legkevesebb vertex fordul elő. Így az elektronpárok esetében a 16(a) diagram a legfontosabb, mivel csak két vertexet tartalmaz. Viszonylag pontos képet kaphatunk a szóródás lefolyásáról, ha Feynman szabályait betartva kizárólag ezzel a diagrammal számolunk. Jó hír, hogy ebből a matematikából éppen az a fizika pottyan ki, ahogyan két elektromos töltéssel rendelkező részecske hat egymásra, ahogyan azt Faraday és Maxwell felfedezték annak idején. De most, amikor a mértékszimmetriából kiindulva vezetjük le a tényeket, elmondhatjuk, hogy közelebb jutottunk a jelenségek fizikai lényegéhez. Feynman szabályai alapján számolva sokkal többet kaphatunk a XIX. századi fizika egy újabb értelmezésénél. Már két elektron esetében is kiszámolhatjuk Maxwell eredményeinek a korrekcióit - apró javítások ezek, amelyek pontosabbá teszik az egyenleteket, és jobban megfelelnek a kísérleti adatoknak. A főegyenlet valóban új távlatokat nyit, ezeket itt éppen csak érintjük. Ami tény, hogy a Standard Modellből minden kiolvasható, amit arról tudunk, hogy a részecskék hogyan hatnak egymásra. Teljes leírását adja az erős, a gyenge és az elektromágneses kölcsönhatásnak, ráadásul kettőt
közülük sikeresen egyesít. Csupán a gravitációt nem sikerült bevonni ebbe a nagyratörő vállalkozásba, amelynek az a célja, hogy megértsük, hogy az univerzum szereplőt hogyan lépnek egymással kölcsönhatásba.
De ne térjünk el a tárgytól. Lássuk, mit mondanak a Standard Modell lényegét megjelenítő Feynman-féle szabályok arról, hogy miképpen tudjuk megsemmisíteni és így energiává alakítani a tömeget? Hogyan segítenek abban, hogy a lehető legjobb hatásfokkal aknázzuk ki az E = mc2 összefüggést? Idézzünk fel egy fontos tényt, még az 5. fejezetből: a fény tömeg nélküli részecskékből áll, a fotonoknak ugyanis nincs tömegük. A 17. ábrán egy érdekes diagram látható. Azt mutatja, ahogy egy elektron és egy antielektron találkozásakor mindketten megsemmisülnek és ennek során egy foton keletkezik (az egyértelműség kedvéért az elektront e~, a pozitront e+ jelöli). Ezt megengedik Feynman szabályai. Ez a különleges diagram olyan folyamatot ábrázol, amelynek anyagi részecskék a szereplői (egy elektron és egy pozitron rendelkezik némi tömeggel), és a színen végül nem marad semmi (csak egy foton). Ez a legkézenfekvőbb módja a tömeg megsemmisítésének, és ilyenkor az elektron és antielektron tömegébe zárt energia a foton energiájaként szabadul fel. Van azonban egy bökkenő. Létezik egy elv, amely szerint mindennek, ami bekövetkezik, ki kell elégítenie az energia és az impulzus megmaradásának a törvényét. A magányos fotont eredményező megsemmisülés folyamatára30 pedig ez az elv sérül.
30) Azokat a folyamatokat, melyekre nem teljesül az energia-és impulzusmegmaradás, virtuálisnak nevezik. Ezek önmagukban nem valósulhatnak meg, de lehetnek megvalósuló folyamatokat leíró gráfok részei. A Feynman-szabályok ezekre a virtuális részekre is érvényesek, ezért elég a szabályokat csak az elemi gráfokra megadni.
(Ez nem teljesen nyilvánvaló, és nem bajlódunk a bizonyításával.) Valójában ez nem igazi akadály: a 18. ábra Feynman-diagramján látható a megoldás. Ebben a változatban két foton keletkezik, a kezdeti tömeg ismét megsemmisül, és teljes egészében a két fotonban megtestesülő energiává alakul át. Az effajta folyamatoknak nagyon fontos szerepük volt a világegyetem történetének kezdeti szakaszában, amikor pusztán ilyen kölcsönhatások révén majdnem teljesen megsemmisítette egymást anyag és antianyag. Ennek a nyomai ma is észlelhetők. A csillagászok megfigyelték, hogy a világegyetem minden egyes anyagi részecskéjére körülbelül 100 milliárd foton esik. Más szavakkal: minden 100 milliárd anyagi részecskéből, amely az ősrobbanás után keletkezett, csak egyetlen élte túl a kezdeti rövid, de mozgalmas időszakot. Az elsöprő többség élt - jobban mondva halt - a Feyn-
man-diagramok ábrázolta lehetőséggel, megszabadult a tömegétől és fotonként folytatta.
A csillagokat, a bolygókat és az embereket alkotó anyag tehát csak elenyésző töredéke annak az irdatlan tömegmennyiségnek, amely a világegyetem korai története során semmisült meg. Szinte a csodával határos, hogy egyáltalán maradt valami; nekünk mindenesetre szerencsénk volt, hogy így alakult! A mai napig nem tudjuk, miért történt mindez. Jelenleg is nyitott kérdés, hogy „miért nem csak fény tölti ki a világegyetemet, és semmi más”, és kísérletek sokasága keresi a választ a világ minden részén. Ötletekben nincs hiány, de egyelőre még nem találtuk meg a döntő kísérleti bizonyítékot, sem pedig annak igazolását, hogy az eddigi magyarázatok mindegyike hibás volna. A politikai tevékenységéről is híressé vált orosz fizikus, Andrej Szaharov úttörő munkát végzett ezen a területen. Elsőként körvonalazott olyan kritériumokat, amelyeknek teljesülniük kell minden olyan sikeres elméletben, amely arca keresi a választ, hogy miért maradt egyáltalán anyag az ősrobbanás után.
A természetben tehát lehetséges a tömeg megsemmisítése, de földi körülmények között ez sajnos nem
igazán megy. Antianyagot kellene hozzá létrehoznunk és tárolnunk is. Tudomásunk szerint sehol nem bányásszák, és a világűrben sincsenek belőle nagyobb készletek. Elég reménytelen üzemanyagforrásnak tűnik, lévén abszolút hiánycikk. Létrehozható ugyan a földi laboratóriumokban, de csak irdatlan energiabefektetés árán. Így aztán hiába jelentené a tömeg-energia átalakulás legjobb módját az anyag-antianyag kombináció, nem sokra megyünk vele, ha meg akarjuk oldani az energiaválságot.
Mi a helyzet a fúzióval, amely a Napot fűti? Hogyan írható le a Standard Modell nyelvén? A dolog nyitja a W részecskét tartalmazó Feynman-vertex. A 19. ábrán láthatjuk, amint két proton fúziója nyomán egy deuteron jön létre. Emlékeztetőül: egy proton lényegében két u-kvarkból és egy d-kvarkból áll. A deuteronhoz egy proton és egy neutron kell, a neutront pedig szintén három kvark alkotja: egy u-kvark mellett két d-kvark. A diagramról kiderül, hogyan változhat át neutronná az egyik proton: láthatóan a W részecske a kulcsszereplő. A proton belsejében az egyik u-kvark egy W részecskét bocsát ki, ezzel d-kvark lesz belőle, a protonból pedig neutron. A diagram tanulsága szerint a W részecske eltűnik a színről: átalakul egy antielektronná és egy neutrínóvá. A deuteron létrejöttekor kibocsátott W részecskéknek tehát nyoma vész; ezeket a részecskéket valójában még soha senki nem látta, csak a maradványaival lehet találkozni, amivé rövid életútjuk végén átváltoznak. Az elemi részecskék nagyobb része szükségképpen elbomlik, mert majdnem mindig van egy Feynman-vertex, amely szerint ez a bomlás megvalósulhat. A kivételes esetek azok, amikor a folyamat során
nem maradna meg az energia vagy az impulzus; ezért olyan hosszú életűek a könnyű részecskék. Túlnyomórészt ilyenek népesítik be a világegyetemet: protonok, elektronok és fotonok. Egyszerűen nincs mivé bomlaniuk: az u-és a d-kvarkok a legkönnyebb kvarkok, az elektron a legkönnyebb, töltéssel rendelkező lepton, a fotonnak pedig egyáltalán nincs tömege. A müon például majdnem azonos az elektronnal, csak valamivel nehezebb. Már találkoztunk vele a brookhaveni kísérletben. Tömegbe zárt energiája nagyobb, mint az elektroné, így aztán ha elektronná bomlik, akkor nem sérül az energia megmaradása. A 20. ábrán látható, hogy Feynman szabályai meg is engedik ezt a bomlást, és mivel közben egy neutrínópár is felszabadul, az impulzus megmaradásával sincs gond. A müonok ténylegesen elbomlanak, mégpedig átlagosan mindössze 2,2 mikroszekundum elteltével. Mellesleg ez a 2,2 mikroszekundum nagyon hosszú a legfontosabb részecskefizikai folyamatok időskáláján. Ezzel szemben a Standard Modell legkönnyebb részecskéjének, az elektronnak egyszerűn nincs mivé bomlania. Legjobb tudomásunk szerint a magányos elektron egyben is marad. Egyetlen módon semmisülhet meg, akkor, ha összetalálkozik antianyag párjával.
Visszatérve a deuteronra: a 19. ábra mutatja, hogyan jöhet létre, amikor két proton összeütközik. Az is kiolvasható, hogy egy-egy ilyen fúziós esemény során egy antielektronra (pozitronra) és egy neutrínóra is számíthatunk. Említettük már, hogy a neutrínók alig kerülnek kapcsolatba a világegyetem részecskéivel. A főegyenletből ez ki is derül: ok az egyedüli részecskék, amelyek kizárólag a gyenge kölcsönhatáson keresztül lépnek interakcióba. Ezért szabadulnak ki olyan könnyedén a Nap mélyében keletkező neutrínók. Kis részük a Föld felé indul, de persze akárcsak a Nap, a Föld is szinte teljesen átlátszó a számukra, úgy hatolnak át rajta, mintha ott sem lenne. Ezzel együtt minden egyes neutrínónak van egy icipici esélye arra, hogy kölcsönhatásba lépjen a Föld valamelyik atomjával, és ahogy azt korábban elmondtuk, az olyan kísérletekben, mint például a Super-Kamiokande, sikerült is észlelni őket.
Mennyire bízhatunk meg a Standard Modellben, vagy legalábbis abban, hogy a jelenleg elérhető kísérleti pontosságon belül helytálló? Sok éven keresztül vetették alá a legszigorúbb próbáknak a világ különböző laboratóriumaiban. Attól nem kell tartanunk, hogy a tudósok részrehajlóak volnának szeretett elméletük iránt: a kísérleti fizikusok sikerként könyvelnék el, ha kiderülne, hogy a modell hibás vagy valamilyen módon hiányos, és ennek megfelelő elszántsággal eredtek a lehetséges cáfolatok nyomába. Olyan fizikai folyamatokat keresnek, amelyek új távlatokat nyithatnának meg a világegyetem belső működése felé. A Standard Modell azonban egyelőre minden próbát kiállt.
A legújabb berendezés, amellyel az elméletet tesztelik, a Nagy Hadronütköztető (Large Hadron Collider, LHC) a CERN-ben. Ennek a tudósok közti világszintű együttműködésnek az a célja, hogy megerősítse vagy
megcáfolja a Standard Modellt; az LHC-re rövidesen visszatérünk. Az LHC elődje a Nagy Elektron-Pozitron Ütköztető (Large Electron Positron Collider, LEP) volt, amelyben az elgondolható legrafináltabb kísérletek sokaságát végezték el sikeresen. A LEP-nek egy 27 kilométer hosszú kör alakú alagút adott otthont. Genf és néhány festői szépségű francia falu alatt a föld mélyében tizenegy éven át, 1989-től 2000-ig vizsgálták a Standard Modell világát. Hatalmas elektromos mezők gyorsították fel az elektronok nyalábjait az egyik irányban, a pozitronokét pedig velük szemben. A töltéssel rendelkező részecskék elektromos mezővel történő gyorsítása lényegében ahhoz hasonló, ahogyan elektronokkal bombázták a régi típusú katódsugárcsöves televíziók képernyőit a kép létrehozásához. Az elektronok a készülék hátsó falának közeléből indulnak és elektromos mező gyorsítja Őket a képernyő felé: a régebbi tévék ezért ilyen nagyok. Az elektronnyaláb egy mágnes révén elhajlik és végigpásztázza a képernyőt: így jön létre a kép.
A LEP-ben is mágneses mezőket használtak, de itt kör alakú pályára kényszerítették a részecskéket, amelyek követték az alagút ívét. A vállalkozás egyetlen célja az volt, hogy a két részecskenyaláb találkozzék és frontálisan ütközzön. Már láttuk, hogy egy elektron és egy pozitron ütközése mindkettejük számára végzetes lehet, miközben a tömegük energiává alakul. A LEP fizikusait ez érdekelte a legjobban, mert ez az energia Feynman szabályainak megfelelően nehezebb részecskékké változhat át. A berendezés működésének első szakaszában az elektron és a pozitron energiáját nagyon pontosan behangolták arra az értékre, amely nagyban megnövelte a Z részecske keletkezésének az esélyét. (Javasoljuk az Olvasónak, hogy lapozzon vissza Feynman szabályainak listájához, és ellenőrizze, hogy az elektron-pozitron annihilációja egy Z részecskévé megengedett.)
A Z részecske nagyon nehéz a többihez viszonyítva: majdnem 100-szor nehezebb a protonnál és majdnem 200 000'Szer az elektronnál és a pozitronnál. Emiatt aztán az elektront és a pozitront kis híján a fény sebességére kell felgyorsítani ahhoz, hogy elegendő energiával rendelkezzenek a 2 részecske létrehozásához. Az az energia ugyanis, amennyit a tömegük képvisel és amely az annihiláció során felszabadul, messze nem elegendő ahhoz, hogy Z részecske keletkezzen.
A LEP eredeti célja világos volt: elektronok és pozitronok ismételt ütköztetésével Z részecskéket akartak létrehozni, lehetőleg minél többet. A részecskenyalábok minden egyes ütközésekor elegendő esély volt arra, hogy az egyik nyaláb egy elektronját elnyelje a másik nyaláb egy pozitronja, és létrejöjjön egy Z részecske. Működése során a LEP-ben több mint 20 millió Z részecskét sikerült előállítani az elektron-pozitron annihiláció során.
A Standard Modell nehéz részecskéihez hasonlóan a Z részecske sem stabil, mindössze 10-25 másodpercig létezik. A 21. ábra bemutatja a lehetséges Z részecske folyamatokat, amelyek rendkívüli módon érdekelték a LEP körül dolgozó körülbelül 1500 fizikust, nem beszélve több ezer kollégájukról, akik világszerte izgatot—
tan várták az eredményeket. Óriást detektorokkal vették körül azt a területet, ahol az elektron és a pozitron találkozott és kölcsönösen megsemmisítette egymást, hogy észlelhessék és azonosíthassák, mi történik a Z-bomlás után. A modem részecskefizika detektorai, amilyeneket a LEP-ben használtak, nagyra nőtt, több méter széles és több méter magas digitális fényképezőgépekhez hasonlíthatók, amelyek nyomon tudják követni a rajtuk áthaladó részecskéket. Ezek, akárcsak maguk a részecskegyorsítók, a modern mérnöki tudomány csodái. Hihetetlen pontossággal képesek megmérni egyetlen szubatomi részecske energiáját és lendületét, akkora barlangokban, amelyek mérete katedrálisokéval vetekszik. Ezek a berendezések mérnöki lehetőségeink valódi határát jelentik, és nagyszabású emlékművei a világegyetem működésének felderítésére irányuló közös vágyunknak.
Ezekkel a detektorokkal és nagy teljesítményű számítógépek arzenáljával felfegyverkezve a kutatásban részt vevő tudósok egyik fő célja meglehetősen egyszerűen hangzott: át kellett fésülniük az adatokat, hogy azonosítsák azokat az ütközéseket, amelyek során egy Z részecske keletkezett, aztán pedig minden ilyen ütközésnél meg kellett fejteniük, hogy ez a részecske hogyan bomlott el. Egy-egy ilyen bomlás során olykor egy elektron-pozitron pár keletkezik, máskor egy kvark és egy antikvark, vagy egy müon és egy antimüon (nézzék meg újra a 21. ábrát). A tudósok statisztikát készítettek arról, hogy a Z részecske hányszor bomlott el a Standard Modellben megjósolt különféle lehetséges módokon, és összevetették az eredményt az elmélet által jósolt várható értékekkel. A rendelkezésre álló több mint 20 millió Z részecske révén igen alaposan tesztelhették a Standard Modellt, és az eredmények szerint az elmélet gyönyörűen működött. Ezt a feladatot a parciális szélessé-
gek mérésének nevezik, és a LEP-ben elvégzett vizsgálatok közül ez volt a Standard Modell egyik legfontosabb próbája. Idővel számos egyéb tesztre is sor került, és minden alkalommal úgy találták, hogy a Standard Modell helytálló. Amikor végül 2000-ben leállították a berendezést, a kapott adatok lehetővé tették, hogy 0,1 százalékos pontossággal tesztelhessék a Standard Modellt.
Mielőtt elhagynánk ezt a területet, nem tudjuk megállni, hogy ne beszéljünk egy másfajta kísérletsorozatról. Az elektronok (más elemi részecskékkel együtt) apró mágnesekként viselkednek, és néhány nagyon szép kísérletben sikerült megmérni ezeket a mágneses hatásokat. Ezekben nem volt ütköztetés, nem került sor anyag és antianyag drámai találkozására. Rendkívül leleményes kísérletek során a tudósoknak sikerült egy-trilliomod pontosságú méréseket végezniük. Ez egészen elképesztő, olyan, mintha valaki hajszálnyinál kisebb hibával mérné meg a London és New York közti távolságot. Eközben az elméleti fizikusok sem tétlenkedtek, hanem ugyanolyan pontossággal számolták ki, mi várható, mint amilyen precízen a kísérletezők mértek. Csodák csodája: az eredmények lényegében megegyeztek. Az ilyen számításokhoz régen csak egy toll kellett, no meg némi papír, manapság viszont az elméleti fizikusoknak is szükségük van a jó számítógépekre.
Mindez, és persze a tiszta fej elegendőnek bizonyult, hogy a szakértők kiszámolják a Standard Modell következményeit, és amit kaptak, az összhangban volt a kísérleti eredményekkel. Jelen sorok írásakor az elméleti eredmények és a kísérleti adatok százmilliomod pontossággal megegyeznek. Ez egyike a legpontosabb méréseknek, amelyet a tudományok története során valaha is elvégeztek. Mostanra, nem kis mértékben a LEP és az elektronmágnesességre vonatkozó kísérleteiknek köszönhetően meglehetősen biztosak vagyunk benne, hogy a részecskefizika Standard Modelljében gondolkodva jó úton járunk. Majdnem mindent magában foglaló elméletünk köszöni szépen, jól van - kivéve egy apró részletet. Ez a részlet persze nem is olyan apró és valójában igen fontos. Miről szól a főegyenlet utolsó két sora?
Nem egészen tiszta a lelkiismeretünk, egy nagyon fontos tényt ugyanis elhallgattunk. Pedig olyasmiről van szó, ami központi szerepet játszik ebben a mi vállalkozásunkban. Ideje tiszta vizet önteni a pohárba. A mértékszimmetriáról eddig nem mondtuk el, de látszólag megköveteli, hogy a Standard Modell részecskéi ne rendelkezzenek tömeggel, ez pedig nyilvánvalóan képtelenség. A dolgoknak van tömegük, és semmi szükség komplikált tudományos kísérletekre ahhoz, hogy ezt mindenki lássa. Az eddigiek során lépten-nyomon emlegettük a tömeget, hogy mást ne mondjunk, levezettük a fizika leghíresebb egyenletét, az E = mc2 összefüggést, amelyik nagyon is tartalmazza az „m” szimbólumot. A főegyenlet utolsó két sora éppen ezt a problémát orvosolja. Ennek a két sornak az értelmezése utazásunk végét jelenti, ezzel ugyanis megkapjuk a magyarázatot a tömeg eredetére.
Magát a problémát nagyon egyszerű megfogalmazni. Ha közvetlenül akarjuk beiktatni a tömeget a főegyenletbe, akkor elkerülhetetlenül tönkremegy az egyenlet mértékszimmetriája, amely pedig központi szerepet játszik az elméletben. Erre támaszkodva tudtuk néven nevezni és rendszerbe foglalni a természetben fellépő erőhatásokat. Ez még nem volna tragédia, csak annyit jelentene, hogy ez az út mégsem járható; az elméleti fizikusok viszont a hetvenes években kimutatták, hogy a mértékszimmetria elvetése azért sem jöhet szóba, mert nélküle az elmélet darabjaira hullik és értelmetlenné válik. Ezt a látszólagos patthelyzetet három tudóscsoport oldotta meg egymástól függetlenül 1964-ben. Fran-gois Englert és Róbert Brouc Belgiumban, Gerlad Guralnik, Carl Hagen és Tom Kibble Londonban, illetve Peter Higgs Edinburghban nagyon fontos cikkeket publikáltak, amelyek a később Higgs-mechanizmusnak nevezett elmélethez vezettek.
Hogyan számolhatunk el tehát a tömeg létezésével? Az immár szokásos módszerünket követve próbáljunk elgondolni egy olyan elméletet, amelyből hiányzik a tömeg fogalma. Nemcsak a szó, hanem az is, amit jelent. Már láttuk, hogy ilyenkor minden mozgás a fény sebességével zajlik. Hogyan lehetne egy ilyen elmélet keretein belül megmagyarázni, hogy valaminek a hatására bizonyos részecskék elkezdenek különböző sebességgel, lassabban mozogni, amely minden kétséget kizáróan többé már nem a fény sebessége. Okkal mondhatnánk, hogy az a bizonyos hatás felelős a tömeg eredetéért. Ez a „bizonyos hatás” a Higgs-mechanizmus, és ideje valamit mondani arról, hogy mi is ez.
Képzeljük el, hogy be van kötve a szemünk és egy madzagot fogunk, amelynek a másik végéhez egy pingponglabda van erősítve. A madzagot ráncigálva érzékeljük, hogy a túlsó végén valami nem túl nehéz dolog van. Most képzeljük el, hogy a pingponglabda nem szabadon pattog, hanem sűrű juharszirupba merül. Ha most rántjuk meg a madzagot, több ellenállást tapasztalunk, és logikusan feltételezhetjük, hogy ezúttal valami nehezebb dolog került a madzag végére. A labda most azért tűnik nehezebbnek, mert akadályozza a szirup. Most képzeljünk el egy kozmikus juharszirupot, ami kitölti a teret, annak minden zugát. Mindenütt jelenvaló, így aztán nincs is róla tudomásunk. Bizonyos értelemben díszletet biztosít mindahhoz, ami van.
A szirup-hasonlatnak természetesen megvannak a maga korlátai. Ennek a szirupnak igen válogatósnak kell lennie, a kvarkokat és leptonokat ugyanis visszatartja, miközben a fotonoknak zavartalan áthaladást biztosít. A hasonlatot persze kiterjeszthetjük úgy, hogy az ezt a jelenséget is magában foglalja, de úgy gondoljuk, hogy a lényeget elmondtuk, és nem szabad elfelejtenünk, hogy végtére is csak egy hasonlatról van szó. Higgs és társai cikkeiben nincs szó semmiféle szirupról.
Amiről ők írnak, azt ma Higgs-mezőnek nevezzük. Az elektronmezőhöz hasonlóan a Higgs-mező is egy részecskéhez tartozik: a neve Higgs-részecske. Akár az elektronmező, ez is változik, és ahol intenzívebb, ott nagyobb valószínűséggel találjuk meg a Higgs-részecskét. Van azonban egy nagy különbség: a Higgs-mező még akkor sem válik nullává, ha nincs a közelben Higgs-részecske, és ilyen értelemben hat át mindent ez a szirup. A Standard Modell összes részecskéje a Higgs-mező színpadán éli az életét, és a mező bizonyosakra jobban hat, mint másokra. A főegyenlet utolsó két sora éppen ennek a fizikáját fogja meg. A Higgs-mezőt a φ szimbólum képviseli, és a harmadik sorban azok a szakaszok jelentik azokat a tagokat, amelyek létrehozzák a W és Z részecskék tömegét, amelyek tartalmazzák a φ két példányát a B vagy W betűkkel (amelyek tömör jelöléseinkkel a főegyenlet harmadik sorának D szimbólumában vannak elrejtve). Sikerült az egészet úgy elrendezni, hogy a foton tömeg nélkül maradjon (a foton B-be, illetve W-be eső része a harmadik sorban kiejtik egymást, mindez a D szimbólumban van elrejtve), és mivel a gluon mező (G) nem jelenik meg, a gluonnak sincsen tömege. Mindez teljes összhangban van a kísérleti eredményekkel. A Higgs-mező beiktatása révén tömeghez jutnak a részecskék, és mindezt anélkül, hogy sérülne a mértékszimmetria. A tömeget a háttérben lévő Higgs-mezővel való kölcsönhatás hozza létre. Ez a tüneményes ebben az elméletben: megoldja a tömeg
problémáját a mércékszimmetria feladása nélkül. A főegyenlet negyedik sora az, ahol a Higgs-mező a Standard Modell többi anyagi részecskéjének a tömegét generálja.
Ebben a fantasztikus vízióban van a2ért egy bökkenő: Higgs-részecskét még soha senki nem látott. A Standard Modell összes többi szereplőjét észlelték és azonosították a kísérletek során, a Higgs a teljes puzzle egyetlen hiányzó darabja. Ha a jóslatnak megfelelően valóban létezik, akkor a Standard Modell ismét fényes diadalt arat, és a tömeg eredetének magyarázatát is hozzáveheti sikereinek már eddig is imponáló listájához. A többi részecskék interakcióihoz hasonlóan a Standard Modell pontosan megadja, hogyan kell megjelennie a Higgs-részecskének a kísérletekben. Az egyetlen, ami nem derül ki az elméletből, hogy milyen nehéz, bár annyit elmond, hogy a Higgs-tömegnek egy meghatározott tartományba kell esnie, most, hogy már ismerjük a W részecske és az u-kvark tömegét. Ha a Higgs-részecske tömege a jósolt tartomány alsó részébe esne, akkor a LEP-ben már észlelni lehetett volna. Mivel eddig még nem mutatkozott, feltételezhetjük, hogy túl nehéz ahhoz, hogy a LEP-ben létre lehessen hozni. (Ne feledjük, az E = mcl összefüggés miatt a nehezebb részecskék előállításához több energia kell.) A könyv írásakor a Chicago közelében lévő Fermilabban (Fermi National Accelerator Laboratory) vadásznak a Higgs-részecskére, de eddig még nem látták nyomát. Megint csak lehetséges, hogy a Tevatron32 sem képes elegendő energiát szolgáltatni a Higgs egyértelmű kimutatásához, bár nagyon jók az esélyei. Az LHC pedig a legnagyobb energiájú berendezés, amelyet valaha építettek. Elegendő energiával rendelkezik ahhoz, hogy bőven átlépje a
32 A Fermilab gyorsítójáé hívják így. (A lektor.)
Standard Modellben meghatározott felső korlátokat és így jogosan várható, hogy egyszer s mindenkorra eldöntse a Higgs létezésének kérdését. Más szavakkal, az LHC vagy megerősíti a Standard Modellt, vagy pedig meg fogja cáfolni. Hamarosan visszatérünk arra, hogy miért bízhatunk abban, hogy az LHC elvégzi majd, amire a korábbi berendezések nem voltak képesek, de először arról mondjunk valamit, hogy az LHC várhatóan milyen módon állítja majd elő a Higgs-részecskéket.
Az LHC ugyanabban a 27 kilométer kerületű alagútban épült meg, amelyik egykor otthont adott a LEP-nek, de az alagúton kívül minden más megváltozott. Vadonatúj gyorsító került a régi helyére. A berendezés az alagútban egymással szemben haladó protonokat gyorsít fel a tömegükbe zárt energiának több mint 7000-szeresére. Ilyen energiák mellett a protonok ütköztetése új korszakot nyit a részecskefizikában, és ha a Standard Modell valóban helyes, akkor nagyszámú Higgs-részecskére lehet számítani. A protonok kvarkokból épülnek fel, ezért ha meg akarjuk fejteni, mi zajlik az LHC-ben, akkor meg kell találnunk a megfelelő Feynman-diagramokat.
A Standard Modell hagyományos részecskéi és a Higgs-részecske közötti kölcsönhatásokhoz tartozó legfontosabb vertexek a 22. ábrán láthatók. Ezen pontozott vonal jelzi a Higgs-részecskét, amint kölcsönhatásba lép a legnehezebb, t-vel jelölt topkvarkkal, és az ugyancsak igen nehéz W vagy Z részecskékkel. Talán nem meglepő, hogy a tömeg eredetéért felelős részecske szívesebben lép kölcsönhatásba a közelében felbukkanó legnehezebb részecskékkel. Tudva, hogy a protonok a kvarkok bőséges forrását jelentik, azt kéne kiderítenünk, hogyan lehetne a Higgs-vertexet beágyazni egy nagyobb Feynman-diagramba. Ez jelentené a Higgs-részecskék előállításának a kulcsát az LHC-ben. Mivel a kvarkok kölcsönhatásba lépnek a W (vagy Z) bozonokkal, ezért kínálkozik, hogyan lehetne Higgs-részecskét létrehozni W (vagy Z) részecskéken keresztül. Az eredmény a 23. ábrán látható: a két ütköző, p-vel jelölt proton egy-egy kvarkja kibocsát egy W (vagy Z) részecskét, és ezek olvadnak össze Higgs-részecskévé. A folyamat neve gyenge bozonfúzió, és várhatóan ez lesz az LHC-ben zajló események kulcsa.
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A folyamathoz szükséges topkvarkok létrehozásának mechanizmusa valamivel trükkösebb. A proton nem tartalmaz topkvarkokat, hozzájuk a könnyű u-, illetve d-kvarkoktól kell valahogyan eljutnunk. Nos, a topkvarkok a könnyebb kvarkokkal az erős - azaz egy gluon elnyelésével vagy kibocsátásával közvetített - kölcsönhatáson keresztül lépnek interakcióba. Ez a 24-ábrán látható. A dolog nagyon hasonlít a gyenge bozonfúzióhoz,

azzal a különbséggel, hogy a W vagy Z részecske szerepét a gluon veszi át. Mivel ez a folyamat az erős kölcsönhatáson keresztül zajlik le, ez a legesélyesebb módja a Higgs-részecskék előállításának az LHC-ben. A neve gluonfúzió.
Ez a narratíva tehát a Higgs-mechanizmus, a jelenleg legszélesebb körben elfogadott elméleti magyarázat a tömeg eredetére a világegyetemben. Ha minden a tervek szerint halad, az LHC vagy megerősíti a Standard Modell leírását a tömeg eredetéről, vagy hibát talál. Ez a kilátás teszi olyan izgalmassá a fizika elkövetkező éveit. Határmezsgyén vagyunk: van egy elméletünk, amelyik pontosan megjósolja, minek kell történnie egy kísérletben, így diadala vagy bukása a kísérlet kimenetelétől függ. De mi van akkor, ha a Standard Modell hibásnak bizonyul? Nem történhet valami teljesen más és váratlan dolog? Talán mégis a Standard Modellel van a baj és a Higgs-részecske nem is létezik? Nem vitás, hogy ez valóságos lehetőség. A részecskefizikusok azért különösen izgatottak, mert az LHC mindenképpen felfed valami újat. Nem lehet másként, mert az itt elérhető energiaszinten a Higgs-részecskétől megfosztott Standard Modell egyszerűen szétesik, a jóslatai értelmezhetetlenné válnak. Az LHC az első berendezés, amely benyomul erre az ismeretlen területre. Ismeretlen, mert amikor két W részecske a proton tömegbe zárt energiáját több mint 1000-szeresen meghaladó energiával ütközik, amint az egész biztosan megtörténik majd, akkor már nem tudjuk előre kiszámolni, mi történik, ha kihajítjuk a főegyenlet Higgs-részecskével kapcsolatos részeit. Ha a Higgs ott van az egyenletben, akkor ezek a számítások elvégezhetők, de más mód is van a W szóródási folyamat magyarázatára - nem a Higgs az egyetlen lehetőség. Bármit is választ a természet, az LHC elkerülhetetlenül valami olyasmit mér majd, ami soha nem látott fizikát tartogat a számunkra. Nem túl gyakran fordul elő a tudományban, hogy egy kísérlet eredményére várva a tudósok ennyire bizonyosak lehetnek abban, hogy új, izgalmas dolgokra derül fény, és ez teszi az LHC-t az elmúlt soksok év legnagyobb érdeklődéssel várt kísérletévé.
8. GÖRBÜLT TÉRIDŐ
A téridőt az eddigiek során változatlannak tekintettük: mindenkor és mindenütt ugyanolyan. Ez az a bizonyos színpad, ahol a dolgok, immár négy dimenzióban, megtörténnek. Kiderült, hogy van geometriája és ez a geometria minden bizonnyal nem az Eukleidészé. Láthattuk, hogy miként vezet a téridő fogalma természetes módon az E = mc2 egyenlethez. Rámutattunk arra, hogy mai természetképünknek, de a modem ipari társadalomnak is ez a tömör formula, valamint az általa megjelenített fizika az alapja. A legvégére azért maradt egy csattanó: egyik utolsó kérdésünk, amelyet tulajdonképpen már csak kíváncsiságból teszünk föl, így hangzik: görbülhet-e a téridő, lehetséges-e, hogy az univerzumban nem mindenütt ugyanolyan a szerkezete.
Ebben nem a görbült tér fogalma az újdonság: a Minkowski-tér is görbült, Eukleidész világa pedig nem az. Az előbbire nézve ez lényegében azt jelenti, hogy itt nem érvényes Pitagorasz jól ismert tétele: szerepét a távolságformula negatív előjellel módosított változata veszi át. Tudjuk már, hogy a téridőbeli pontok távolsága lényegében a földi távolság megfelelője; egyik esetben sem a megszokott egyenes szakasz a legrövidebb, legyen szó akár két téridőbeli esemény, akár pedig egy közönséges térkép két pontjának a távolságáról. A Minkowski-téridő tehát nem euklideszi, de a Föld felülete sem az. A Minkowski-téridő bármely két pontja közti távolságra teljesül, hogy s2 = (ct)2 - x2 (emlékszünk,
ugye?), ez pedig azt jelenti, hogy a görbülete mindenütt ugyanakkora.53
(A kétdimenziós felület, a háromdimenziós tér és a négydimenziós téridő görbületére a matematika pontos képleteket ad, amelyek alapján a görbület kiszámítható, ha ismerjük a Pitagorasz-tétel megfelelő matematikai alakját. Amikor a képletben a koordinátakülönbségek négyzetei valamilyen állandókkal vannak megszorozva, akkor a görbületre mindig nullát kapunk, akármilyen előjelűek is ezek a konstansok. Ezért az euklideszi sík, az euklideszi tér és a Minkowski-téridő görbülete egyaránt nulla: mind a három sokaság görbületien (lapos). A szerzőknek az az állítása, hogy a Minkowski-téridő görbült, téves és ugyanakkor érthetetlen is, mert a későbbiekben ebben a fejezetben helyesbítik a saját addigi szóhasználatukat.)
Szemmel láthatóan a Föld felületének is megvan ez a tulajdonsága. Van-e egyáltalán olyan felület, amelynek pontról pontra változik a görbülete? Milyen volna a téridő, ha ezt is megengednénk, és milyen következményekkel járna egy ilyen lehetőség az órákra, a mérőrudakra és egyáltalán, a fizika törvényeire nézve? Hogy erről a meglehetősen ködösen hangzó elképzelésről mondhassunk valamit, ajánlatos kézzelfoghatóbb környezetben szemügyre venni: a négy dimenzió alaposan próbára teszi a képzeletet; átmenetileg térjünk vissza a Föld felszínének megszokott két dimenzójába.
Egy közönséges labda mindenhonnan ugyanúgy gömbölyű - csak rá kell nézni. Egy barázdált golflabda már nem ilyen, és valójában a Föld sem tökéletes gömb. Közelebbről nézve kiderül, hogy a tengerek és óceánok hatalmas, sima tükrei által közrefogott szárazföldeket hegyek és völgyek tagolják. Így aztán ha kizárólag a síkbeli térképek távolságformulája szerint számolunk, akkor két pont távolságára általában csak közelítő eredmény adódik. Egy túra útvonalának megtervezésekor számításba kell venni a domborzatot, a hegyeket és a völgyeket, különben alaposan alábecsülhetjük, mennyit is kell valójában gyalogolnunk. Lehet-e a téridő is
barázdált, akár egy golflabda, szabdalhatják-e hegyek és völgyek, valahogy úgy, ahogy a Föld felszínét? Változhat-e a görbülete egyik helyről a másikra?
Amikor megkaptuk a téridőbeli távolságformulát, úgy látszott, hogy annak kötött formája nem engedi meg a téridő effajta változékonyságát. Emlékeztetünk arra, hogy a távolságformula pontos alakját az okság elve kényszerítette ki. Mindeközben mi magunk választottuk okoskodásunk kiindulópontjául azt a nagyon erős feltevést, hogy a téridő, tehát annak görbülete is, mindenütt ugyanolyan. Ami azt illeti, ez rendkívül hasznosnak bizonyult és számos kísérleti bizonyíték támasztja alá; a mi gondolatmenetünkben is kulcsszerephez jutott, amikor levezettük az E = mc2 egyenletet. De talán nem voltunk elég körültekintőek. Talán lehetséges, hogy a téridő igenis változik, és hogy ennek még kísérletileg megfigyelhető következményei is lehetnek. Nos, erre a leghatározottabb igennel válaszolhatunk. Hogy megértsük, miért, még egy utolsó szellemi kaland erejéig Einstein nyomába kell szegődnünk. Neki tíz esztendő kemény munkája kellett ahhoz, hogy földerítse az általános relativitáselmélet tágas birodalmát.
Einstein egy igen egyszerű kérdés nyomán jutott el a speciális relativitáselmélethez: mivel jár, ha minden megfigyelő ugyanakkorának észleli a fény sebességét? Sokkal szövevényesebb út vezetett az általános relativitáshoz, de ezúttal is úgy kezdődött a dolog, hogy Einstein eltöprengett egy hasonlóan egyszerű jelenségen. Olyan módon csodálkozott rá, hogy aztán nem is hagyta annyiban a dolgot, amíg át nem látta a valódi jelentőségét. Ez az egyszerű jelenség a következő: a hulló testek egyforma gyorsulással esnek lefelé. Ennyi az egész. Közismert fizikai tény, így, ahogy van. Ahhoz a gyanúhoz kellett egy Einstein kaliberű gondolkodó, hogy ennek a fizikai közhelynek a hátterében mély kapcsolatok rejtőzhetnek.
Ami a közismert fizikai tényt illeti, az volt már sok évvel Einstein színre lépése előtt is. A fölfedezését Galileinek tulajdonítja a tudománytörténet. A hagyomány szerint fölkapaszkodott a pisai ferde torony legtetejére, innen leejtett két különböző tömegű golyót és azt találta, hogy azok egyszerre érnek földet. Hogy valóban lezajlott-e ez a kísérlet, annak nincs igazán jelentősége; az a fontos, hogy helyesen jósolta meg a végeredményt. Nem árt tudni, hogy a kísérletre igenis sor került, ha nem Pisában, akkor a Holdon bizonyosan. Az Apollo—15 kapitánya, David Scott végezte el 1971-ben. Egy tollpihét és egy kalapácsot ejtett el egyszerre, és azok egy időben értek talajt. A Földön ezt nem lehetne megcsinálni, a hulló pihét lassítja a légmozgás, de a Hold felszínén látványosan beigazolódott az előzetes várakozás. Persze nem kell elrepülni a Holdra Galilei eredményének kísérleti igazolásához, de ettől az Apollo-15 bemutatója ugyanolyan látványos, és mindenkinek ajánljuk a róla készült videót. Az a lényeg, hogy ha kiiktatható a légellenállás és a hasonló komplikáló tényezők, akkor minden, ami esik, ugyanúgy esik. A kézenfekvő kérdés most már az, hogy mi lehet ennek az oka? Miért esnek ugyanúgy a dolgok, és miért kell ebből ekkora ügyet csinálni?
Képzelje el, hogy egy veszteglő liftben ácsorog. Szilárdan áll a lábán, a feje biztosan ül a nyakán, a gyomra a helyén, a zsigerei is rendben vannak. Most tegyük fel, hogy egy rosszindulatú kéz elvágja a lift kábeleit. A helyzet több mint kellemetlen, a lift önnel együtt zuhanni kezd. Mivel minden, ami esik, azonos tempóban esik, a talpa immár nem nehezedik a lift padlójára, a feje nem terheli többé a nyakát, a gyomra pedig szabadon lebeg a belső szerveivel együtt. Rövidre fogva: ön ebben az állapotban súlytalan. Ez különös: mintha valaki kikapcsolta volna a gravitációt. Ugyanezt éli át egy űrhajós, amikor szabadon lebeg az űrben. Szakszerűbben: nincs olyan kísérlet, amelyet a lehulló liftben elvégezve ki tudná deríteni, hogy a lift - önnel együtt - lefelé zuhan, vagy pedig szabadon lebeg valahol a világűrben. Önnek persze tisztában kell lennie a kellemetlen igazsággal, hiszen beszállt a liftbe, és azt is látja, hogy a számláló aggasztó tempóban közeledik a „Földszintihez. Szerencsére a gondolatkísérletnek ez a kellemetlen vonatkozása nem tartozik a lényeghez. Az a fontos, hogy a fizika törvényei mindkét állapotban ugyanolyanok. Ez volt az, ami elgondolkoztatta Einsteint. A szabadesésnek ez az univerzális minősége nevet kapott: ekvivalenciaelvnek hívják.
A gravitáció általában helyről helyre változik. Minél közelebb vagyunk a Föld középpontjához, annál erősebb, bár e tekintetben nincs túl nagy különbség a Mount Everest csúcsa és a tengerszint között. A Holdon már sokkal gyengébb, mert annak kisebb a tömege. A Nap vonzóereje ugyanezen okból sokszorosan meghaladja a Földét. De bárhová kerüljünk is a Naprendszerben, azt tapasztaljuk, hogy közvetlen környezetünkben a gravitáció alig változik. Egy álló ember lábára valamivel nagyobb erő hat, mint a fejére, de a különbség nagyon kicsi. Valamivel kisebb, ha alacsony emberről van szó és nagyobb, ha magas az illető. Egy hangya fejére, illetve a lábaira ható gravitációs erő eltérése pedig még kisebb. Folyamodjunk ismét a gondolatkísérlet jól bevált módszeréhez, és képzeljük el, amint a dolgok összezsugorodnak, egészen addig, amíg a lift már csak egy iciri-piciri „liftecske”. Ennek az iciri-piciri liftecskének a belsejében a gravitáció már állandónak tekinthető. A liftecskében iciri-piciri fizikusok sürögnek-forognak, mindenféle kísérleteket végeznek el odabent. Ha most a liftecske szabadon esik, akkor iciri-piciri fizikusaink iciri-piciri szájacskáját soha nem hagyja el az a szó, hogy
„gravitáció”. Bármilyen meglepő, a liftecskével együtt zuhanó fizikusok világképéből, amelyet pedig szigorúan a kísérleti tapasztalataik alapján dolgoznak ki, egyszerűen hiányozni fog ez a fogalom. Egyetlen hangocska sem csipogna a nehézkedésről, a liftecske belsejében ugyanis nem képzelhető el olyan megfigyelés, amely ilyen hatásra utalna. De lassan a testtel! Valamilyen erőnek léteznie kell, amely a Földet a Nap körüli pályán tartja. Tényleg sikerült itt valami fontosra bukkannunk, vagy ez az egész csak szellemi játék?
Hagyjuk most a gravitációt és a téridőt és térjünk vissza a Föld felszínére, a görbült tér e legegyszerűbb példájához. Miközben Manchesterből New Yorkba vezeti a gépét, egy pilóta nem hagyhatja figyelmen kívül, hogy a földfelszín nem lapos. Ha viszont kiballagunk a konyhába, akkor nyugodtan elfeledkezhetünk arról, hogy a Föld gömbölyű, a lakásunk geometriája (lényegében) euklideszi. Végső soron ezért tartott olyan sokáig, hogy az emberiség fölismerje, hogy a Föld nem lapos, hanem gömb alakú. Ennek az érzékeléséhez viszont sokkal nagyobb távolságokat kell megtenni, mint amekkorákkal az embernek a hétköznapokban dolga akad. Vágjuk föl gondolatban a Föld felszínét sok-sok négyzet alakú „foltra", ahogy a 25. ábra mutatja. Az egyes foltok külön-külön csaknem teljesen síkbeliek, minél kisebbre szabjuk őket, annál inkább. A belsejükben tehát az euklideszi geometria érvényes: a párhuzamosok nem találkoznak és a Pitagorasz-tétel is teljesül. Csupán olyankor szembesülünk a felület görbületével, amikor egy nagyobb tartományt akarunk ilyen euklideszi foltokból összefércelni. Rengeteg foltocskára lenne szükség, ha ilyenekből kellene megvarrni a Föld görbült felszínét.
Térjünk most vissza szabadon eső liftecskénkhez és próbáljuk elképzelni, hogy rengeteg hasonló liftecske veszi körül, olyan sok, hogy valójában a téridő minden pontjába jut belőlük. A téridő geometriája mindegyikük belsejében lényegében állandó, és ez annál inkább így van, minél kisebbek ezek a liftecskék. Emlékeztetünk rá, hogy milyen fontos szerepet játszott a 4. fejezetben az a föltevésünk, hogy „ez a mi téridőnk nem változik, mindenütt ugyanolyan”. Erre támaszkodva sikerült rátalálnunk a Minkowski-tér távolságformulájára. Miután pedig az egyes liftecskék belsejében valóban „nem változik” a téridő, azért mindegyikük belsejében valóban érvényes a Minkowski-féle távolságformula.
Reményeink szerint mostanra már látszik, hogy valami hasonlóra készülünk, mint ami a gömbbel történt. Ebben az analógiában a „Föld felületére férceit síkbeli foltok” szerepét átveszik „a téridőben szabadon eső liftecskék”, a „Föld gömbölyű felülete” helyére pedig a „görbült téridő” kerül. Ezért emlegetnek olykor „lapos téridőt” a fizikusok. Analógiánkban a Minkowski-féle téridő játssza a „lapos euklideszi tér" szerepét. Ebben a könyvben a „lapos” jelzőt mi az euklideszi geometriával
kapcsolatban használtuk, a „görbült” kifejezést pedig a Minkowski-féle Pitagorasz-tétel negatív előjele miatt vettük elő. Bizonyos esetekben a szavak jelentése korántsem olyan magától értetődő, mint ahogy szeretnénk. (A szerzők tiszta vizet öntenek a pohárba: mostantól a matematikai jelentésének megfelelő értelemben beszélnek majd „görbült térről”, illetve görbületről.)
Az analógiára visszatérve: most a zuhanó liftecskék játsszák azoknak a „foltocskáknak” a szerepét, amelyekből összefércelhető a Föld felszíne. Bár a belsejükben nem érvényesül a gravitáció, görbült téridővé illeszthetők össze, éppen úgy, ahogy a gömb felszínét megkaphatjuk a lapos euklideszi foltocskákból. Ha nem létezne a gravitáció, akkor megtenné egyetlen óriási lift is, amelynek világát a Minkowski-féle geometria írná le. Mindebből pedig az következik, hogy megválhatunk a gravitációtól, feltéve, hogy a téridőt görbültnek tekintjük. Érdekes gondolat!
Ha most a fejéről a talpára állítjuk ezt az okoskodást, akkor arra jutunk, hogy a nehézkedési erő végső soron nem más, mint annak a jele, hogy a téridő görbült. Tényleg így volna? És ha így van, akkor mi lehet ennek a görbületnek az oka? Mivel a gravitáció mindig anyag jelenlétében lép fel, azt kapjuk, hogy a téridő az anyag környezetében görbül el. Einstein arra a következtetésre jutott, hogy az anyagban tárolt energia az, ami ezt a görbültséget meghatározza. A görbület mértékéről eddig még nem beszéltünk. Nem is nagyon fogunk, ugyanis ez a kérdés — egy közhellyel szólva - egyáltalán nem triviális. Einstein 1915-ben felírt egy egyenletet, amelyből pontosan ki lehet olvasni, hogy milyen mértékben görbül el a tér adott mennyiségű tömeg, azaz ennek a tömegnek megfelelő mértékű energia jelenlétében. Ez az egyenlet Newton klasszikus tömegvonzási törvényét általánosítja, és ez a kiterjesztés mintegy automatikusan összhangba kerül a speciális relativitáselmélettel. (A Newton-féle törvényről ezt nem lehet elmondani.) A hétköznapi helyzetekben természetesen a Newtonéhoz nagyon közeli eredményeket ad, és jól látszik, hogy a newtoni változat csupán közelítés. Hogy érzékeltessük a gravitáció newtoni és einsteini szemlélete közti különbséget, nézzük, hogyan írnák le, ahogy a Föld a Nap körül kering. Newton a következőt mondaná: „A Földet a nehézségi erő vonzza a Nap irányába és azt körpályára1 kényszerítve ez az erő akadályozza meg, hogy kirepüljön a világűrbe.” (A Föld pályája valójában ellipszis. Ez a görbe egy „megnyújtott” kör, amely azonban a Föld esetében igen közel van egy körhöz.)
Mintha egy zsinegre kötött labdát pörgetnénk a fejünk felett. A labda körpályán mozog, erre kényszeríti a feszülő zsineg. Ha elvágják, akkor a labda egyenes irányban repül tovább. Ugyanígy, mondja Newton, ha valamiképpen egyik pillanatról a másikra megszűnne a Nap gravitációja, akkor a Föld is egyenes vonalú pályán röpülne ki a világűrbe. Einstein magyarázata egészen másképpen hangzik: „A Nap a tömege révén görbíti el a környezetében a téridőt. Maga a Föld szabadon mozog a téridőben, csupán ennek görbülete miatt érzékeljük a pályáját kör alakúnak.”
Nézzünk egy másik példát, amelyben egy látszólagos erőhatás lényegében a rendszer geometriájának a következménye. Két jó barát sétára indul a Föld felszínén. Az Egyenlítőről indulnak el és mindketten észak felé haladnak, egyenes irányban. Egy idő után azt látják, hogy egyre közelebb kerülnek egymáshoz, és ha így haladnak tovább, akkor az Északi-sarkon egymásba ütköznek. Ha szigorúan tartják a kijelölt irányt, akkor jogosan következtethetnek arra, hogy valamilyen erő vonzza őket egymás felé, miközben észak felé bandukolnak. Ez kétségkívül hihetően hangzik, de persze ott a másik lehetséges magyarázat: a jelenség oka a Föld alakja. Nos, miközben a Nap körül kering, a Föld is ilyesféle helyzetben van.
Hogy jobban megvilágítsuk, miről van szó, vegyük elő ismét a rendületlenül masírozó útitársak egyikét, aki ezúttal azt az utasítást kapja, hogy haladjon egyenes vonalban. Ott, ahol az utasítás elhangzásakor tartózkodik, ez minden további nélkül menni fog, mert a Föld felszínének bármely pontjában úgy tapasztalja, hogy a környezetében az euklideszi geometria van érvényben, ahol pedig az egyenes fogalma egyértelmű. De ha folyamatosan ehhez tartja magát, akkor végül körvonalat jár be, bár erre a körvonalra most úgy kell gondolnunk, mint ami rengeteg parányi egyenes szakaszból „fércelődik össze”. E kitérő után nézzük meg ismét, hogyan működik a gravitáció a téridőben. A kép most bonyolultabb, de elsősorban azért, mert a Föld felszínének összesen két dimenziójához képest a téridő bizony négydimenziós „felület”. De nem győzzük hangsúlyozni: ezekért a bonyodalmakért elsősorban korlátozott képzeletünk a felelős, nem pedig a dolog matematikája, amely a téridőben alig bonyolultabb, mint a Föld felszínén. A téridőbeli egyenesek (amelyeket ilyenkor geodetikus vonalaknak neveznek) fogalmára támaszkodva most már hozzáfoghatunk a gravitáció leírásához. Arról van szó, hogy a gravitáció jelensége megragadható a téridő görbületeként, illetve hogy „lokálisan” a téridő geometriája a Minkowski-féle, amit az elhangzottakkal összhangban „laposnak” kell neveznünk. Remélhetőleg az Olvasó mostanra már el tudja képzelni, hogyan mozognak a dolgok ebben a környezetben. Egy nyugalomban lévő részecske például megmarad ebben az állapotában, hacsak valami ki nem billenti. Eszerint a téridőbeli pályája párhuzamos az időtengellyel. Ugyanígy, ha valami állandó sebességgel mozog, akkor így halad majd tovább (megint csak akkor persze, ha el nem téríti valami). Ilyenkor a téridődiagramon már nem kizárólag az időtengely mentén zajlik a mozgás. így vagy úgy, a tárgyak a téridő kicsiny „foltjainak” a belsejében Minkowski-egyenesek mentén mozognak, hacsak nem lép fel valamilyen külső hatás. A gravitáció akkor jut szóhoz, amikor ezeket a parányi foltocskákat összeillesztjük; a számtalan kicsiny „Minkowski-szakasz” is ilyen módon áll össze valami érdekesebbé, mint amilyen például egy bolygó pályája a Nap körül. Arról nem beszéltünk, miképpen illeszkednek egymáshoz ezek a „Minkwski-foltocskák” ahhoz, hogy kiadódjék a görbült téridő; pontosan ezt mondja el Einsteinnek az 1915-ben felírt egyenlete. De mondandónk lényege egyetlen rövid mondatban összefoglalható: a gravitáció jelenségének kulcsa az univerzum geometriai szerkezete.
Valójában tehát a geometria nyelvén kell beszélnünk a gravitációról. Minden mozgás ennek a geometriának az egyenesei mentén zajlik, hacsak ki nem téríti valami. Persze végtelen sok geodetikus vonal halad át a téridő bármely pontján, ugyanúgy, ahogy a sík pontjain keresztül is végtelen sok egyenest tudunk rajzolni. Ebben a tekintetben a felületek nem különböznek egymástól. Vajon egy mozgó tárgy ezek után a téridő melyik egyenesét választja? A válasz igen egyszerű: ez a körülményeken múlik. Ha valaki körbe akarja utazni a Földet, elvben bármerre indulhat. Azt az irányt választja, amelyik neki tetszik. Ugyanígy, ha egy tárgyat leejtünk, akkor egy meghatározott geodetikus vonalon mozog majd, ha pedig elhajítjuk, akkor egy másikon. Ha egy adott pontban megadjuk az irányát, akkor ez meghatározza a téridőbeli mozgás lefolyását. Mi több, az adott irányban induló tárgyak szükségképpen ugyanazon a pályán mozognak majd, függetlenül az olyan belső tulajdonságaiktól, mint például a tömeg vagy az elektromos töltés. Egyenes vonalú pályán haladnak majd, és ez minden, amit mondhatunk. Magát a gravitációt a görbült téridő geometriai tulajdonságaként szemlélve elegáns magyarázatot kapunk az ekvivalenciaelvre, amely annak idején olyannyira elgondolkoztatta Einsteint.
A tér és az idő természetét ekként földerítve most már érthető, hogy útja során a Föld egyenes vonalú pályán mozog a Nap körül. Csakhogy ez a pálya a görbült téridő egyenese, amely ebben a mi terünkben körként mutatkozik meg (vagy legalábbis majdnem körként).
Lássunk tisztán: szó sincs arról, hogy bebizonyítottuk volna, hogy a Nap valóban olyan módon görbíti el a téridőt, amelyben a Föld által követett geodetikus vonalat (majdnem) körként észleljük a háromdimenziós térben. Az ilyesmihez túl sok matematikára lenne szükség. Ezenkívül pontosan utána kellett volna járnunk, hogyan görbíti el az anyag a téridőt; ezt a kérdést pedig gondosan kerültük. A matematikai bonyodalmak miatt tartott tíz hosszú évig, mire Einstein kidolgozta az általános relativitás elméletet. Maga az elmélet fogalmilag nem igazán bonyolult, és így teljes szépségében felfogható. Számos fizikusnak az a véleménye, hogy a legszebb gondolati konstrukció mindazok közül, amelyeket a természet leírása során a tudomány megalkotott.
Az eddigiekből remélhetőleg kiderül, hogy ebben a leírásban semmi szerepe nincs a mozgó tárgyak minéműségének: az elmélet számára mindegyikük ugyanolyan. így aztán a téridőben a fény is geodetikus vonal mentén halad. Az egyes téridőfoltocskák belsejében valamelyik 45°-os egyenessel párhuzamosan mozog (ezeket a 4. fejezetben vezettük be), de a foltocskák illeszkednek, így aztán úgy találjuk, hogy a térbeli pálya valamilyen görbe. Ennek a pályának a jellege árulkodik arról, miképpen görbíti el a teret az elsősorban a tömeg formájában megjelenő belső energia. Ahogyan a Földet a Nap körüli pályáján, a fénysugarat is az általa követett négydimenziós geodetikus vonal térbeli vetülete mentén látjuk elhaladni. Az alábbi gondolatkísérletből megérthető a fénynek ez az elhajlása, és az is, hogyan működik az ekvivalenciaelv.
Képzelje el, hogy a felesége leveszi a kredencről a lézerágyút, és vízszintes irányban kilő a konyhaablakon. Az ekvivalenciaelv pontosan elmondja, hogy mi történik. A fény ugyanabban a tempóban „esik” a talaj felé, mint bármelyik kistányér, amelyet a lézersugár kilövésének a pillanatában ön mosogatás közben elejt. Ha Galileinek lett volna lézerágyúja, és az ágyúgolyó leejtésekor egy vízszintes lézersugarat is kilőtt volna a pisai ferde torony tetejéről, akkor Einstein szerint a lézersugárnak az ágyúgolyóval egy időben kellett volna „földet érnie”. A kísérlet azonban így nem működik: a Föld gömbölyű, a lézersugár valójában soha nem éri el a talajt; elsuhan az űrbe. Egy sík Földön viszont valóban arra számíthatnánk, hogy a lézersugár az ágyúgolyóval egy időben ér földet, csak éppen nagyon-nagyon messze. Ha az ágyúgolyónak ehhez, mondjuk, egy másodpercre van szüksége, akkor a lézersugár egy fénymásodpercnyi, azaz 300 000 kilométernyi távolságban érne talajt.
A gravitáció geometriai értelmezése kétségtelenül remekül hangzik, és további látványos következtetések forrása is lehet, de amint nem győztük hangsúlyozni ebben a könyvben, ha egy elméletnek nincsenek kísérletileg is ellenőrizhető következményei, akkor végső soron érdektelen. Einsteinnek szerencséje volt: csupán négy évet kellett várnia elvont fejtegetései kísérleti bizonyítékára.
Az Einstein-féle elmélet első nagy próbájára 1919-ben került sor. Ebben az évben jelent meg Arthur Eddingtón, Frank Dyson és Charles Davidson közös cikke: „A fény elhajlása a Nap gravitációs terében az 1919. május 29-i napfogyatkozáskor”. A cikket a Philosophical Transactions of the Royal Society of London közölte és benne olvasható a következő halhatatlan mondat: „...mindkét megfigyelés [lásd lentebb] ugyanarra az 1,75 szögmásodperc értékre utal.” Einsteint nyomban szárnyára kapta a világhír. A görbült téridőről értekező titokzatos elmélete fényesen beigazolódott, és ez Eddington, Dyson és Davidson rendkívüli kísérleti teljesítményének volt köszönhető. Két expedíciót szerveztek a napfogyatkozás megfigyelésére: egyiket a brazíliai Sobralba, a másikat pedig Principe szigetére Afrika nyugati partjainál. A Nap eltűnésekor azok a csillagok is megjelentek a sötét korong peremének a közelében, amelyek fényét normál körülmények között elhomályosítja a napsugár. Éppen ezeknek a csillagoknak a fénye látszott a legalkalmasabbnak arra, hogy ellenőrizni lehessen Einstein következtetéseit: a Nap közelében nagyobb mértékben görbül el a téridő, így várhatóan ezeknek a fénysugaraknak az iránya változik a legnagyobb mértékben. Eddingtonék lényegében azt vizsgálták, hogy megváltozik-e ezeknek a csillagoknak a viszonylagos helyzete, miközben áthalad előttük a Nap. Szó szerint ez történt: a Nap elgörbítette téridő, akár egy gyűjtőlencse, módosította a csillagok elrendezését az égbolton.
Azóta már egészen más jellegű mérésekkel is sikerült nagy pontossággal megerősíteni Einstein elméletét. Ehhez az univerzum legizgalmasabb szereplőinek egyikét, a pulzárnak nevezett forgó neutroncsillagokat vették igénybe a tudósok. Ezekkel a 6. fejezetben akadtunk össze, de érdemes tudni, hogy bőségesen van belőlük az univerzumban. Különleges helyet foglalnak el a földi teleszkópok segítségével tanulmányozható objektumok között, mégpedig azért, mert a tömegük révén jelentős mértékben elgörbítik a téridőt, másfelől a legprecízebb atomórákéval vetekedő pontossággal sugároznak. A pulzárok ideális objektumok az általános relativitáselmélet teszteléséhez, elmondható, hogy a kísérleti fizikusok legszebb álmait váltják valóra. Forgás közben rádióhullámokat sugároznak, akár egy világítótorony: a keskeny nyaláb másodpercenként vagy sűrűbben pásztázza körbe a kozmikus látóhatárt. Ezeket az izgalmas objektumokat tulajdonképpen véletlenül fedezte fel 1967-ben Jocelyn Bell Bumell és Tony Hewish. Ha nem egészen világos, hogyan lehet véletlenségből rábukkanni egy forgó neutroncsillagra, nos, Bell Bumell a kvazároknak nevezett távoli objektumok rádiósugárzásának az ingadozásait kutatta abban az időben. Ezekért az ingadozásokért a csillagközi térben jelen lévő, a napszélhez hasonló fotonsugárzást tették felelőssé akkoriban. A hölgyben jól fejlett tudományos kíváncsiság munkált, és egy novemberi éjszakán nem várt szabályosságra figyelt föl az adatai között. Témavezetőjével, Hewishsel egyetértésben az volt az első gondolata, hogy a jelzések emberi eredetűek. A későbbi mérések viszont meggyőzték őket, hogy a jelek forrásának nagyon távol kell lennie; messze túl a földi léptéken. „Nagyon dühös voltam aznap este”, mondta erről később Bell Bumett. „Nyakig ültem a PhD-mben, azt hittem, hogy az újfajta technikával előbbre jutok, majd, és erre tessék, a kicsi, zöld emberkék pont az én antennámon és az én frekvenciámon akarnak velünk kapcsolatba lépni!”
Bár elég sok pulzár van az univerzumban, csupán egyetlen olyan elrendezésről tudunk, amikor két ilyen csillag kering egymás körül. Ennek a kettős pulzárnak a létezéséről 2004-ben szereztek tudomást a rádiócsillagászok, az ezt követő mérések pedig Einstein elméletének mindmáig legpontosabb tesztelését tették lehetővé.
Nem akármilyen szörnyeteg ez a kettős pulzár. Ma már azt is tudjuk, hogy a két neutroncsillagot alig egymillió kilométer választja el egymástól. Elgondolhatatlan erők tombolnak ebben a rendszerben. A két csillag tömege akár a Napé, de nem nagyobbak, mint egy-egy város; másodpercenként több százszor fordulnak körbe a saját tengelyük körül, szinte kőhajításnyira egymástól, alig háromszor olyan messze, mint a Föld és a Hold. Az Einstein-tesztelők azért veszik kitűnő hasznukat, mert a páros egyik tagjának a rádiósugárzása olykor nagyon közel halad el a másikhoz. A rendkívül szabályosan lüktető jelek tehát nagyon erősen görbült térrészen haladnak át, amely lelassítja őket. Pontos megfigyelések révén megmérhető ez a késleltetés, és az eredmények igazolják Einstein elméletét.
A kettős pulzár rendszerének van egy további különlegessége: a két egymás körül keringő csillag „egyenetlenségeket” hoz létre, amelyek tovaterjednek a téridőben. Ez a folyamat energiát von el a rendszerből és ez azzal jár, hogy a két csillag egy-egy spirál mentén lassan közeledik egymás felé. Ezeket az egyenetlenségeket gravitációs hullámoknak nevezik, és Einstein elmélete az ő létezésüket is megjósolja. (A newtoni rendszerben nem kerülnek elő.) A kísérleti fizika példátlan sikere volt, amikor a csillagászoknak sikerült megmérniük, hogy ez a közeledés napi 7 millimétert tesz ki, teljes összhangban azzal az értékkel, amit az általános relativitáselmélet jósolt. A méréseket a világ három különböző pontján három óriásteleszkóp segítségével végezték el: a 64 méteres Parkes teleszkópon Ausztráliában, a 76 méteres Lovell teleszkópon az angliai Jodrell Bankben, végül a 100 méteres Green Bank teleszkópon Nyugat-Virginiában. Ez a mérés valóban lélegzetelállító tudományos teljesítmény. A két neutroncsillag egymillió kilométer távolságban kering egymás körül a Földtől 2000 fényévnyi messzeségben. Hogy eközben mi történik velük, azt millimétemyi pontossággal sikerült megjósolni egy olyan elmélet alapján, amelyet 1915-ben dolgozott ki valaki, aki meg akarta érteni, hogy miért ért ugyanakkor földet két tárgy, amelyeket háromszáz évvel korábban ejtettek le a pisai ferde torony tetejéről.
Rendkívül leleményesek ezek a kettőspulzár-mérések, és egyszersmind titokzatosak is, az általános relativitással viszont sokkal köznapibb helyzetekben is nap mint nap találkozhatunk, mégpedig itt, a Földön. A széles körben elterjedt műholdas navigációs rendszer, a GPS megbízható működése az Einstein-féle elmélet alapján elvégzett rendkívül pontos számításokon múlik. Egy 24 műholdból álló rendszer kering 20 000 kilométer magasságban, mindegyikük naponta kétszer kerüli meg a Földet. Ezek a műholdak hajszálpontos fedélzeti órák segítségével határozzák meg bizonyos objektumok helyzetét a Földön. Ilyen nagy magasságban gyengébb a gravitáció, így az órák a földi megfelelőikhez képest másképpen görbült téridőben mozognak. Ennek az a következménye, hogy ezek az órák naponta 45 mikroszekundumot sietnek a földi órákhoz képest. A megváltozott gravitáció mellett ugyanakkor ezek a műholdak igen gyorsan mozognak, óránként körülbelül 14 000 kilométert tesznek meg, így a speciális relativitáselmélet szerint fellépő időeltolódás naponta 7 mikroszekundummal lassítja le a fedélzeti órákat, amelyek tehát végül 38 mikroszekundumot sietnek naponta. Ez nem valami sok, de ha mostantól figyelmen kívül hagynánk, akkor órák alatt összeomlana a GPS-rendszer. A fény ugyanis 30 centimétert tesz meg egy nanoszekundum alatt, ami egy másodperc alatt egymilliárdszor ennyi. Harmincnyolc mikromásodperc tehát több mint tíz kilométert jelent minden egyes napon: ekkora eltérés mindenféle navigációs próbálkozást komolytalanná tesz. A megoldás Kolumbusz tojása: a műholdak fedélzeti órái gyárilag
38 mikroszekundumot késnek naponta, amivel a rendszer megbízhatósága kilométerekről a méteres hibahatárra csökken.
A GPS műholdak órái tehát sietnek a földi órákhoz képest. Ez a jelenség megérthető, ha felhasználjuk, amit ebben a fejezetben tanultunk: az ekvivalenciaelv közvetlen következményéről van szó. Hogy megtudjuk, miképpen, ahhoz ismét induljunk időutazásra, ezúttal egészen 1959-be, és látogassunk el a Harvard Egyetem egyik laboratóriumába. Robert Pound és Glen Rebka egy kísérletben vannak elmerülve, melynek során a labor tetejéről fénysugarat „ejtenek" a 22,5 méterrel mélyebben lévő pincébe. Ha „zuhanás közben” a fény szigorúan tartja magát az ekvivalenciaelvhez, akkor az energiája ugyanolyan arányban kell megnövekedjék, mint bármelyik lehulló tárgyé. (Aki tudja, hogy a helyzeti energia mgh, az gyorsan utánaszámolhat, hogy ez a növekedés éppen gh/c2.)
Azt kell tisztáznunk, mi történik a fénnyel, ha megnő az energiája. Más szóval mire számíthat a két fizikus, Rebka és Pound, mire a fény a pince aljára ér? A fény fotonokból áll, mivel ezeknek tömegük nincs, illetve a kozmikus határsebességgel mozognak, a kvantumelmélet szerint csak úgy növekedhet az energiájuk, ha a fény frekvenciája nő meg. Tudjuk jól, hogy a fény hullámként is elgondolható: hullámhegyek és hullámvölgyek követik egymást, mint a sima víztükör felületén, ha követ ejtünk a tóba. A hullám frekvenciája nem más, mint egy adott ponton másodpercenként áthaladó hullámhegyek (vagy éppen hullámvölgyek) száma. Ezek a hullámhegyek és hullámvölgyek éppenséggel órajelként is használhatók. Ami most már a Pound-Rebka-kísérletet illeti, úgy képzelhetjük, hogy Pound a torony tetejében gubbaszt egy lámpával a kezében és levilágít. Számon tartja, hogy
hány hullámhegy lép ki a lámpájából, miközben a szíve egyet dobban. Rebka eközben a pince mélyén ücsörög a fenti lámpa pontos másával. Ha ő is megszámolja, hogy egy szívdobbanása alatt hány hullámhegy lép ki az ő lámpájából, akkor a kollégájával megegyező eredményt kell kapnia, mert a lámpáik egyformák, és a szívük is egyszerre lüktet. Na jó, mondanák erre, ez azért így erős túlzás, hogy két embernek hajszálra ugyanúgy verjen a szíve, de a gondolatkísérlet kedvéért fogadjuk el, hogy így áll a dolog. Most próbáljuk elképzelni, milyennek láthatja Rebka a pincében Pound lámpájának a fényét. Az abból kilépő fény energiája nagyobb lesz, mire leér, megnő tehát a frekvenciája: Rebka így azt találja, hogy a fentről érkező hullámhegyek gyorsabban követik egymást, mint az ő lámpáján. De a fenti fényforrás frekvenciája a kolléga szívveréséhez lett igazítva. Így aztán Rebka a pincében arra lyukad ki, hogy Pound szíve gyorsabban kell hogy verjen odafent, a kollégával gyorsabban telik az idő. A különbség persze elenyésző, 13 millió év alatt mindössze egyetlen másodperc. Zseniális kísérleteik során azonban Rebka és Pound még ezt a valóban elenyésző változást is ki tudták mutatni. A GPS műholdak órái is pontosan ezért gyorsulnak fel. A Harvard-labor 22,5 méterénél sokkal nagyobb magasságban zajlik a dolog, de a lényeg ugyanaz: a gyengébb gravitációs mezőben gyorsabban járnak az órák.
Einstein általános relativitáselméletének nyomán, amelyet teljes mértékben igazolnak a kísérletek, a téridőt immár nem a tér és az idő mindörökre mozdíthatatlan együtteseként kell elképzelnünk. Dinamikusabb szerkezetről van szó, amelyre hatással van az anyag jelenléte. Mivel pedig E = mc2, anyag és energia egyenértékűek, az energia ugyanígy módosítja a téridő struktúráját. A téridőnek ez a változékony szerkezete határozza meg a benne zajló mozgásokat. A tér tehát valóban nem az az állószínpad, ahol a dolgok megtörténnek, és az idő sem a mindörökké ugyanolyan tempóban ketyegő óriási óra a horizonton túl. Ennek a radikális szemléleti megújulásnak pedig talán az a legfontosabb tanulsága, hogy nem tanácsos kiterjeszteni a tapasztalatainkat az érvényességi körükön túlra. Miért mozognának a nagy sebességű tárgyak hasonló törvények szerint, mint a lassúbbak, amilyenekkel a hétköznapok során dolgunk akad? Vagy ugyanígy: milyen jogon próbálunk következtetni a nagyon nagy tömegű tárgyak viselkedésére, ha csupán a könnyebbeket vizsgáljuk?
Hétköznapi látásmódunk többnyire félrevezet, Einstein pedig azt is megmutatta, mennyivel elegánsabb a mélyebb megértés nyomán kirajzolódó kép. Ez a kép olyan, egymástól távol eső fogalmakat egyesít, mint a tömeg és az energia, a tér és az idő, végül pedig a gravitáció. Einstein speciális és általános relativitáselmélete minden kétséget kizáróan az emberi elme nagyszabású teljesítményei, és azok is maradnak. Az eljövendő évek során, az új megfigyelések és kísérletek nyomán aztán a megismerés újabb szintjére jutva várhatóan újra kell értelmezni a könyvünkben kifejtett gondolatokat: az új tények erre kényszerítenek. Számos fizikus már ma is újszerű fogalmi keretekben bízva keresi a világ pontosabb és átfogóbb elméleti leírását. Hogy a tudománynak alázatosnak kell lennie, hogy nem érdemes a tapasztalatok érvényességén túl terjeszkedni, az nem csupán a relativitáselmélet leckéje: a XX. század fizikájának másik nagy áttörése a kvantumfizika fölfedezése volt, amely az atomi és még annál is kisebb léptékben vizsgálja a világot. A hétköznapi tapasztalatok alapján senki nem lett volna képes megjósolni, hogyan működik a természet a parányok szintjén. Érzékszerveink emberi léptékű benyomásokról tudósítanak, így aztán a kvantumfizika világát képtelenségek egyvelegének látjuk. De ha belegondolunk, hogy az orvosi képalkotó berendezésektől a legújabb számítási technológiákig mai életünk megannyi eszköze áll közvetlen kapcsolatban a világnak ezzel a különös szintjével, akkor tudomásul kell vennünk, hogy az olyan, amilyen, akár tetszik nekünk, akár nem.
A mai fizikusoknak komoly dilemmával kell szembenézniük. Einstein általános relativitáselmélete, a gravitációnak ez a mindmáig legjobb leírása nem egyeztethető össze a kvantumfizika világképével. Egyiküket, esetleg mindkettőt át kell dolgozni. Netán a mikroskálán „szétesik” a téridő? Vagy valójában nem is létezik, csupán az egyre sokasodó „történések” kiváltotta illúzió? Lehetséges volna, hogy a természet elemi alkotórészei igazából az energia parányi rezgései, amelyeket húroknak nevez a mai tudomány? Vagy egy ma még nem létező elmélet hozza majd a megoldást? A fizikai alapkutatások frontvonalán járunk, és akik ezen a határvidéken dolgoznak, döbbent elragadtatással néznek ki az ismeretlenbe.
Egy olyan könyv vége felé, amelyik Einstein relativitáselméleteit mutatja be, csábító lehet egy aggályos kultuszhoz, a Nagy Ember Kultuszához csatlakozni. A mi vállalkozásunknak ehhez semmi köze. Azért nem, mert véleményünk szerint egy ilyesfajta kultusz bénítóan hat a tudományra: azt az illúziót táplálja, hogy az a kivételes képességekkel rendelkező elmék privilégiuma, messze túl a hozzánk hasonló hétköznapi emberek szintjén. Semmi sem áll távolabb az igazságtól. A relativitáselmélet nem egyetlen ember szellemi bravúrja volt, bár egy ilyen könyvben néha úgy tűnhet. Einstein minden bizonnyal a tudományos kutatás művésze és mestere volt egy személyben, és az eddigiek alapján remélhetőleg világos, hogy számos kortárs és előd kíváncsisága és szakértelme kellett ahhoz, hogy eljuthasson a tér és az idő fogalmának radikális újraértelmezéséhez. Nem volt torzszülött, nem voltak földöntúli képességei. Nagy tudós volt, és azt tette, amit a többiek: komolyan vette az egyszerű kérdéseket és logikusan végiggondolta a lehetséges következményeiket. Abban állt a zsenialitása, hogy elgondolkodott azon, mit jelent az, amit már Maxwell is tudott, hogy a fény sebessége állandó, és mi következik az ekvivalenciaelvből, amelyet már Galilei is megfogalmazott.
Ezzel a könyvvel az volt a célunk, hogy a kívülállók is megérthessék Einstein gondolatait, és átélhessék azok szépségét. Szerintünk ez igenis lehetséges, az a véleményünk ugyanis, hogy a tudomány végső soron nem bonyolult mesterség. Ha sikerül jó irányban elindulnunk, akkor a természet mélyebb megértésének útján kicsiny, megfontolt léptekkel kell haladni. A tudomány valójában alázatos vállalkozás és ez az alázat a sikereinek a kulcsa. Einstein elmélete mérföldkő, a mai tudásunk szerint helyes is, de oltárkőnek azért ne gondoljuk. Az őt megillető helyen áll majd, egészen addig, és ezt nyugodt szívvel állíthatjuk, amíg nem jön valami jobb. Ugyanígy, a tudomány hősei sem próféták, hanem a természet szorgalmas és aprólékos feltérképezői. Vannak köztük ismertebbek, egyesek nevét milliók fújják, de nincs köztük egy sem, akinek a hírneve védelmet jelentene a kísérletek kíméletlen kritikájával szemben. A természet nem tisztelettudó. Galilei, Newton, Faraday és Maxwell, Einstein, Dirac, Feynman, Glashow, Salam, Weinberg... nagy nevek. Négyen közülük, a lista elején, csak közelítő igazságokig jutottak el, és a XXI. században ugyanez a többiekről is kiderülhet.
Ezzel együtt minden kétség nélkül állíthatjuk, hogy Einstein speciális és általános relativitáselmélete az emberi gondolkodás kiemelkedő teljesítményei között van, nem kis részben azért, mert jól példázza, milyen csodákra képes a tudományos képzelet. Ez az ember a tiszta gondolat erejével, alig néhány kísérleti tény alapján volt képes radikálisan átalakítani a világegyetem szerkezetéről alkotott képünket. Az a tény, hogy Einstein fizikája esztétikailag és filozófiailag egyaránt gyönyörködtető, ugyanakkor gyakorlati szempontból rendkívül hasznos, nagyon fontos tanulságot hordoz, olyan tanulságot, amelynek valódi jelentősége többnyire elsikkad. Az igazi tudományt a vizsgálódó elmék viszik előre, az olyan elmék, amelyekben megvan az álmodni tudás képessége is. Ha a társadalom, amelyben Einstein élt és dolgozott, valamilyen módon olyan elhatározásra jutott volna, hogy polgárai szükségleteit az eddigieknél hatékonyabb energiaforrással kívánja kielégíteni, akkor sem életszerű, hogy egy felvilágosult politikus képes lett volna a közakarat és a közpénzek megfelelő átcsoportosításával a tér és az idő kutatására mozgósítani. De ahogy láttuk, éppen ezek a vizsgálatok vezettek el az E = mc2 egyenlethez, amely aztán kulcsot adott az ember kezébe, hogy felszabadíthassa az atommagba zárt erőket. Milyen egyszerű gondolat, hogy a fény sebessége az univerzum minden megfigyelője számára szükségképpen ugyanakkora - és ennek nyomán valóságos bőségszaru nyílt ki. „Milyen egyszerű gondolat...”, ha volna mottó, amelyet az emberi elme legnagyobb tudományos eredményeihez lehetne illeszteni, akkor ez a három szó méltán lehetne az. A tűnődni képes elme, amint örömét leli abban, hogy rácsodálkozik és eltöpreng a természet látszólag jelentéktelen részletein és a határokig gondolja végig azokat, újra meg újra eljut a legnagyszerűbb következtetésekig. Csodák vesznek körül valamennyiünket és ha képesek vagyunk nyitott szemmel és nyitott elmével szemlélni őket, akkor határtalanok a lehetőségeink. Albert Einstein emléke pedig élni fog, amíg emberi lények népesítik be az univerzumot, mint inspiráció és személyes példa mindazok számára, akiket természetes kíváncsiság hajt előre, hogy megismerjék és megértsék a világot maguk körül.
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